引力波.

合集下载

什么是引力波它有什么重要发现

什么是引力波它有什么重要发现

什么是引力波它有什么重要发现关键信息1、引力波的定义2、引力波的产生机制3、引力波探测的方法4、已有的重要发现及成果5、引力波发现的科学意义6、未来引力波研究的展望1、引力波的定义引力波是爱因斯坦广义相对论预言的一种时空涟漪。

它是由加速运动的质量所产生的,类似于在平静的水面上投入一颗石子所产生的涟漪。

引力波以光速传播,携带了有关其源的信息,如黑洞合并、中子星碰撞等剧烈的天体物理过程。

11 广义相对论中的引力波根据爱因斯坦的广义相对论,物质和能量会弯曲时空,而当有质量的物体加速运动时,这种弯曲会以引力波的形式向外传播。

引力波的振幅非常小,在地球上通常极其微弱,因此探测它们是一项极具挑战性的任务。

111 引力波的特征引力波具有一些独特的特征,例如它们是横波,即其振动方向垂直于传播方向。

它们也具有两种极化模式,分别称为“+”极化和“×”极化。

2、引力波的产生机制引力波的产生通常源于一些极其剧烈和高能的天体物理过程。

21 黑洞合并当两个黑洞相互绕转并最终合并时,会产生强烈的引力波。

在这个过程中,大量的能量以引力波的形式释放出来。

211 中子星碰撞中子星的碰撞也是引力波的重要来源之一。

这种碰撞不仅会产生引力波,还可能引发剧烈的爆炸和电磁辐射。

212 超新星爆发某些类型的超新星爆发也可能产生引力波,但相对较弱。

3、引力波探测的方法为了探测引力波,科学家们采用了多种先进的技术和设备。

31 地面引力波探测器地面引力波探测器如LIGO(激光干涉引力波天文台)和Virgo 等,利用激光干涉的原理来测量引力波引起的微小长度变化。

311 空间引力波探测器未来的空间引力波探测器如 LISA(激光干涉空间天线)将在太空中运行,能够探测更低频率的引力波。

4、已有的重要发现及成果自引力波被首次直接探测到以来,已经取得了一系列重要的发现。

41 首次探测2015 年 9 月 14 日,LIGO 首次直接探测到了来自双黑洞合并的引力波事件,这是人类科学史上的一个重要里程碑。

引力波

引力波

激光干涉引力波观测台
激光干涉引力波天文台,缩写为LIGO。是美国分别在路易斯 安那州的列文斯顿和华盛顿州的汉福德建造的两个引力波探 测器。
引力波是爱因斯坦广义相对论所预言的一种以光速传播的
时空波动。通常引力波都很低,宇宙中大质量天体的加速、 碰撞和合并等事件才可以形成强大的引力波,但由于波源超 远距离,引力波传播到地球时变得非常微弱。因此需要超高 灵敏度的仪器才有可能对引力波进行探测。 原理:两条激光在管道内来回反射,路程增加,会产生干 涉条纹;引力波使光程发生变化,因此激光干涉条纹就会出 现变化。
引力波发现的意义
探测引力波意义重大,从科学意义上看, 引力波可以直接与宇宙大爆炸连接。广义相对 论中预言的引力波也可以产生于宇宙大爆炸中, 这就是说大爆炸之初的引力波在 137 亿年后的 今天仍然可以探测到。一旦发现了宇宙大爆炸 时期的引力波,就有可能揭开宇宙的各种谜团, 甚至或许能了解宇宙的开端和运行机制。
谢谢
人类探索引力波的过程
1959年,美国科学家韦伯教授用精密仪器探测到了引力波, 但经过其他国家科学家实验,最终未得到证实。 1980年,美国科学家泰勒等人,靠着射电望远镜,发现了一 个双星体系----脉冲射电源PSR191316。按照广义相对论, 双星互相绕转发出引力辐射,它们的轨道周期就会因此而变 短,(PSR1913 16)的变化率为-2.6*10^12。与广义相对 论所预言的结果相当接近。因此,泰勒等人的发现成为了人 类首次间接定量发现了引力波的证据。 2014年3月17日,美国科学家首次直接探测到宇宙大爆炸第 一波震荡,即原始引力波。 2016年 2 月11日 23 点30分,(美国)物理学家,宣布人类 首次直接探测到引力波。
•引力波
引力波简介

