云南省高三数学二轮复习专题教案(四十一)
直线与椭圆的位置关系+教案-2024届高三数学二轮复习

直线与椭圆的位置关系教案高三数学二轮复习专题教学目标:1.通过数形结合与代数运算弄清直线与椭圆位置关系的判断方法。
2.掌握直线与与椭圆相交、相离、相切时各自特点与相关题型。
3.掌握解决直线与椭圆综合问题的方法(联立设而不求用韦达定理解参数,重运算、巧设、巧算、巧解、特殊情况)高考中直线与圆锥曲线的综合应用压轴试题,具体表现为弦长与面积问题,最值与范围问题、定点与定值问题、存在性问题等。
教学方法:充分发挥学生在学习中的主体地位,引导学生活动、观察、思考、合作、探究、归纳、交流、反思,促进形成研究氛围和合作意识,提升运算能力。
教学过程:一、复习回顾直线与椭圆的位置关系及其判断1.位置关系:相交、相切、相离2.判别方法(代数法)联立直线与椭圆的方程消元得到一元二次方程组(1)△>0直线与椭圆相交有两个公共点;(2)△=0直线与椭圆相切有且只有一个公共点;(3)△<0直线与椭圆相离无公共点.3.直线与椭圆相交时弦长公式设直线方程y =kx +m ,椭圆方程x 2a 2+y 2b 2=1 (a >b >0).直线与椭圆的两个交点为A (x 1,y 1),B (x 2,y 2),则|AB |=(x 1-x 2)2+(y 1-y 2)2=x x kx m kx m ⎡⎤-++-+⎣⎦221212()()() =1+k 2·(x 1+x 2)2-4x 1x 2或|AB |=1+1k2·(y 1+y 2)2-4y 1y 2. 4.对于中点弦问题,常用的解题方法是点差法,步骤为: ①设点:即设出弦的两端点坐标;②代入:即代入椭圆方程;③作差:即两式相减,再用平方差公式展开;④整理:即转化为斜率与中点坐标的关系式,然后求解. 二、题型设计及其讲解例 1.已知椭圆221259x y +=,直线l :45400x y -+=,椭圆上是否存在一点,到直线l 的距离最小?最小距离是多少?点拨分析:法一:数形结合、切线求解法二:椭圆上设点,运用点到直线的距离公式强调运算法三:运用椭圆的参数方程思考:最大距离为多少?例2 已知椭圆C :x 2a 2+y 2b 2=1 (a >b >0)的离心率为63,短轴一个端点到右焦点的距离为 3 。
高考数学第二轮专题复习直线与圆的方程教案

高考数学第二轮专题复习直线与圆的方程教案一、重点知识结构本章以直线和圆为载体,揭示了解析几何的基本概念和方法。
直线的倾斜角、斜率的概念及公式、直线方程的五种形式是本章的重点之一,而点斜式又是其它形式的基础;两条直线平行和垂直的充要条件、直线l1到l2的角以及两直线的夹角、点到直线的距离公式也是重点内容;用不等式(组)表示平面区域和线性规划作为新增内容,需要引起一定的注意;曲线与方程的关系体现了坐标法的基本思想,是解决解析几何两个基本问题的依据;圆的方程、直线(圆)与圆的位置关系、圆的切线问题和弦长问题等,因其易与平面几何知识结合,题目解法灵活,因而是一个不可忽视的要点。
二、高考要求1、掌握两条直线平行和垂直的条件,掌握两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系;3、会用二元一次不等式表示平面区域;4、了解简单的线性规划问题,了解线性规划的意义,并会简单的应用;5、了解解析几何的基本思想,了解用坐标法研究几何问题的方法;6、掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程的概念。
三、热点分析在近几年的高考试题中,两点间的距离公式,中点坐标公式,直线方程的点斜式、斜率公式及两条直线的位置关系是考查的热点。
但由于知识的相互渗透,综合考查直线与圆锥曲线的关系一直是高考命题的大热门,应当引起特别注意,本章的线性规划内容是新教材中增加的新内容,在高考中极有可能涉及,但难度不会大。
四、复习建议本章的复习首先要注重基础,对基本知识、基本题型要掌握好;求直线的方程主要用待定系数法,复习时应注意直线方程各种形式的适用条件;研究两条直线的位置关系时,应特别注意斜率存在和不存在的两种情形;曲线与方程的关系体现了坐标法的基本思想,随着高考对知识形成过程的考查逐步加强,对坐标法的要求也进一步加强,因此必须透彻理解。
既要掌握求曲线方程的常用方法和基本步骤,又能根据方程讨论曲线的性质;圆的方程、直线与圆的位置关系,圆的切线问题与弦长问题都是高考中的热点问题;求圆的方程或找圆心坐标和半径的常用方法是待定系数法及配方法,应熟练掌握,还应注意恰当运用平面几何知识以简化计算。
利用导数研究函数的零点专题课件-2025届高三数学二轮复习+++

f'(x),f(x)的变化情况如表所示.
