南邮信号与系统课后答案第二章 ppt课件
合集下载
南邮信号与系统课后答案精选精品PPT课件

如图所示,试求该系统的零状态响应。
xk
hk
4
3 2
4
2 1
-2 -1 0 1 2 3 k
-2
-1 0 1 2 3 4 k
-1
解: xk 4, 2,3,2 hk 4,,1,2,1
4 2 3 2 4 1 2 1
4 2 3 2 8 4 6 4 4 2 3 2 16 8 12 8 16 12 22 5 2 7 2
k
1
uk
4 3
1k 1
8 3
0.5k 1 u k
2 3
1k 2
4 3
0.5k 2
k 1
k 1
2 3
1k
2
4 3
0.5k 2
4 3
1k
1
8 3
0.5k 1
uk
2 3
1k
1 3
0.5k
4 3
1k
4 3
0.5k
uk
21k 0.5k uk
2-25 计算下列卷积
2 2 e3tut
hh00
1 0 2 1
c1c1 0.02.55cc22
0 1
c1
c2
2
3 4
3
h0
k
2 3
1k
4 3
0.5k
uk
1
hk h0 k 2 2h0 k 1
2 3
1k 2
4 3
0.5k 2
uk
1
2
2 3
1k 1
4 3
0.5k 1 u k
2 3
1k 2
4 3
0.5k 2
第二章 信号与系统的时域分析
作业
1
信号与系统 第二章ppt剖析

网络拓扑约束:由网络结构决定的电压电流约束关系, KCL,KVL。
第
例1 求并联电路的端电压 vt 与激励 is t 间的关系。
7 页
电阻
iR t
1 R
vt
电感
iLt
1 L
t v d
ist
电容
iC
t
C
dv d
t
t
iR iL R LC
a ic
vt
b
根据KCL iRt iLt iC t iS t
系统的完全响应
第 17
页
求出齐次解rh t 和特解rp t 相加即得方程的完全解:
n
rt Aieit rp t i 1
利用初始条件求待定系数Ai 我们一般将激励信号加入的时刻定义为t=0,响应
的求解区间定为 t ,如0 果响应在0时刻没有跳变,通常
取t=0,这样对应的一组条件称为初始条件。
1
2
10
B1
, 3
B2
, 9
B3 27
所以,特解为
rp t
1 3
2 9
t
10 27
第 15
页
(2)
(原方程:
d2 rt
dt2
2
d rt
dt
3r t
d et
dt
et
)
当et et时, 很明显, 可选rt Bet。这里,B是待定系数。
代入方程后有:
Bet 2Bet 3Bet et et
于是,特解为 1 et。 3
B 1 3
几种典型激励函数相应的特解
第 16
页
激励函数e(t)
E(常数)
响应函数r(t)的特解
第
例1 求并联电路的端电压 vt 与激励 is t 间的关系。
7 页
电阻
iR t
1 R
vt
电感
iLt
1 L
t v d
ist
电容
iC
t
C
dv d
t
t
iR iL R LC
a ic
vt
b
根据KCL iRt iLt iC t iS t
系统的完全响应
第 17
页
求出齐次解rh t 和特解rp t 相加即得方程的完全解:
n
rt Aieit rp t i 1
利用初始条件求待定系数Ai 我们一般将激励信号加入的时刻定义为t=0,响应
的求解区间定为 t ,如0 果响应在0时刻没有跳变,通常
取t=0,这样对应的一组条件称为初始条件。
1
2
10
B1
, 3
B2
, 9
B3 27
所以,特解为
rp t
1 3
2 9
t
10 27
第 15
页
(2)
(原方程:
d2 rt
dt2
2
d rt
dt
3r t
d et
dt
et
)
当et et时, 很明显, 可选rt Bet。这里,B是待定系数。
代入方程后有:
Bet 2Bet 3Bet et et
于是,特解为 1 et。 3
B 1 3
几种典型激励函数相应的特解
第 16
页
激励函数e(t)
E(常数)
响应函数r(t)的特解
信号与系统第2章ppt课件

,这种频谱搬移技术在通信系统中
得到广泛的应用。调幅,调频都是
在该基础上进行的。
精选ppt
由此可见,将时间信号f(t)
乘以Cos(ω0t) 或Sin(ω0t)
,等效于将f(t)的频谱一分
为二,即幅度减小一半,沿
频率轴向左和向右各平移ω0.