什么是引力波它有什么重要应用

什么是引力波它有什么重要应用

什么是引力波它有什么重要应用关键信息项:1、引力波的定义2、引力波的产生机制3、引力波的探测方法4、引力波在天文学中的应用5、引力波在物理学研究中的应用6、引力波在未来科技发展中的潜在应用11 引力波的定义引力波是爱因斯坦广义相对论所预言的一种以光速传播的时空涟漪。

它是由于有质量的物体加速运动或发生剧烈的相互作用而产生的。

111 引力波的本质引力波实质上是时空弯曲的动态变化所产生的一种波动现象。

112 与其他波的区别与电磁波等常见的波不同,引力波是由物质和能量对时空的扰动引起的。

12 引力波的产生机制引力波的产生通常源于一些极其剧烈和高能的天体物理过程。

121 恒星爆发例如超新星爆发,当恒星内部的核燃料耗尽,无法抵抗自身的引力时,会发生剧烈的坍缩和爆炸,产生引力波。

122 双黑洞合并两个黑洞相互绕转并最终合并的过程中,会释放出强大的引力波。

123 双中子星合并双中子星在相互靠近并合并的过程中,也会产生引力波。

13 引力波的探测方法为了探测引力波,科学家们发展了一系列高精度的探测技术和设备。

131 地面引力波探测器如激光干涉引力波天文台(LIGO),通过测量激光在长干涉臂中传播时的微小变化来探测引力波。

132 空间引力波探测器计划中的天基引力波探测器,如 LISA 等,能够探测更低频率的引力波。

14 引力波在天文学中的应用引力波的发现为天文学研究带来了全新的视角和手段。

141 观测黑洞帮助我们更深入地了解黑洞的性质和行为,如黑洞的质量、自旋等参数。

142 研究星系合并揭示星系合并过程中的细节和机制。

143 探索早期宇宙为研究宇宙早期的物理过程提供重要线索。

15 引力波在物理学研究中的应用在物理学领域,引力波也具有重要的意义。

151 验证广义相对论进一步检验和完善爱因斯坦的广义相对论。

152 探索量子引力为探索量子引力理论提供可能的途径。

153 了解物质的本质有助于揭示物质在极端条件下的行为和性质。

什么是引力波

什么是引力波

什么是引力波引子在人类对宇宙的探索过程中,科学家们不断寻找新的方式来理解和解释宇宙的奥秘。

其中,引力波作为一种新的天文现象,引起了科学界的广泛关注。

本文将介绍什么是引力波、它的发现历程以及它对宇宙研究的重要意义。

什么是引力波引力波是由爱因斯坦广义相对论预言的一种物理现象,它是由质量加速或变动的物体所产生的扰动传播而成的。

简单来说,当两个巨大的物体(如黑洞或中子星)以极高的速度相互运动或碰撞时,它们会产生引力波。

这些引力波会像水面上的涟漪一样向外扩散,并在宇宙中传播。

引力波是一种与电磁波截然不同的波动形式。

电磁波是由电场和磁场交替变化而产生的,可以在真空中传播,而引力波则是由时空本身的弯曲和拉伸所引起的扰动,也可以在真空中传播。

引力波的传播速度与光速相同,都是以无法想象的速度传递信息。

引力波的发现历程对于引力波的存在,爱因斯坦在1916年首次提出了理论预言。

然而,在接下来的几十年中,科学家们一直没有找到直接证据来支持这个理论。

直到2015年9月14日,美国的LIGO(Laser Interferometer Gravitational‑Wave Observatory)探测器成功地探测到了来自两个黑洞合并的引力波信号,引发了全球范围内的轰动。