x
(-∞,-2)
f'(x)
-
f(x)
单调递减
-2
0
1
− 2
所以f(x)在区间(-∞,-2)上单调递减,在区间(-2,+∞)上单调递增.
1
当x=-2时,f(x)有极小值f(-2)= − 2 .
(-2,+∞)
+
单调递增
(2)令f(x)=0,解得x=-1.
来求解.这类问题求解的通法是:
(1)构造函数,这是解决此类题的关键点和难点,并求其定义域;
(2)求导数,得单调区间和极值点;
(3)数形结合,挖掘隐含条件,确定函数图象与x轴的交点情况进
而求解
【考点分类练】
命题点1
根据函数零点个数求参数
已知函数零点个数求参数的方法
(1)数形结合法:先根据函数的性质画出图象,再根据函数零点个数的要求数形结合
象的交点个数.
考点一
探究零点个数
例1(2024·河南郑州三模)已知函数f(x)=eax-x.
(1)若a=2,求曲线y=f(x)在(1,f(1))处的切线方程;
(2)讨论f(x)的零点个数.
解 (1)若a=2,则f(x)=e2x-x,f'(x)=2e2x-1.
又f(1)=e2-1,切点为(1,e2-1),
此 f(x)在 R 上单调递减.当 a>0 时,f'(x)=2a e +
则 f(x)在
1
ln ,
+ ∞ 上单调递增;令 f'(x)<0,得
1
2024届高三数学二轮复习策略课件

1.离心率的计算 2.圆锥曲线与三角形内心、重心相关的 问题
3.圆锥曲线与内接三角形 4.圆锥曲线中常用的二级结论
专
1.函数的图像与性质 2.利用导数研究函数的性质
题 函数与导数 3.导数与恒成立问题
六
4.导数与不等关系 5.导数与函数的零点
1.抽象函数的性质 2.切线与公切线 3.以指数、对数为载体的情景题 3.导数中的构造问题 4.端点效应问题
【分析】当x 时0 , xf (x) ,f (x即) 0 [xf (x)] 0
构造函数 g(x) xf (x)
A 【例 1】(2020 新课标Ⅱ理11)若 2x 2y 3x 3y ,则 (
)
A. ln(y x 1) 0 B. ln(y x 1) 0
C. ln | x y | 0
二轮复习六大专题:
大专题
专 三角函数、 题 解三角形 一 和平面向量
专 题 数列 二
专 题 立体几何 三
子专题
微专题
1.三角恒等变换 2.三角函数的图像与性质 3.解三角形
1.平面向量数量积的求解策略 2.三角函数中与 相关的问题探究 3.三角形中的特殊线段 4.三角中的数学建模与情景题
1.数列的通项求法
【案例3】 微专题:同构式
【引例】(2015 年理12 改编)设函数 f (x) 是奇函数 f (x)(x R)的导
函数, f (1) 0 ,当 x 0 时,xf '(x) f (x) 0 ,则使得 xf (x) 0
成立的 x 的取值范围是(
)
A.,1 0,1
B.1,0 0,1
C.,1 1,0 D.0,1 1,
3.确定备考策略
(1)对数列的概念及表示方法的理解和应用; (2)等差数列、等比数列的性质、通项公式、递推公式、前项和公式中基本量的运算或者利用它们之 间的关系式通过多角度观察所给条件的结构,深入剖析其特征,利用其规律进行恰当变形与转化求解 数列的问题; (3)会利用等差、等比数列的定义判断或证明数列问题; (4)通过转化与化归思想利用错位相减、裂项相消、分组求和等方法求数列的前项和; (5)数列与不等式、函数等的交汇问题; (6)关注数学课本中有关数列的阅读与思考、探究与发现的学习材料,有意识地培养学生的阅读能力 和符号使用能力,也包括网络资料中与数列有关的数学文化问题,与实际生活有关的数列的应用问题; (7)关注结构不良试题、举例问题等创新题型。