第二章 傅立叶变换
例2 求如下矩形调幅信号的频谱函数
f(t) G (t)c o s 0 t
例7 如图a所示系统,已知乘法器的输入为
f (t) sin(2t) s(t)co3st)(
t
系统的频率响应为:
求输出y(t).
精选ppt
第二章 傅立叶变换
f (t) sin(2t) s(t)co3st)(
t
乘法器的输出信号为: x(t)f(t)s(t)
依频域卷积定理可知:X(j)21F(j)*S(j) 这里 f(t)F(j) s(t)S(j)
当 0 时 当 0 时
A () li m 0 A e () lim A e ( 0) lim 2 0 2 0
所以
A () li m 0A e()()
B()li m0Be()j
精选ppt
第二章 傅立叶变换
(6)符号函数 符号函数sgn(t)如图所示
由于sgn(t)不符合绝对可积条件, 故使用间接方法计算。
利用傅里叶反变换公式计算
第二章 傅立叶变换
例4 试求图示周期信号的频谱函数,图(b)中冲激函数的强度均为1.
(b)
[提示:(a)F()F[1]1F[cos(t)]
22
)
(b
Cn
1 T
T
2 T
fT(t)ejntdt
2
fT(t)(t)(tT2)
得到广泛的应用。调幅,调频都是
在该基础上进行的。
精选ppt
由此可见,将时间信号f(t)
乘以Cos(ω0t) 或Sin(ω0t)
,等效于将f(t)的频谱一分
为二,即幅度减小一半,沿
频率轴向左和向右各平移ω0.
第二章 傅立叶变换
例2 求如下矩形调幅信号的频谱函数
f(t) G (t)c o s 0 t
例7 如图a所示系统,已知乘法器的输入为
f (t) sin(2t) s(t)co3st)(
t
系统的频率响应为:
求输出y(t).
精选ppt
第二章 傅立叶变换
f (t) sin(2t) s(t)co3st)(
t
乘法器的输出信号为: x(t)f(t)s(t)
依频域卷积定理可知:X(j)21F(j)*S(j) 这里 f(t)F(j) s(t)S(j)
当 0 时 当 0 时
A () li m 0 A e () lim A e ( 0) lim 2 0 2 0
所以
A () li m 0A e()()
B()li m0Be()j
精选ppt
第二章 傅立叶变换
(6)符号函数 符号函数sgn(t)如图所示
由于sgn(t)不符合绝对可积条件, 故使用间接方法计算。
利用傅里叶反变换公式计算
第二章 傅立叶变换
例4 试求图示周期信号的频谱函数,图(b)中冲激函数的强度均为1.
(b)
[提示:(a)F()F[1]1F[cos(t)]
22
)
(b
Cn
1 T
T
2 T
fT(t)ejntdt
2
fT(t)(t)(tT2)
信号与系统 第二章ppt_part2

1
0 t 1
[1 e(t 1) ]
演示
[1 e(t 1) ]u(t 1) f1 (t ) f2 (t )
f1 (t )* f2 (t )
1
0
1
t
解法二:f 2 ( ) 不变,反褶 f1 ( ), f 2 ( ) f1 ( )
1 1 1
f1 (t ) f2 (t ) f 2 ( ) f1 (t )d
f
( 1) 2
t e d u ( ) e t u (t ) (1 e t )u (t ) (t ) e u ( )d 0
t
f1(t)*f2(t)=(1-e-t) u(t)- [(1-e-(t-2)] u(t-2)
n
即
y zs (t ) lim x(kt )h(t kt )t
t 0 k 0
y zs (t ) lim x(kt )h(t kt )t
t 0 k 0
n
当 t 0 时,t d , kt ,
t 0
t 0
lim
t k 0 0
s(t )
1 e
T
(t T )
e ]u(t T )
t
t
(t T )
]u(t T )
1
0
t
T
演示
例2-13 已知信号x(t)与h(t)如下图所示,求 h(t) x(t) 1 1
y(t ) x(t ) h(t )
-1/2 0 解:
1
t
0
2
t
y (t ) x( )h(t )d
h(t )
1
0 t 1
[1 e(t 1) ]
演示
[1 e(t 1) ]u(t 1) f1 (t ) f2 (t )
f1 (t )* f2 (t )
1
0
1
t
解法二:f 2 ( ) 不变,反褶 f1 ( ), f 2 ( ) f1 ( )
1 1 1
f1 (t ) f2 (t ) f 2 ( ) f1 (t )d
f
( 1) 2
t e d u ( ) e t u (t ) (1 e t )u (t ) (t ) e u ( )d 0
t