LIGO探测器是一个由两个位于不同地点的激光干涉仪组成的实验设备。

当引力波通过地球时,它会引起激光光束的微小变形,从而导致干涉仪输出的光强发生变化。

通过精密的测量和分析,LIGO团队最终成功地探测到了引力波的存在。

自此以后,LIGO团队陆续发现了多个引力波事件,包括黑洞合并和中子星合并等。

这些发现进一步证实了引力波的存在,并为宇宙研究提供了新的窗口。

引力波的重要意义引力波的发现对宇宙研究有着重要的意义。

首先,引力波提供了一种全新的探测手段,使我们能够窥探到宇宙中以往无法观测到的事件。

例如,通过观测黑洞合并事件,科学家们得以验证爱因斯坦的广义相对论,并对黑洞的性质和演化进行更深入的研究。

什么是引力波

什么是引力波

什么是引力波引力波是由于引力传播而产生的一种物理现象。

它是由爱因斯坦的广义相对论预测并于2015年首次直接探测到的,这一发现也为科学界带来了极大的轰动和重要意义。

引力波是由质量巨大的物体在运动过程中所产生的。

根据广义相对论的描述,物体的质量和能量会扭曲时空结构,这种扭曲就像是将一块薄膜弯曲使其形成波浪一样,这种波动传递的就是引力波。

引力波具有传播速度极高的特点,并且可以通过空间中任意的介质传播,无需依赖于物质介质。

引力波的探测需要精密的仪器和技术。

目前,常用的引力波探测器是利用激光干涉技术构建的,它包括两条相互垂直的光线路径,并利用激光干涉的原理来探测空间中的微小振动。

当引力波通过探测器时,会导致空间的微小扭曲,进而影响到光线的传播路径,从而可以通过测量干涉程度的变化来检测引力波的存在。

引力波的探测和研究对于了解宇宙的本质和演化过程具有重要意义。

首先,引力波的存在证实了爱因斯坦的广义相对论的准确性,进一步验证了引力理论。

其次,通过分析引力波的特征和信号,可以获取物体的质量、形状、轨道和运动状态等信息。

例如,通过探测到的引力波信号,科学家们成功地观测到了两个黑洞的合并过程,证实了黑洞融合的理论。

此外,引力波还可以帮助科学家们研究宇宙的起源、宇宙背景辐射等重要问题。

引力波的探测与应用已经取得了重大的突破和进展。

2015年,美国的LIGO实验设备首次成功地直接探测到了引力波,这一发现为爱因斯坦广义相对论的验证做出了实证。

此后,LIGO又成功探测到了多起引力波事件,包括了由黑洞合并和中子星合并所产生的引力波。

此外,与LIGO相配合的欧洲的Virgo实验设备也在引力波探测方面发挥着重要作用。

除了基础科学的研究,引力波的探测也具有一系列的应用价值。

引力波探测技术可以用于监测地球上发生的大型地震和火山爆发等自然灾害,为地质灾害预警提供新的手段。

此外,在导航和定位、通信、天文观测等领域中,引力波的探测技术也有望得到应用和发展。

引力波

引力波

在爱因斯坦的广义相对论中,引力被认为是时空弯曲的一种效应。

这种弯曲时因为质量的存在而导致。

通常而言,在一个给定的体积内,包含的质量越大,那么在这个体积边界处所导致的时空曲率越大。

当一个有质量的物体在时空当中运动的时候,曲率变化反应了这些物体的位置变化。

在某些特定环境之下,加速物体能够对这个曲率产生变化,并且能够以波的形式向外以光速传播。

这种传播现象被称之为引力波。

当一个引力波通过一个观测者的时候,因为应变(strain)效应,观测者就会发现时候时空被扭曲。

当引力波通过的时候,物体之间的距离就会发生有节奏的增加和减少,这个频率对于这了引力波的频率。

这种效应的强度与产生引力波源之间距离成反比。

