国内外石油测井新技术
几项国际钻完井新技术

几项国内外钻完井新技术一、智能井技术 (1)二、激光钻井技术 (1)三、钻工对未来钻井的设想 (3)四、优化四维地震流体成像 (4)五、用智能井开采海上边际油田 (5)六、应用油藏性描述及3D可视化技术促进海上油田的二次开发 (6)七、高温高压深井钻井前沿专项技术研究 (7)一、智能井技术智能井技术并不是新近才出现的。
早在1997年第一次智能完井即采用了SCRAM 专利系统。
它的特点是可以进行永久的监测,能够控制油藏内流体的流动。
而6年之后,供应商与专业服务公司就在世界范围内安装了超过185个智能井系统。
一些论坛分析认为,对智能井技术的投资已接近10亿美元。
智能井技术要想在经济上可行,就不能仅仅局限于试验基础上单方面的应用,而要在各种各样的油井中作为油田开发一个重要而不可缺少的部分。
可喜的是,虽然发展速度缓慢,但这一切正在得以实现。
智能井技术是油藏实时管理的主要构成部分。
通过安置在油藏平面上的传感器与控制阀,石油工程师们就可以对油藏与油井的动态进行实时监测,分析数据,制定决策,改变完井方式,以及对设备的性能进行优化。
智能井技术的应用智能井技术的应用范围很广,主要用于油藏开采过程的管理,这对于二次采油与三次采油非常重要。
它可以控制一口油井的注入水或注入气在不同产层或不同油藏之间的分布,也可以封堵产自其他产层的水或气,因而可以控制注入水或驱替出的油扫过油藏中未波及的区域。
这对于复杂结构井,如大位移井、长水平井或多分支井以及各向异性的油藏来说非常重要。
作为一种有力的工具,智能井技术不仅可以处理油田开发中经常出现的问题,也可以处理很多井下突发事件,并通过对这些突发事件的处理创造价值,从而给资产增值。
智能井技术在油田开发中的优点主要在于:优化油藏性能,从而提高油藏采收率,增加油井产量;减少作业中投入的劳动力,从而减少安全事故,更有效地进行油藏管理。
目前,已采用智能井技术的油井接近200口。
这同那些正计划采用与正在采用该技术的多口油井开发项目共同表明了,该技术可以实现预期的目的。
石油勘探开发中的新技术与新方法

石油勘探开发中的新技术与新方法石油资源是人类经济发展的重要能源,其在化工、能源、交通、农业等领域均有广泛的应用。
随着勘探深度的不断加深和区域范围的扩大,传统石油勘探方法已经难以满足人们的需求。
因此,石油勘探开发领域不断出现新技术和新方法,并在实际应用中取得了显著的成效。
本文将就石油勘探开发中的新技术与新方法展开阐述。
1. 地震勘探技术地震勘探技术是一种常用的非地质切割探测技术,可乐观保护较大范围内石油的地层信息。
通过注入声波声能或爆炸震动等方式,一次性产生短时间高强度的震动波,使其在地层中传递和反射,转化为可读取和处理的信号。
这种技术主要依靠现代计算机和数学模型,共同解决信号分离、成像和识别等难题。
地震勘探技术有助于准确识别油气藏深度、大小、方位和地质特征,促进了油田规模的优化和产量的增加。
同时,该技术在地震监测、岩性判读和油藏预测等方面也具有广泛的应用。
2. 三维可视化技术三维可视化技术是一种基于计算机图形学的数字化技术,通过搜集和处理油田地质数据,构建虚拟三维模型,并实时可视化。
这种技术可实现油藏的立体展示,帮助工程师和石油学家快速了解油田的结构、特征和油层属性。
同时,它还可以模拟不同的开采方案、预测开采效果和确定勘探方向,提高了采油效率和降低了开采成本。
与传统的模拟能源相比,三维可视化技术具有更高的精度和更强的可读性,成为勘探开发领域的新热点。
3. 人工智能技术人工智能技术是一种基于机器学习的新型石油勘探开发技术。
它通过搜集和处理大量地质、地球物理和水文地质数据,导入现代人工智能算法,实现数据的自动分析和加工。
这种技术具有高效、准确、自动的特点,可帮助工程师和石油学家快速识别油气层、确定油藏属性和预测生产效果。