高三数学第二轮复习专题 数列数列通项的求法(教案及测试;含详解答案)

城东蜊市阳光实验学校数列通项的求法考纲要求:1. 理解数列的概念和几种简单的表示方法〔列表、图像、通项公式〕;2. 可以根据数列的前几项归纳出其通项公式;3. 会应用递推公式求数列中的项或者者.通项;4. 掌握n n s a 求的一般方法和步骤.考点回忆:回忆近几年高考,对数列概念以及通项一般很少单独考察,往往与等差、等比数列或者者者与数列其它知识综合考察.一般作为考察其他知识的铺垫知识,因此,假设这一部分掌握不好,对解决其他问题也是非常不利的. 根底知识过关: 数列的概念1.按照一定排列的一列数称为数列,数列中的每一个数叫做这个数列的,数列中的每一项都和他的有关.排在第一位的数称为这个数列的第一项〔通常也叫做〕.往后的各项依次叫做这个数列的第2项,……第n 项……,数列的一般形式可以写成12,n a a a …………,其中是数列的第n 项,我们把上面数列简记为. 数列的分类:1.根据数列的项数,数列可分为数列、数列.2.根据数列的每一项随序号变化的情况,数列可分为数列、数列、数列、 数列.数列的通项公式:1.假设数列{}n a 的可以用一个公式来表示,那么这个公式叫做这个数列的通项公式,通项公式可以看成数列的函数. 递推公式; 1.假设数列{}n a 的首项〔或者者者前几项〕,且任意一项1n n a a -与〔或者者其前面的项〕之间的关系可以,那么这个公式就做数列的递推公式.它是数列的一种表示法. 数列与函数的关系:1.从函数的观点看,数列可以看成以为定义域的函数()na f n =,当自变量按照从小到大的顺序依次取值时,所对应的一列函数值,反过来,对于函数y=f(x),假设f(i)(i=1,2,3,……)有意义,那么我们可以得到一个数列f(1),f(2),f(3)……f(n)…… 答案: 数列的概念 1.顺序项序号首项n a {}n a数列的分类 1.有限无限 2.递增递减常摆动 数列的通项公式1.第n 项与它的序号n 之间的关系n a =f(n)解析式 递推公式1. 可以用一个公式来表示数列与函数的关系1. 正整数集N*〔或者者它的有限子集{}1,2,3,n ……〕高考题型归纳:题型1.观察法求通项观察法是求数列通项公式的最根本的方法,其本质就是通过观察数列的特征,找出各项一一共同的构成规律,横向看各项之间的关系构造,纵向看各项与项数之间的关系,从而确定出数列的通项.例1.数列12,14,58-,1316,2932-,6164,….写出数列的一个通项公式.分析:通过观察可以发现这个数列的各项由以下三部分组成的特征:符号、分子、分母,所以应逐个考察其规律.解析:先看符号,第一项有点违犯规律,需改写为12--,由此整体考虑得数列的符号规律是{(1)}n-;再看分母,都是偶数,且呈现的数列规律是{2}n;最后看分子,其规律是每个分子的数比分母都小3,即{23}n -. 所以数列的通项公式为23(1)2n nn n a -=-. 点评:观察法一般适用于给出了数列的前几项,根据这些项来写出数列的通项公式,一般的,所给的数列的前几项规律性特别强,并且规律也特别明显,要么能直接看出,要么只需略作变形即可. 题型2.定义法求通项直接利用等差数列或者者等比数列的定义求通项的方法叫定义法,这种方法适应于数列类型的题目.例2.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.分析:对于数列{}n a ,是等差数列,所以要求其通项公式,只需要求出首项与公差即可.