绕转的双中子星系统被预测,在当它们合并的时候,是一个非常强的引力波源,由于它们彼此靠近绕转时所产生的巨大加速度。

由于通常距离这些源非常远,所以在地球上观测时的效应非常小,形变效应小于1.0E-21。

科学家们已经利用更为灵敏的探测器证实了引力波的存在。

目前最为灵敏的探测是aLIGO,它的探测精度可以达到1.0E-22。

更多的空间天文台(欧洲航天局的eLISA计划,中国的中国科学院太极计划,和中山大学的天琴计划)目前正在筹划当中。

引力波应该能够穿透那些电磁波不能穿透的地方。

所以猜测引力波能够提供给地球上的观测者有关遥远宇宙中有关黑洞和其它奇异天体的信息。

而这些天体不能够为传统的方式,比如光学望远镜和射电望远镜,所观测到,所以引力波天文学将给我们有关宇宙运转的新认识。

尤其,引力波更为有趣的是,它能够提供一种观测极早期宇宙的方式,而这在传统的天文学中是不可能做到的,因为在宇宙再合并之前,宇宙对于电磁辐射是不透明的。

所以,对于引力波的精确测量能够让科学家们更为全面的验证广义相对论。

(图1)图1:引力波谱;不同引力波源所对应的频率范围(注意频率是取了对数后的值),周期。

以及所对应的探测方式。

通过研究引力波,科学家们能够区分最初宇宙奇点所发生的事情。

什么是引力波

 什么是引力波

1.引力波的定义和概述引力波是由爱因斯坦广义相对论预言的一种天体物理现象。

它是一种传播在时空中的扰动,由质量和能量的加速运动产生。

引力波可以看作是时空结构的震荡,类似于水波在水面上的传播。

根据广义相对论的理论,质量和能量会使时空弯曲,就像将一张弹性的橡皮膜放在平面上,当在其上放置质量或能量时,橡皮膜会产生弯曲。

当质量或能量发生变化时,这种弯曲也会随之改变。

引力波就是这种时空弯曲的扰动,它以波动的形式向外传播。

引力波的产生通常源于质量和能量巨大的天体事件,例如两个黑洞合并、中子星碰撞等。

这些事件引发的巨大能量释放会在时空中产生引力波,这些波会以光速传播,穿过宇宙的各个角落。

引力波的探测对于我们理解宇宙的演化和结构非常重要。

通过探测引力波,我们可以间接观察到宇宙中黑洞、中子星等强引力场的存在,进而验证广义相对论的预言。

引力波的探测也为研究宇宙的起源、星系演化等提供了新的手段和窗口。

近年来,科学家们通过建造高精度的引力波探测设施,如LIGO、VIRGO等,成功地捕捉到了多个引力波事件的信号。

这些发现引发了引力波物理学的革命,并为将来更深入的研究提供了巨大的潜力。

引力波的研究和探测领域仍然处于快速发展阶段,未来的研究将进一步揭示宇宙的奥秘,并可能带来更多关于引力波的新发现和应用。

2.引力波的发现历史和重要性引力波的存在是由爱因斯坦在1916年基于他的广义相对论理论预言的。

然而,直到近一个世纪后的2015年,科学家们才首次成功地直接探测到引力波信号,这是一次里程碑式的事件,标志着引力波物理学的突破。

发现引力波的重要性无法低估。

首先,引力波的直接观测为广义相对论的验证提供了强有力的证据。

爱因斯坦在他的理论中预言了引力波的存在和性质,而通过成功探测到引力波信号,我们能够验证这一理论在极端条件下的准确性。

其次,引力波的探测为我们提供了一种全新的观测宇宙的方式。

传统的天文观测方法主要依赖于电磁辐射,如可见光、射电波等。

引力波科技名词定义中文名称

引力波科技名词定义中文名称

引力波引力波,英文:(Gravitational wave),台湾学界称为重力波,英文中有时也写作 gravity wave;但更多场合中,gravity wave是留给地球科学与流体力学中另一种性质迥异的波动。