同时,它还可以提高勘探过程的安全性、精度和效率,并降低了勘探成本。
在石油勘探开发领域,人工智能技术正在成为一项具有广泛应用前景的重要技术。
4. 海洋工程技术海洋工程技术是一种基于海洋转移设备开发和利用的新型技术。
国内外钻井新技术

国内外钻井新技术钻井作为石油勘探开发的重要环节,一直以来都在不断发展和创新。
近年来,随着科技的进步和需求的不断增长,国内外钻井行业涌现出了许多新技术,这些新技术为钻井作业提供了更高效、更安全、更环保的解决方案。
本文将重点介绍国内外钻井领域的一些新技术。
1. 气体钻井技术气体钻井技术是近年来钻井行业的一项重大技术突破。
相对于传统的液体钻井,气体钻井采用压缩空气或氮气作为钻进液,具有环保、清洁、高效等特点。
气体钻井技术不仅可以避免液态钻井液带来的环境问题,还能够减少地下水污染风险。
同时,气体钻井技术还能有效提高钻井速度,降低钻井成本。
2. 高压水力钻井技术高压水力钻井技术是一种利用高压水射流来切削地层的新型钻井技术。
该技术能够高效地切削硬岩和特殊地层,且对环境影响较小。
它采用高压水射流进行切削,可将地下岩层切削成细小的颗粒,减少钻井液量,降低钻井噪声和震动。
高压水力钻井技术不仅提高了钻进速度,还能够减少钻具磨损,延长钻头使用寿命。
3. 快速钻进技术快速钻进技术是一种钻井作业周期较短、效率较高的新技术。
通过优化钻井过程和提高钻具性能,快速钻进技术能够缩短钻进时间,减少钻井成本。
其中一项关键技术是采用高效钻井液和超强钻头,提高了钻进效率和钻头使用寿命。
此外,还可以采用一体化的钻井装置和自动化控制系统,提高钻井操作的精确度和安全性。
4. 智能钻井技术智能钻井技术是钻井行业的前沿技术之一。
它通过装备互联网、人工智能、大数据分析等技术,实现对钻井作业全过程的智能化控制和管理。
智能钻井技术可以实时监测钻井参数,预测地层变化,优化钻井方案,提高钻进效率和质量。
此外,智能钻井技术还可以对钻井装备进行远程监控和管理,减少了现场人员的风险和作业成本。
5. 高效钻井液技术高效钻井液技术是钻井作业中至关重要的一项技术。
它采用新型化学品和添加剂,改善钻井液的性能和稳定性,提高钻井作业的效率。
高效钻井液技术能够降低钻井过程中的摩擦阻力、降低地层损害、改善井壁稳定性等,从而提高钻井速度和质量。
国内外石油测井技术现状与未来发展前景

国内外石油测井技术现状与未来发展前景【摘要】发现石油储备层,发现油气层,以及动态监测油气藏的技术手段称之为石油测井。
本文通过对目前石油测井新老技术的现状,从测井技术、测井装备。
测量参数和方法,以及测井技术的资料应用、采集以及评价等方面,阐述国内外石油测井技术的发展趋势。
从而提出采取合作研发、自主研发以及技术引进等多个方面多种方式的自主创新,实现石油测井技术的跨越式发展,提升我国测井技术的思路与整体技术水平。
【关键词】石油测井;测井技术;技术现状;发展前景石油测井或者地球物理勘探测井都被称作测井,测井技术是油气勘探的主要工程技术之一。
测井技术在国外发展较早,1927年,油井中第一次第一次获得测量地层电阻率。
国外石油测井仪器历经了五次换代更新。
而我国测井技术工作始于1939年,至今已有70多年的发展历史。
石油测井技术在石油工业中的地位和作用也十分重要。
随着科学技术不断进步发展,我国石油测井技术也一代代的更新,即:半自动模拟测井仪、全自动模拟测井仪、数字测井仪、数控测井仪和成像测井仪。
现代测井是在石油工业中技术含量含量的最搞的技术之一,没有权威的石油测井技术,就无法准确判断油气藏含量和位置,就无法进行工程定位和实施后续作业。
可以说测井本身就是一种对未知地质条件的探索和描述,是对钻探井工程质量的判断和评价,是提高采油效率的不可或缺的方法。
一、国内外石油测井技术现状使用传统的原始的分辨率较低的测井技术和测量方法已经远远不能满足当代石油勘测的需求。
就当代的勘测而言,需要的是高分辨率深层探测和高测量精准度的石油测井仪器。