解析:设数列{}n a 公差为)0(>d d∵931,,a a a 成等比数列,∴9123a a a =,即)8()2(1121d a a d a +=+d a d 12=⇒ ∵0≠d,∴d a =1………………………………①∵255aS =∴211)4(2455d a d a +=⋅⨯+…………②由①②得:531=a ,53=d∴n n a n 5353)1(53=⨯-+=点评:利用定义法求数列通项时要注意不要用错定义,设法求出首项与公差〔公比〕后再写出通项.题型3.应用nS 与na 的关系求通项有些数列给出{na }的前n 项和nS 与na 的关系式n S =()n f a ,利用该式写出11()n n S f a ++=,两式做差,再利用11n n na S S ++=-导出1n a +与na 的递推式,从而求出na 。
高三数学教案设计(通用8篇)

高三数学教案设计(通用8篇)高三数学教案设计篇1一、教学目标知识与技能:理解任意角的概念(包括正角、负角、零角)与区间角的概念。
过程与方法:会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写。
情感态度与价值观:1、提高学生的推理能力;2、培养学生应用意识。
二、教学重点、难点:教学重点:任意角概念的理解;区间角的集合的书写。
教学难点:终边相同角的集合的表示;区间角的集合的书写。
三、教学过程(一)导入新课回顾角的定义①角的第一种定义是有公共端点的两条射线组成的图形叫做角。
②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。
(二)教学新课1、角的有关概念:①角的定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。
②角的名称:注意:⑴在不引起混淆的情况下,“角α”或“∠α”可以简化成“α”;⑵零角的终边与始边重合,如果α是零角α=0°;⑶角的概念经过推广后,已包括正角、负角和零角。
请说出角α、β、γ各是多少度?2、象限角的概念:定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。
高三数学教案设计篇2一、指导思想今年是我省使用新教材的第八年,即进入了新课程标准下高考的第六年。
高三数学教学要以《数学课程标准》为依据,全面贯彻教育方针,积极实施素质教育。
提高学生的学习能力仍是我们的奋斗目标。
近年来的高考数学试题逐步做到科学化、规范化,坚持了稳中求改、稳中创新的原则。
高考试题不但坚持了考查全面,比例适当,布局合理的特点,也突出体现了变知识立意为能力立意这一举措。
更加注重考查考生进入高校学习所需的基本素养,这些问题应引起我们在教学中的关注和重视。
二、注意事项1、高度重视基础知识,基本技能和基本方法的复习。
“基础知识,基本技能和基本方法”是高考复习的重点。
高三数学二轮备考策略
高三数学二轮备考策略1. 项目背景介绍咱都知道高三第一轮复习是全面复习基础知识,那二轮备考就是要在这个基础上进行提升啦。
高三学生经过一轮复习后,对数学知识有了一定的掌握,但可能还存在知识体系不够完善、解题技巧不够熟练、综合应用能力不足等问题。
而且高考的压力就在眼前,二轮备考就是为了让大家更有底气去面对高考数学这个大挑战。
2. 目标与需求说明目标就是在二轮复习结束后,学生能提高数学解题的正确率、速度,增强综合解题能力,对高考数学的各种题型有更深入的理解和应对策略。
需求方面呢,学生需要更系统的复习资料,需要老师有针对性的辅导,还需要大量的练习题来巩固知识和提高解题能力。
3. 解决方案概述梳理知识体系:把数学的各个板块,像函数、几何、数列等,按照高考的考点重新进行梳理,让知识更加有条理。