关于万有引力的本质是什么,牛顿认为是一种即时超距作用,不需要传递的“信使”。

爱因斯坦则认为是一种跟电磁波一样的波动,称为引力波。

引力波是时空曲率的扰动以行进波的形式向外传递。

引力辐射是另外一种称呼,指的是这些波从星体或星系中辐射出来的现象。

电荷被加速时会发出电磁辐射,同样有质量的物体被加速时就会发出引力辐射,这是广义相对论的一项重要预言。

目录存在性引力波的性质引力波的侦测引力波的测量引力波观测激光干涉仪 (LIGO)引力波会传递能量引力波天文学展开编辑本段存在性引力波的存在而且也真的无所不在,是广义相对论中一项毫不模糊的预言。

所有目前相互竞争而且被“认可”的重力理论(认可:与现前可得一切证据能达到相当准确度的相符)所预言的引力辐射特质即各有千秋;而原则上,这些预言有时候和广义相对论所预言的相差甚远。

但很不幸地,现在要确认引力辐射的存在性就已相当具有挑战性,更不用说要研究它的细节。

编辑本段引力波的性质引力波以波动形式和有限速度传播的引力场。

按照广义相对论,加速运动的质量会产生引力波。

引力波引力波[1]的主要性质是:它是横波,在远源处为平面波;有两个独立的偏振态;携带能量;在真空中以光速传播等。

引力波携带能量,应可被探测到。

但引力波的强度很弱,而且,物质对引力波的吸收效率极低,直接探测引力波极为困难。

曾有人宣称在实验室里探测到了引力波,但未得到公认。

天文学家通过观测双星轨道参数的变化来间接验证引力波的存在。

例如,双星体系公转、中子星自转、超新星爆发,及理论预言的黑洞的形成、碰撞和捕获物质等过程,都能辐射较强的引力波。

我们所预期在地球上可观测到的最强引力波会来自很远且古老的事件,在这事件中大量的能量发生剧烈移动(例子包括两颗中子星的对撞,或两个极重的黑洞对撞)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

感器。灵敏度为h~2X10-15。 Weber的检测器工作在室温下,来自热运动的噪声 会干扰实验结果。目前采用高Q值低内耗铝合金在 超低温(10-2K)下工作,工作的引力波频段为 ~1000Hz段,灵敏度为h~2X10-21。
缺点:非共振频段的引力波反应弱;守株待兔式探
测需要昂贵的实验维持费用。
2.引力波的检测原理及引力波检测
弯曲时空中自由粒子的短程线方程
d 2 x dx dx 0 2 dt dt dt
两个处于不同短程线上的粒子就构成了一个最简
单的引力波检测器。 实验原理:正如电磁场驱动带电粒子一样,处于 引力场中的物体也将受到引力的驱动。可以证明: 粒子所组成的环平面与平面引力波的传播方向垂 直时,在一个同期内,它将被引力扭曲为下页之 图。