国外石油工业企业已经将石油测井仪器进行了五次换代,我国内陆即将做到第四代与第五代仪器更新。
1.电法石油测井技术通过使用井下测井仪器,向地层单位发射一定频率的电流,对地层单位进行测量得到地层电阻率的石油测井方法被称作电法测井。
电法测井技术还包括通过发射电流获得地层自然电位的石油测井手段。
2.放射性石油测井技术放射性石油测井技术又被称作核测井技术。
石油行业测井技术的应用现状及发展趋势

石油行业测井技术的应用现状及发展趋势石油测井技术如今有了广泛的应用,主要包含电法、声波、放射性、成像等技术,在不断发展的今天,测井的采集过程集成化,能够更加高效的工作;测井的资料收集过程越来越动态化,以实现实时数据的检测,同时从二维向三维发展;在技术和装备上也大幅度的提升,使得设备更加先进安全,技术更加的科技化,相信未来测井技术的发展能够更加的完善,去向更广阔的天空。
标签:石油行业;测井技术;应用现状;发展趋势1石油行业测井技术与现状1.1电法测井技术这种技术是在井下的测井仪向地层发射一定频率的电流,用这种方式对地层的电位进行测量,最后得到地层电阻率的一种测井技术,如三侧向测井、八侧向测井、双侧向测井、双感应等测井方法。
1.2放射性石油测井技术这种技术是对地层岩石间的孔隙流体中的核物质的性質进行研究与分析,最后从中发现油气的一种技术。
从使用的放射源或者是测量的放射性物质以及研究的岩石的性质,可以将放射性石油测井技术细分为伽马测井技术和中子测井技术,前者指的是用伽马射线作为基础的相关技术,后者是中子与岩石孔隙中的流体相互发生核物理反应从而发现油气的一种技术。
在放射性石油测井技术中,最常使用的还是自然伽马或密度测井技术以及中子孔隙度的测井技术。
1.3随钻测井技术随钻测井技术在地质导向过程中有着至关重要的作用和价值,能够有效促进定向钻井技术的发展,随钻测井技术的应用可以使得工作人员利用井下仪器设备多方面地详细查询工程的数据信息,并利用前导模拟软件有效分析和处理相关的数据,从而为现场石油开采以及勘测工作提供有效的数据支持,帮助工作人员合理安排钻井施工步骤,保证石油开采效率和石油开采的安全性。
前导模拟技术地面系统关键组成部分包括区块油藏、测井解释、模型构造以及定向钻井等多种方法,所获得的数据信息相对精确。
1.4声波测井技术此技术是应用了钻孔的特点,然后进行声波发射,这是钻孔测井中的常用方法,依据这种方法对环井眼地层的声学性质做出判断,从而分析地层的特性和井眼工程的状况,它能够揭示多种储层和井筒特性,还能推导孔隙压力、渗透率、各向异性、岩石的特性等,常用的测井方法是补偿声波测井技术、声速测井技术以及声幅测井技术。
国内外测井技术现状与发展趋势

国内外测井技术现状与发展趋势目录1. 内容简述 (2)1.1 研究背景 (2)1.2 测井技术简介 (4)1.3 研究意义 (5)2. 国内外测井技术现状 (6)2.1 测井技术分类 (8)2.1.1 电成像测井技术 (10)2.1.2 声波测井技术 (11)2.1.3 核磁共振测井技术 (13)2.1.4 X射线测井技术 (14)2.2 国内外测井技术发展概述 (18)2.2.1 中国测井技术发展 (19)2.2.2 国际测井技术发展 (21)2.3 测井技术应用领域 (22)2.3.1 石油天然气勘探开发 (24)2.3.2 地热资源勘探 (25)2.3.3 基础工程地质勘探 (26)2.3.4 环境保护与地下水监测 (28)3. 发展现状分析 (29)3.1 测井技术的进步对地质研究的影响 (31)3.2 技术和设备的创新 (32)3.3 测井技术面临的技术挑战 (33)4. 发展趋势 (34)4.1 智能化和自动化 (35)4.2 技术创新与发展 (36)4.3 环保与可持续发展 (37)4.4 政策与市场驱动 (39)1. 内容简述本文旨在系统概述国内外测井技术的现状及发展趋势,将全面回顾测井技术的发展历史,并从基础理论、数据采集、处理分析及应用等方面,分析国内外测井技术的优势和不足。