比如说函数,把函数的定义域、值域、单调性、奇偶性等知识点串起来,形成一个完整的知识链。
专题突破:针对高考中的重点、难点和易错点设置专题。
例如立体几何中的空间向量法解题专题,解析几何中的圆锥曲线专题等。
每个专题都深入讲解知识点、解题思路和技巧。
模拟考试与真题演练:定期进行模拟考试,按照高考的时间和题型要求来进行。
同时认真研究历年高考真题,了解高考的命题规律和趋势。
4. 实施步骤计划第一阶段(前两周)知识体系梳理老师先在课堂上把每个板块的知识框架画出来,给学生一个整体的概念。
学生自己在课后根据课堂笔记,补充每个知识点的细节内容,并且找出自己知识薄弱的地方。
准备专题资料:老师根据高考重点和学生的实际情况,收集和整理各个专题的复习资料。
第二阶段(中间两周)专题突破每个专题安排 3 - 4节课时。
老师先讲解专题的知识点和解题思路,比如在数列专题中,先讲数列的通项公式求法、数列求和的方法等。
然后让学生做一些针对性的练习题,练习题从易到难,逐步提升学生的解题能力。
在课堂上,老师抽取学生的练习答案进行点评,指出解题的优点和不足之处。
第三阶段(后两周)模拟考试与真题演练每周安排两次模拟考试,模拟考试结束后,学生自己先进行试卷分析,找出自己的错误原因和知识漏洞。
高三数学(理科)二轮复习
高考数学第二轮复习计划一、指导思想高三第一轮复习一般以知识、技能、方法的逐点扫描和梳理为主,通过第一轮复习,学生大都能掌握基本概念的性质、定理及其一般应用,但知识较为零散,综合应用存在较大的问题。
第二轮复习的首要任务是把整个高中基础知识有机地结合在一起,强化数学的学科特点,同时第二轮复习承上启下,是促进知识灵活运用的关键时期,是发展学生思维水平、提高综合能力发展的关键时期,因而对讲、练、检测要求较高。
强化高中数学主干知识的复习,形成良好知识网络。
整理知识体系,总结解题规律,模拟高考情境,提高应试技巧,掌握通性通法。
第二轮复习承上启下,是知识系统化、条理化,促进灵活运用的关键时期,是促进学生素质、能力发展的关键时期,因而对讲练、检测等要求较高,故有“二轮看水平”之说.“二轮看水平”概括了第二轮复习的思路,目标和要求.具体地说,一是要看教师对《考试大纲》的理解是否深透,研究是否深入,把握是否到位,明确“考什么”、“怎么考”.二是看教师讲解、学生练习是否体现阶段性、层次性和渐进性,做到减少重复,重点突出,让大部分学生学有新意,学有收获,学有发展.三是看知识讲解、练习检测等内容科学性、针对性是否强,使模糊的清晰起来,缺漏的填补起来,杂乱的条理起来,孤立的联系起来,让学生形成系统化、条理化的知识框架.四是看练习检测与高考是否对路,不拔高,不降低,难度适宜,效度良好,重在基础的灵活运用和掌握分析解决问题的思维方法.二、时间安排:1.第一阶段为重点主干知识的巩固加强与数学思想方法专项训练阶段,时间为3月10——4月30日。
2.第二阶段是进行各种题型的解题方法和技能专项训练,时间为5月1日——5月25日。
3.最后阶段学生自我检查阶段,时间为5月25日——6月6日。
三、怎样上好第二轮复习课的几点建议:(一).明确“主体”,突出重点。
第二轮复习,教师必须明确重点,对高考“考什么”,“怎样考”,应了若指掌.只有这样,才能讲深讲透,讲练到位.因此,每位教师要研究2009-2010湖南对口高考试题.第二轮复习的形式和内容1.形式及内容:分专题的形式,具体而言有以下八个专题。
高三数学二轮复习重点
高三数学二轮复习重点高三数学第二轮重点复习内容专题一:函数与不等式,以函数为主线,不等式和函数综合题型是考点函数的性质:着重掌握函数的单调性,奇偶性,周期性,对称性。