T --描述物质分布
0 0
0 0
1 0 0 1
弱场近似下,上述方程退化为:
16 G 1 h 4 T T c 2
此时的时空结构为平直时空度规再加上一个微扰 g h 在无质量时空区域可简化为常见的波动方程:
部分实验结果:
1969年,韦伯(J. Weber)宣称探测到了来自银
河系中心的引力波,实验结果发表于美国物理 评论快报(Physics Review Letter),但后来相 继建成的更高灵敏度的引力波检测器没能重复 其结果,因此其结论目前仍然未能被科学界接 受,认为是噪声而非引力波! 1987年有个小组声称接收到了来自大麦哲伦星 云(属于银河系的近邻星系)中的超新星1987A 爆发时的引力辐射。 这两个结果都因为没有旁证而无法得到公认.
引力波,引力波源 及引力波探测
主 讲 人: 李芳昱
交流Email: fangyuli@
ቤተ መጻሕፍቲ ባይዱ
报告题纲
前言:广义相对论的几个经典检验和预言
引力波-Einstein广义相对论的预言
引力波的检测原理及引力波检测
高频引力波探测的一种可能方案--引力波的电
动力学响应
引力波源 引力波探测的意义和展望
1. 引力波-Einstein广义相对论的预言
Maxwell从理论上预言电磁波的存在(1865年),
Hertz发现电磁波(1888—利用振荡电偶极子发射 EMW,利用共振电偶极子接收EMW)。
Einstein(1916)从理论上预言引力波的存在,
谁去发现引力波呢?----“理论家的天堂,实验家 的地狱”??!! 广义相对论引力场方程 弱场近似下退化成波动方程
平面引力波中X型极化和+型极化对粒子环的作用示意图
两类引力波探测器
共振型棒式天线:
代表:Weber棒(美国)
激光干涉仪探测器:
代表:LIGO(美国)
上世纪60年代中期, J. Weber(韦伯)教授领导的实 验小组在美国Maryland(马里兰)大学建成。
实验装置:悬挂的铝棒(重1.4吨)+压电陶瓷传
2 1 h 0 2 2 c t
2
与电磁场波动方程作一比较,作一由此及 彼的推测,应该能够得到什么?
电磁波不存在单极辐射,至少是电偶极辐射; 而引力波不存在单极和偶极辐射,至少是质量四 极矩辐射。因此强度非常弱!
dE K d Dik d Dik 5 3 3 dt 45c dt dt
爱因斯坦广义相对论的引力场方程
1 8 G R g R 4 T 2 c
广义相对论是一种把时空结构几何化 的引力理论,它认为,物质分布将影响 时空的几何结构,而时空结构又会反过 来影响物质的分布。 1 0 0 0 0 1 0 0 g --描述时空结构,平直时空为
激光干涉引力波天文台LIGO (Laser Interferometer Gravitational-wave Observatory)(美国) 位于华盛顿州汉弗德的 LIGO观测站,耗资3.6亿美元, 它有强劲的激光器、臂长为4公 里长的真空室以及奇快的数据 记录器,它和位于路易斯安娜 州的姐妹站开始投入使用,用 于探测低频(10-4-10-1Hz)引力 波,灵敏度~10-21。它们能够从 地球的震动以及电子噪音中分 辨出来自宇宙的引力波。观测 到的数据可以用来研究黑洞的 LIGO实际上是一个L形的两个臂长均为四公里的巨型 激光干涉仪,探测精度可望分辨出一个氢原子直径的 合并、不对称超新星的爆发或 十亿分之一的振荡信号,这也正是探测预期的天文引 者是大质量天体的突然运动. 力波至少所需要的检测精度。如果探测引力波的目标 得以实现,它不仅可以证实爱因斯坦广义相对论的最
4.雷达回波延迟;1964年Shapiro首次提出。 地球发出的雷达信号经太阳附近到达另一行星 (或飞船),然后返回,测量信号发出与接收 的时间。与广义相对论的吻合程度非常高。 5.引力辐射; 下面专门谈。 6.黑洞;等。 在经典物理中是一个“只进不出”的东西,仅 由三个物理量--质量、电荷、角动量描述, 任何物质一旦掉入,信息就全部消失。在量子 理论中黑洞有量子蒸发。 关于后面两个预言,目前研究处于艰难期, 进展缓慢。
3 3
Dik (3 xi xk ik x j x j )dV
重复指标表示求和,每个指标由1到4(时间 1维,空间3维)。
结论:
从理论上预言了引力波的存在,它以光速传播。
由波动方程直接导出。 引力波是横波。 原因是假定取谐和坐标,并假定引力波沿某一方 向(比如X方向)传播,则它只对Y方向和Z方向 的度规造成扰动。 不存在单极和偶极引力辐射。 引力波带有能量,可以被探测,但引力辐射的最 低极矩是四极矩,这就是为什么引力波非常弱而 难以探测的原因。
前言:广义相对论的几个经典检验和预言
1.光谱线在引力场中的红移;距引力场源较远处 接收到光的频率较低,原因:光“逃离”引力场源 需要做功。 2.光线在引力场中的偏折; 牛顿理论加上光子概念可以定性解释,但定量结 果却总只有观测值的一半。 3.水星进日点的进动; 多出来的43秒/百年,牛顿理论加上摄动修正无 法解释。 以上三点均是广义相对论的直接推论--史瓦 西解(Schwarzschild1916)的直接结果。
相关文档
最新文档