重点探讨当前测井技术的热门研究领域,包括智能化测井、4D 测井、全方位测井、多参数测井、精确定位测井等,并分析其技术路线和应用前景。
结合国际国内大趋势,展望测井技术未来的发展方向,提出应对行业挑战并推动技术的创新升级的建议。
期望该文能为读者提供对测井技术的全面了解,并为行业发展提供有价值的参考。
1.1 研究背景在能源开发与利用日益严峻的当下,测井技术作为石油天然气工业不可或缺的环节,扮演着至关重要的角色。
它不仅为油气资源的勘探与开发、储层评价和提高采收率提供了重要依据,也在新材料的寻探和矿床分析中有着不可替代的作用。
十大石油新技术(国际)

1. 浅水超深层勘探技术不断创新与应用推动墨西哥湾成熟探区巨型气藏新发现墨西哥湾大陆架地区作为经过近百年密集油气勘探的成熟探区,在油气地质勘探理论技术不断完善与推广应用的推动下,近几年在浅水区深层不断获得油气发现,特别是2010年年初在浅水区超深层发现Davy Jones气藏,可采天然气储量20万亿~60万亿立方英尺,标志着成熟探区油气勘探取得突破性进展。
地质勘探技术的进步及在深层勘探中的灵活运用,深化了对墨西哥湾超深层油气成藏条件和油气分布规律的认识,扩展了勘探思路,优化了勘探决策,改善了油气勘探效果,为取得勘探突破奠定了基础。
(1)通过对区域性二维、三维地震地质资料的综合分析,认识到该区大陆架和深海区仅仅是属于两个不同的工程区域,而非不同的地质区域,消除了对构造地质背景的误解。
(2)采用富方位角地震采集技术和Q-Marine单检波器技术,结合精细速度模型和高保真偏移算法,改善了盐下构造成像,搞清了超深层油气构造特征,为准确预测油气分布和部署勘探战略奠定了基础。
(3)首次尝试了地震测线拐弯时继续放炮并采集资料的新方法,在处理时采用先进的噪声压制算法,提高采集效率和资料质量。
(4)利用先进的可控源电磁技术、精细油藏描述等技术,较准确地预测了岩相模式及圈闭的形态、规模,有效降低了勘探风险。
最近,这一重要发现被相关部门确认是墨西哥湾近几十年最大的油气发现之一,并由此可能打开墨西哥湾浅水陆架区超深(25000英尺)层油气勘探的一个全新领域,这将成为墨西哥湾地区新一轮油气勘探的热点目标。
2. 有望探测剩余油分布的油藏纳米机器人首次成功通过现场测试目前,油气采收率平均只有30%,大量剩余油(30%至70%)有待发现和开采,因此需要了解油藏井间基质、裂缝和流体的性质及与油气生产相关的一些变化,但现有的测井和物探技术在探测范围或分辨率上还无法满足这种需求。
为有效探测和开采剩余油,一些大型石油公司和服务公司开展纳米机器人的研究,期望利用纳米机器人探测甚至改变油藏特性,从而提高油气开采效率和采收率。
国内外产、注剖面测井技术现状

目录1.产液剖面测井技术现状 (1)1.1国外产液剖面测井技术现状 (1)1.2国内产液剖面测井技术现状 (7)2.注入剖面测井技术现状 (9)2.1国外注入剖面测井技术现状 (9)2.2国内注入剖面测井技术现状 (9)3.水平井及大斜度井生产测井技术现状 (10)3.1国外水平井生产测井现状 (10)3.2国内水平井生产测井现状 (14)国内外产、注剖面测井技术现状1.产液剖面测井技术现状产液剖面测井动态监测贯穿于油田开发的全过程,提供重要的储层动用信息,识别高含水层,了解油井的生产状态,为开发方案编制和调整,以及堵水、压裂、补孔等油层改造和增产措施提供重要依据,是精细油藏描述、确定剩余油动态变化的基础资料。
为了适应油田需要,国内外测井各大测井公司不断研发新的测井仪器以满足生产需求。
1.1 国外产液剖面测井技术现状目前国内外应用较多的是Sondex公司研发的七参数生产测井组合仪和斯伦贝谢的PS Platform平台。