这些性质通常会综合起来一起考察,并且有时会考察具体函数的这些性质,有时会考察抽象函数的这些性质。
一元二次函数:一元二次函数是贯穿中学阶段的一大函数,初中阶段主要对它的一些基础性质进行了了解,高中阶段更多的是将它与导数进行衔接,根据抛物线的开口方向,与x轴的交点位置,进而讨论与定义域在x轴上的摆放顺序,这样可以判断导数的正负,最终达到求出单调区间的目的,求出极值及最值。
不等式:这一类问题常常出现在恒成立,或存在性问题中,其实质是求函数的最值。
当然关于不等式的解法,均值不等式,这些不等式的基础知识点需掌握,还有一类较难的综合性问题为不等式与数列的结合问题,掌握几种不等式的放缩技巧是非常必要的。
专题二:数列。
以等差等比数列为载体,考察等差等比数列的通项公式,求和公式,通项公式和求和公式的关系,求通项公式的几种常用方法,求前n项和的几种常用方法,这些知识点需要掌握。
专题三:三角函数,平面向量,解三角形。
三角函数是每年必考的知识点,难度较小,选择,填空,解答题中都有涉及,有时候考察三角函数的公式之间的互相转化,进而求单调区间或值域;有时候考察三角函数与解三角形,向量的综合性问题,当然正弦,余弦定理是很好的工具。
向量可以很好得实现数与形的转化,是一个很重要的知识衔接点,它还可以和数学的一大难点解析几何整合。
专题四:立体几何。
立体几何中,三视图是每年必考点,主要出现在选择,填空题中。
大题中的立体几何主要考察建立空间直角坐标系,通过向量这一手段求空间距离,线面角,二面角等。
另外,需要掌握棱锥,棱柱的性质,在棱锥中,着重掌握三棱锥,四棱锥,棱柱中,应该掌握三棱柱,长方体。
空间直线与平面的位置关系应以证明垂直为重点,当然常考察的方法为间接证明。
专题五:解析几何。
2024年高三数学二轮复习计划
2024年高三数学二轮复习计划一、知识梳理与回顾1. 回顾并梳理高中数学的所有知识点,构建知识网络图,确保对基础概念的深入理解。
2. 整理各类公式、定理和性质,确保能够熟练运用。
3. 针对性地复习易混淆和遗忘的知识点,加强记忆。
二、重点难点突破1. 识别个人在数学学科上的薄弱环节,制定专门的攻克计划。
2. 通过专项训练、请教老师或同学,攻克重难点问题。
3. 定期复习巩固已突破的知识点,确保长期记忆。
三、题型专题训练1. 分析历年高考真题,掌握各类题型的解题思路和技巧。
2. 对各题型进行分类训练,提高解题速度和正确率。
3. 结合模拟试题,进行实战演练,增强应试能力。
四、模拟考试与评估1. 定期进行模拟考试,模拟真实考试环境,检验复习效果。
2. 对模拟考试进行详细分析,查找问题所在,调整复习策略。
3. 评估个人学习进度,合理安排后续复习计划。
五、错误题型总结1. 整理模拟考试和日常练习中的错题,分析错误原因。
2. 针对错误题型制定专门的复习计划,强化训练。
3. 定期回顾和总结,确保不再犯同样的错误。
六、解题技巧提升1. 学习并总结各类题型的解题技巧和方法。
2. 通过大量练习,熟练掌握并运用解题技巧。
3. 培养逻辑思维和抽象能力,提高解题的灵活性和创造性。
七、学科思维培养1. 学习并运用数学思维方式,如归纳、演绎、类比等。
2. 加强对数学概念、原理和方法的理解和应用。
3. 培养分析问题和解决问题的能力,提高综合素质。
八、复习策略与调整1. 制定切实可行的复习计划,确保复习的有序性和高效性。
2. 根据复习进度和效果,适时调整复习策略和方法。
3. 保持积极心态,合理安排作息时间,确保身心健康。
通过以上八个方面的努力和实践,相信同学们能够在2024年的高三数学二轮复习中取得优异的成绩。