f1(t)*f2(t)=(1-e-t) u(t)- [(1-e-(t-2)] u(t-2)
n
即
y zs (t ) lim x(kt )h(t kt )t
t 0 k 0
y zs (t ) lim x(kt )h(t kt )t
t 0 k 0
n
当 t 0 时,t d , kt ,
t 0
t 0
lim
t k 0 0
s(t )
1 e
T
(t T )
e ]u(t T )
t
t
(t T )
]u(t T )
1
0
t
T
演示
例2-13 已知信号x(t)与h(t)如下图所示,求 h(t) x(t) 1 1
y(t ) x(t ) h(t )
-1/2 0 解:
1
t
0
2
t
y (t ) x( )h(t )d
h(t )
1
《信号与系统》第二章习题解答

impulseresponse14chapterproblemssolution246considerltisystemimpulseresponse15chapterproblemssolution247ltisystemimpulseresponsecasesdeterminewhetherwehaveenoughinformationwehaveenoughinformation已知一lti系统在输入信号的作用产生的输出为试求该系统在信号的作用产生的输出117时域分析例题121232112123218时域分析例题已知一lti系统的单位若输入信号为单位阶跃冲激响应如图所示信号试求其输出时域分析例题20时域分析例题图1所示的lti的单位冲激响应如图2所示若子系统试求子系统的单位冲激响应
yt xt ht
(b) If d y t dctontains only three
value of a?
discontinuities,what is the
Solution :
yt
a
0 a 1 1+a t
5
Chapter 2
Problems Solution
2.11 Let xt ut 3 ut 5 ht e3tut
a
u0 tcostdt
cost
1
t0
b
5
0
sin2t t 3dt 0
c
5
5
u1 1
cos2
d
1 t
6 4
u1tcos2 1tdt
1cos2t 0 t 0
8
Chapter 2
Problems Solution
2.22a
xt ht
e e
tut
yt xt ht
(b) If d y t dctontains only three
value of a?
discontinuities,what is the
Solution :
yt
a
0 a 1 1+a t
5
Chapter 2
Problems Solution
2.11 Let xt ut 3 ut 5 ht e3tut
a
u0 tcostdt
cost
1
t0
b
5
0
sin2t t 3dt 0
c
5
5
u1 1
cos2
d
1 t
6 4
u1tcos2 1tdt
1cos2t 0 t 0
8
Chapter 2
Problems Solution
2.22a
xt ht
e e
tut
南京邮电学院《信号与系统》第二次习题课PPT课件

数F3()。
18
解:(1)对于f1(t),求其导数f1’(t)
f1(t) 1
f1(t) ()S( a 2)•ej 2ejT
0
1 Tt
f1’(t)
Sa()•ej2 ejT
1
T
f1(t)F1()
2
j
0 1 (1) t
19
由图可看出
f2(t)f1( tT)
f1(t)
F 2 () F 1 ()• e j T
35
(五(1 ))求[下( 列 信5 号) 的傅( 氏 反5 变)换• ]co s
5
解:由公式 ( t 5 ) ( t 5 ) 1 0 S a 5
由对称性 1 0 S a 5 t 2 ( 5 ) ( 5 )
由公式 co s 5 5 tS a5 t ( ( 5 )5 ) ( ( 55 ) ) (t 5)(t 5) 2cos5 36
周期矩形脉冲:幅高A,周期 T,脉宽
Fn
A
T
Sa(n0)
2
…
-2T
f(t)
A
-T
-/2 /2
T
…
2T
4
(二)非周期信号
1. 傅里叶变换 正反变换的定义式;
2. 频谱密度F()的物理意义;
3. 周期信号fT (t) 的复系数 Fn 与非周期信号 f (t ) 的频谱密度F()的关系;
F ()
cost[(t1)(t1)] 则
2 fa(t)
1
fa ( t) fa 0 ( t 2 ) fa 0 ( t) fa 0 ( t 2 )
(t 1 ) (t 1 ) 1 •2 S( a •2 ) 2 S( a )