Sondex仪器这里主要介绍应用较少的GHT持气率仪和新推出的音叉密度计,PS Platform平台主要介绍其成像设备Flowview和GHOST。
1.1.1 Sondex七参数生产测井组合仪Sondex生产测井组合仪的种类很多,从传输方式可分为存储式和遥测式;从仪器结构和用途分为常规组合系列、短组合系列、高温高压系列,水平井专用仪器。
国内引进的主要为短组合系列,仪器系列主要包括:XTU、HTU、QPC、PGR、FDR、ILS、GHT、CFBM、CFSM、CFJM测井仪器及PKJ、PRC、MBH等测井辅助设备,各仪器应用简介如下:XTU——遥测短接,主要用于仪器总线供电控制、测井数据上传及地面指令的接收下传。
HTU——电缆头张力计。
提供实时的缆头张力监测,主要用于遇阻遇卡位置判断。
QPC——石英晶体压力/磁性定位仪。
用于深度控制和压力测量。
FDR——流体密度仪。
主要用于流体密度测量,与持水率、持气率一起用于计算各相持率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
国内外石油测井新技术第一节岩石物理性质岩石物理性质研究是进行油层识别与评价的核心技术,主要研究岩石的电、声、核等物理性质,研究手段主要是实验室岩心测量。
这些测量是刻度现场测井曲线、建立测井参数与孔隙度、渗透率、饱和度等储层参数之间关系的基础。
岩石物理性质研究是测井学科。
最基础的研究领域,最终目的是发展新的测井方法,改进测井参数与储层参数之间的经验关系式,减少测井解释和油气藏描述的不确定性。
测井解释和油藏描述的不确定性在很大程度上是因为不能有效描述岩石复杂的孔隙结构,尤其是对于碳酸盆岩。
要显著减少不确定性程度就要求开发出新的技术,精确描述岩石微小结构,并将这些信息与测量的岩石物理性质联系起来。
C . H . Arns等人使用一种高分辨率X射线微型计算层析(micro一CT)装置分析了几组岩心塞碎片。
该装置包括一个能从岩心塞卜采集、由20003个体元组成的三维图像。
研究者通过对各种砂岩样品和一块碳酸盐岩样品的分析,给出了直接用数字化层析图像计算的渗透率和毛细管压力数据。
将这些计算结果与相同岩心的常规实验数据进行比较,发现两组数据非常一致。
这说明,可用不适合实验室测试的岩心物质(如井壁岩样或损坏的岩心和钻屑)预测岩石物理性质,还说明结合数字图像与数值计算来预测岩石性质和推导储层物性间的相互关系是可行的。
M.MARVOV等人研究了双孔隙度碳酸盐岩地层孔隙空间的微观结构对其物性参数的影响。
利用两种自相一致的方法计算了弹性波速度、电导率和热导率。
这两种方法是有效介质近似法和有效介质法。
双孔隙度介质被认为是一种非均质物质,这种物质由均质骨架构成,同时带有小规模的原生孔隙和大规模的包含物(作为次生孔隙)。
这些介质的所有成分(固体颗粒、原始孔隙和次生孔隙)都可用三轴椭球体近似表达。
次生夹杂物椭球体纵横比的变化反映了次生孔隙度的类型(孔洞、孔道和裂缝)。
研究人员将有效介质参数(声波速度,电导率和热导率)作为次生孔隙度大小和类型的函数计算了这些参数,此外,还考察了次生孔隙形状的双模式分布对研究参数的影响。
所获得的结果是用反演方法独立确定碳酸盐岩原生孔隙度和次生孔隙度的基础。
M . B . BP11Pf1PI等人分析比较了4种用LWD数据确定孔隙度的方法。
在LWD测井中测量是在滤液侵入较深前就完成了,“天然气效应”体积密度和中子孔隙度测量范围内,低密度、低含氢指数(HI)的轻烃的存在导致测井响应的分离)无处不在,确定岩石孔隙度变得很困难。
研究人员用尼日尔三角洲浅海海滨采集的随钻测井数据评价了四种计算孔隙度的方法(快速直观的中子一密度法,电阻率一密度迭代法、中子一密度迭代法和蒙特卡罗模拟法)。
一般情况下,这4种技术都可较准确地估算出孔隙度。
文献讨论了这些方法的相对优点以及出现差异的原因,提出了对这4种方法的使用建议:快速直观的中子一密度法(方法1}最适合于现场快速直观评价纯的地层层段。
常规的电阻率一密度迭代法(方法2)最好用于侵入很浅或完全浸人的岩石。
}3)中子一密度迭代法(方法3)尽管复杂,却可说明储层的大部分组成,与其他数据结合适用于油气井的描述。
蒙特卡罗模拟(方法4)法使用起来容易,如果在这种方法中考虑粘土影响,对现场评价很有用。
用电阻率测量数据估算岩石含油/气饱和度最常用的公式是阿尔奇公式及其推导式。
尽管人们对这种方法进行了长期实验,一些问题仍然有待解决。
最重要的是在地层水电阻率未知或知其非常高的情况下,常规电阻率解释方法往往不成功。
此外,地层因素和胶结指数也随深度变化,使得精确计算饱和度很难。
N . SPIPZIIPV等人分析比较了用介电测井计算含水饱和度的各种方法,并构建了一种新的同轴环介电测量装置,可测量直径为1.5im、长度为1.5im的标准岩心。
这种新的介电测量装置的使用标志着介电研究向前迈了一大步,由于早期的装置仅能测量薄片或同轴钻取的岩心,难以在控制条件下使岩心部分饱和。
在新的测量装置内,岩心能通过离心作用部分饱和为不同的油水饱和度。
通过称重可以检查饱和度值,也可以单独通过NMR实验获得饱和度。
在300kHz一3 GHz的宽频范围测量了部分或令饱和岩心的介电常数,并将这些测量结果与几个混合公式的计算进行了比较。
这些混合公式以模型为基础,需要知道岩心各组分的介电常数。
通过对一组只含体积参数作为变量的介电混合公式进行测试,认为这些模型对单频介电测井仪非常适用。
第二节电法测井电法测井(主要指电阻率测井)是最重要的储层评价方法之一。
地层电阻率与岩石孔隙度、孔隙类型和孔隙空间的流体(即油,气,水)有关。
沉积岩完令饱和时,电阻率的变化反映孔隙度和组成的变化,主要反映孔隙流体的变化。
近一年电法测井进展表现在如下几方面。
经过60多年发展,套管井电阻率测井于2000年投入商业服务。
到目前为止,大量的生产井都用这种新方法测量过。
这些测井曲线所包含的丰富信息对老井评价、确定老井中死油气带的位置、确定剩余油饱和度的分布从而延长老井的开采寿命等发挥了重要作用。
但目前的套管井电阻率测井只能进行点测,还存在一些问题。
这些问题造成在某些井作出恰当的解释颇有困难。
图表:套管井电阻率测井技术发展历程卡通图资料来源:中国产业竞争情报网雪夫龙一德士古公司的Qian Zhou等人分析了引起套管井电阻率测井曲线异常的三大根源,还研究和识别了与真实地层电阻率无关的异常值和将其减小到最低程度的正确方法。
第一类异常是来自套管局部的非均匀性,这些非均质性主要源于套管射孔孔眼、套管接箍和套管扶正器;第二类源自K-因子和归一化(标准化)因子(目前,套管井电阻率测井仍是一种相对测量,因为相对于处在“无限”远的一个参考电极,其电压不能轻易求得,这样就对曲线进行调整,使其与一非渗透层或整个过程不发生变化(例如在泥岩中)的裸眼井电阻率曲线相重叠。
因此,这一步还要求有精确的裸眼井泥岩电阻率值,而这往往易于办到);第三类异常产生于水泥胶结影响(由于套管井电阻率测井只有一种探测深度,如果水泥胶结影响比较大,就不能够将其与地层的响应分开)。
研究者通过大量数值模拟,对这些异常进行了令面研究。
研究发现:6ft内的一段套管卜单个套管接箍、一个套管扶正器或一个套管射孔孔眼就可使曲线局部产生异常。
采样率为2ft时,这么长的一段套管相当于3个测量点。
异常点比实际电阻率的值高或者低。
研究人员基于这些发现,开发了一种数值模拟算法,用于滤掉曲线局部的异常。
在曲线归一化晴况下,可使用必要的校正方法获得泥岩段精确的裸眼井测井曲线。
该处理方法和解释技术已用到一系列井的曲线,明显改进了含油饱和度的估算。
多分量感应测井仪器2000年由贝克一阿特拉斯公司率先研制成功。
这种测量技术已被证明是一种评价各向异性砂泥岩层序的强有力的岩石物理评价工具。
这种测量方法提供水平和垂直电阻率信息,而这两种电阻率可能是引起低阻储层评价误差大的原因。