fa0(t) S( a 2) 2 S( a 2)
南邮信号与系统课后答案第二章 ppt课件

xk
yk
h1k
h3 k
h2k
解: hkkh1kh2kh3kh3kh1kh3kh2kh3k
1kukuk1kukk11kuk
2
2
2
2kuk22kuk2k1uk12uk2k1uk1
2k2uk12k1uk12k22k1uk1
1 k 2
4 3
0.5k 2
k 1
k 1
2 3
1k 2
4 3
0.5k 2
4 3
1k 1
8 3
0
.5
k
1
u
k
2 3
1k
1 3
0.5k
4 3
1k
4 3
0.5k
u k
2 1k 0.5k uk
2-25 计算下列卷积
2 2e3tut
解原 : 式 e3tut2e3tut2ut
1 uk 1 1 uk 3
n 1
n 1
kuk 1 k 2uk 3
k k 1 k 2 uk 3 k 2uk 3
k k 1 k k 2 2uk 3
k k 1 k k 2 2uk 3
k 1
k2
k 1 2 k 2 2uk 3
k 1 2uk 2
(1)yk10.5ykxk1,xk1kuk
3
解: 设h0k 10.5h0k k
特征方程: 0.5 0 特征根: 0.5
h0k c10.5k uk 1
h011 0.5c1 c2 h0k20.5kuk1
h k h 0 k 1 2 0 . 5 k 1 u k 0 . 5 k u k
ykxkh k 1 kuk0 .5 kuk
3
k
2信号与系统-每章课后答案第二章作业PPT课件

21.11.2020
7
2.7 写出下列信பைடு நூலகம்的波形图。
(a)f(t)u(4t2)
( b ) f( t ) ( t 2 ) 3 ( t 2 ) 2 ( t )
(c) f (t) (34t) 1 (t - 3)
-4 4
1(t - 3)
44
21.11.2020
8
2.8 设 f (t) 在 t 0 及 t 8 时 f(t), 0 , f(0 )且 4 ;已知 f(t)f(2t) 的波形如图所示,试确定 f (t) 的波形。
请对以下连续时间系统确定哪些性质成立、哪些不成立,
并陈述你的理由。下列中 y(t) 和 x (t ) 分别记作系统的输出和
输入。
(a)y(t) dx(t) dt
时不变、线性、因果、 稳定
( b) y(t)co3t)sx((t) 时变、线性、因果、稳 定
(c)y(t) 2t x()d
(d)y(t) x(t ) 3
的波形。
21.11.2020
6
2.6 写出信号 f1(t) 和 f2 (t) 的表达式。
f1(t)u(t)u(t2) f 2 ( t ) - u ( t 1 ) ( t 1 ) u ( t 1 ) ( t 1 ) u ( t 1 ) 2 u ( t 1 ) u ( t 2 )
- 0(t)3(t)d t-3
(3)4(t-5)(t)dt4(t5 )22(t)d t4(-1 -)4
-3
2
-3
( 4)(t2t2)(2t)dt(t2t2)1(t)d t121
-
-
2
2
(5)t (t2)(t2)dt4t (t2)d t4u(t2)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
-3 -1 0 1
3
t
2-39 计算下列序列的离散卷积
2 u k 1 u k u k 2
解: 原式 uk 1 uk uk 1 uk 2
k
k2
1 uk 1 1 uk 3
n 1
n 1
kuk 1 k 2uk 3
k k 1 k 2 uk 3 k 2uk 3
k k 1 k k 2 2uk 3
k k 1 k k 2 2uk 3
k 1
k2
k 1 2 k 2 2uk 3
k 1 2uk 2
另原 解 u 式 k : 1 k k 1 u k 1 u k 2 k 1 2 u k 2
2-40 某离散系统xk的 和输 单入 位信 脉 hk号 冲响
笨,没有学问无颜见爹娘 ……” • “太阳当空照,花儿对我笑,小鸟说早早早……”
2-5 试写出题图2-5各信号的解析表达式。
f1t
2
1
f5 t
3
3e2t
0
1
2
t
01
23
t
(a)
(e)
-3
解: (a):f1tut1ut3ut1ut2
(e):
f5t3e2t
co2st3ut1
2
或 f5t3e2t
co2stut1
2-23 设描述某离散 分系 方统 程的 为差
yk20.5yk10.5ykxk22xk1
求系统的单位 hk脉 。冲响应
解: 设h0k20.5h0k10.5h0kk
特征方程 2: 0.5 0.50
特征根1: 1,2 0.5