仪器投入市场服务后,研究重点集中在资料处理和解释上。
大斜度井和水平井多分量感应资料之实时处理。
在垂直井或倾角较小的斜井(VMD)采集的多分量感应测井资料的解释技术经过多年的发展已经成熟。
但是,对于大斜度(> 70度)井,其测井资料的解释仍然是一个具有挑战性的领域。
在垂直井应用很好的解释方法,对于井眼相对倾角大于70。
的斜井可能不再适用,原因是仪器在大斜度井中的响应特征不同于垂直井的情况,更重要的是,垂直井测井解释常用的圆饼形层状模型需要对地层倾角进行精确估算。
为了解决这一问题,推出一种新的处理和解释技术。
该方法放弃圆饼形层状模型,而以一个各向异性的“令空间模型”(即没有层边界和井眼)模型为基础。
因为该模型不存在层厚度,倾角误差对电阻率估算没有直接影响。
但由于数据是在井眼和邻层存在的情况下采集的,所以首先要使用多频聚焦处理来消除或减少这些影响。
聚焦后,测量数据对于在整个空间逐点反演就更稳定了。
M . Rahinovich等人研究了多分量感应和阵列感应测井仪对充满导电的和不导电流体的裂缝的响应,多分量感应与阵列感应仪器线圈系排列。
采用数值模拟,对各种各样的电阻率模型(比如泥岩中的垂向高阻裂缝和含烃砂岩中的导电裂缝),预测了仪器的响应。
模拟结果还可以用于天然裂缝和钻井诱导裂缝。
研究者导出了一种用阵列感应和多分量感应测井数据估算垂直的高阻裂缝的长度及其方位的方法,研究了几种使裂缝对常规Rh/R、处理的影响最小化的方法,用最新的测井数据说明了这些方法的有效性。
图表:多分量感应与阵列感应线圈系排列资料来源:中国产业竞争情报网电磁场在岩石中激发形成弹性波,弹性波也可在岩石中激发产生电磁场,这种现象称为震电效应。
震电效应(SEEF)现象可用于测井,估计岩石的孔隙度和渗透率。
1944年科学家是从理论解释震电效应的。
20世纪90年代后期多位作者发表了有关震电效应的实验和现场数据,证明了震电效应的电动特征,还说明震电测量实际上是可实现的。
M . G. Markov等人研究了一种模拟井眼震电效应(SEEF)的方法。
该方法以电动方程式组为基础求得一个由多极子声源产生的电磁场的分析解。
考虑到感生电场对弹性波产生的电流的影响很弱,推荐使用一种顺序解算法。
这种解法由以下几步组成:确定饱和流体孔隙介质中液体一固体的相对位移;计算出反映流体一固体位移相的电流密度;重建电磁场。
这种方法可在一个宽频范围内得到电动部分的分析解,而不必采用准静态近视法。
研究者对一个径向非均质介质(分段的圆柱状层)和带有对称(单极)和非对称(偶极)定向声源进行了模拟计算。
模拟结果表明:在一宽频}(0.5一30kHz)范围内,电磁场取决于流体矿化作用、地层孔隙度和Z电势(由地层岩性所限定)。
电流流进地层的深度不超过井筒半径。
坚固泥饼的存在将电磁场幅度降低几倍。
最高的电磁场幅值可用单极源产生,该幅值反映斯通利波,为了大幅增强电磁信号,可使用中心频率为2一4kHz的活塞状声源。
模拟计算证明,根据震电测井测量数据估算岩石物理特性是可行性的。
超深电阻率随钻测井仪。
斯仑贝谢公司推出的超深电阻率随钻测井仪的探测深度为6.6一32. 8ft(常规随钻测井仪器的探测深度不到3.3ft ),还具有更大的径向响应,能够探测到距井眼数ft以外的岩石特征和流体接触面。
该仪器为模块化设计,有2个发射器和1个接收器[间距分别为33ft (lOm)和66ft (20m ) ,能以3种频率工作,提供6个独立的电阻率测量结果。
用一个地层模型进行反演这些测量结果,就可算出从仪器到具有电阻率反差的层界面的距离。
该仪器已经在北海挪威水域的注水井和生产井中使用,为精确的地质导向和提高生产井采收率提供了重要支持。
一种新的随钻电磁波遥测系统Weatherford公司已经开发出一种可靠、耐用的模块化随钻测量系统,可以适应欠平衡环境恶劣钻井条件的挑战,还可满足在过平衡应用中的更多基本要求。