h0kc11k c20.5k uk1
hh001201c1c1 0.02.55cc22
t e5t t41dut5 e5t t4ut5
1
1
t5e5tut5
2-32 系统x的 t和激 冲励 h激 t如响 题 23应 所 图 2 示 试画 xth出 t的波形图。
xt
2
ht
(1) (1)
-2 0
2t
(b)
-1 0 1 t
解: xthtxtt 1 t 1
xt 1 xt 1
xtht
第二章 信号与系统的时域分析
作业
1
信息工程系
2-1 绘出下列信号的波形,注意它们的区别。
2 tut
3 t1ut
1
0
1t
0
1t
-1
6 t 1 ut 1
7 tu t u t 1
0
1t
1
0
1t
精品资料
• 你怎么称呼老师? • 如果老师最后没有总结一节课的重点的难点,你
是否会认为老师的教学方法需要改进? • 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭 • “不怕太阳晒,也不怕那风雨狂,只怕先生骂我
0 c1
1
c2
2
3 4
3
h0
k
2 3
1k
4 3
0.5k
uk
1
2-25 计算下列卷积
2 2e3tut
解原 : 式 e3tut2e3tut2ut
e te32dut 2e3d232
0
0
3 03
6 e t 1 u t 1 e t 4 u t 4
解: 原式 t4e1et4dut5 1
如图所示,的 试零 求状 该态 系响 统应。
xk
hk
4
3 2
4
2 1
-2 -1 0 1 2 3 k
-2
-1 0 1 2 3 4 k
-1
解: xk4,2,3,2 hk4,,1,2,1
4 2 3 2 4 1 2 1
4 2 3 2 8 4 6 4 4 2 3 2 16 8 12 8 16 12 22 5 2 7 2
h0tc1etc2e2t ut
h h00 0 0 1 0 cc11 c22c 2 01 cc21 11 h0tet e2t ut
h t 2 h 0 t h 0 t
2 2 e 2 t e tu t e t e 2 tu t 3 e 2 t e tu t
2
或 f5t3e2tsi2 ntut1
2-6 试写出题图2-6各序列的解析表达式。
f1k
2
2
1
f2k
2
2
1
-2 -1 0 1 2 3 k
-1
-2 -1 0 1 2 3 k
(a)
(b)
解: (a):f1k2k1k2k1k2 (b):f2k2uk12uk3
2
或 f2k2kn n1
2-8 已知信号f t 如图所示
i 0
i 0
k
k 1
y k y k y k 1 fi fifk
i 0
i 0
2-16 化简下列各式。
2 t2 tt 1
解 原 : t式 2 t = t 1 0 t 1
6 e t 1 t3
解 原 : e 式 t 1 t 3 e 4 t 3
t 3
2-17 计算下列各积分的值。
2-44 已知下列离散入 系为 统 xk, 的单 输位脉冲x响 k, 应
试求其零状态响应。
(1)用阶跃信号表示 f t
(2)画出 f2t2的波形
(3)画出
f
t 2
1
的波形
(4)画出 df t 的波形
dt
(5)画出 f 1t 的波形
解:
(1)fk2ut24ut22ut4
f t
2
-2 0 2 4 t
-2
题图(a)
f2 t 2 f2 t 1
2
-2 0 1
t
-2 (2)
f2t 1f12t2
2
f t
2
-6
-2
0
-2
6t
(3)
df t
dt
(2)
(2)
-2 0 2 4 t
-2
题图(a)
f 1t
8
4
-2 0 2 4 t
(4) (4)
-2 0
2
-2 (5)
4t
k
2-12 已y知 k fi, y 求 k、 yk i0
解:
k 1
k
y k y k 1 y k fi fi fk 1
2 0 3t22t1t5dt
解:原式= 0
5 ej2tt3t3dt
e e 解: j2 原 t 式 j2 t ej6 e j6 2 c6 os
t 3
t 3
2-19 已知系统y 的 t微 3yt 分 2yt方 2x程 txt为 , 试求系统 ht的 。冲激响应
解: 设 h0 t3h0 t2h0 tt 特征2 方 3 程 20: 特征 1 根 1 , 2 : 2
2-43 求下列离散系态 统响 的应 零。 状
(1)yk10.5ykxk1,xk1kuk
3
解: 设h0k 10.5h0k k
特征方程: 0.5 0 特征根: 0.5
h0k c10.5k uk 1
h011 0.5c1 c2 h0k20.5kuk1
h k h 0 k 1 2 0 . 5 k 1 u k 0 . 5 k u k