加油!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
云南省2010届高三二轮复习数学专题教案(四十一)题目 高中数学复习专题讲座探索性问题 高考要求高考中的探索性问题主要考查学生探索解题途径,解决非传统完备问题的能力,是命题者根据学科特点,将数学知识有机结合并赋予新的情境创设而成的,要求考生自己观察、分析、创造性地运用所学知识和方法解决问题 重难点归纳如果把一个数学问题看作是由条件、依据、方法和结论四个要素组成的一个系统,那么把这四个要素中有两个是未知的数学问题称之为探索性问题 条件不完备和结论不确定是探索性问题的基本特征解决探索性问题,对观察、联想、类比、猜测、抽象、概括诸方面有较高要求,高考题中一般对这类问题有如下方法(1)直接求解;(2)观察——猜测——证明; (3)赋值推断; (4)数形结合; (5)联想类比;(6)特殊——一般——特殊 典型题例示范讲解例1已知函数1)(2++=ax c bx x f (a ,c ∈R ,a >0,b 是自然数)是奇函数,f (x )有最大值21,且f (1)>52(1)求函数f (x )的解析式;(2)是否存在直线l 与y =f (x )的图象交于P 、Q 两点,并且使得P 、Q 两点关于点(1,0)对称,若存在,求出直线l 的方程,若不存在,说明理由命题意图 本题考查待定系数法求函数解析式、最值问题、直线方程及综合分析问题的能力知识依托 函数的奇偶性、重要不等式求最值、方程与不等式的解法、对称问题 错解分析 不能把a 与b 间的等量关系与不等关系联立求b ;忽视b 为自然数而导致求不出b 的具体值;P 、Q 两点的坐标关系列不出解技巧与方法 充分利用题设条件是解题关键 本题是存在型探索题目,注意在假设存在的条件下推理创新,若由此导出矛盾,则否定假设,否则,给出肯定的结论,并加以论证解 (1)∵f (x )是奇函数 ∴f (–x )=–f (x ),即1122++-=++-ax cbx ax c bx ∴–bx +c =–bx –c ∴c =0 ∴f (x )=12+ax bx由a >0,b 是自然数得当x ≤0时,f (x )≤0,当x >0时,f (x )>0∴f (x )的最大值在x >0时取得 ∴x >0时,22111)(b abxx b a x f ≤+=当且仅当bxx b a 1= 即ax 1=时,f (x )有最大值21212=b a ∴2ba =1,∴a =b 2① 又f (1)>52,∴1+a b >52,∴5b >2a +2 ② 把①代入②得2b 2–5b +2<0解得21<b <2又b ∈N ,∴b =1,a =1,∴f (x )=12+x x(2)设存在直线l 与y =f (x )的图象交于P 、Q 两点,且P 、Q 关于点(1,0)对称,P (x 0,y 0)则Q (2–x 0,–y 0),∴⎪⎪⎩⎪⎪⎨⎧-=+--=+02000201)2(21y x x y x x ,消去y 0,得x 02–2x 0–1=0解之,得x 0=1±2, ∴P 点坐标为(42,21+)或(42,21--) 进而相应Q 点坐标为Q (42,21--)或Q (42,21+)过P 、Q 的直线l 的方程 x –4y –1=0即为所求例2如图,三条直线a 、b 、c 两两平行,直线a 、b 间的距离为p ,直线b 、c 间的距离为2p,A 、B为直线a 上两定点,且|AB |=2p ,MN 是在直线b 上滑动的长度为2p 的线段(1)建立适当的平面直角坐标系,求△AMN 的外心C 的轨迹E ;(2)接上问,当△AMN 的外心C 在E 上什么位置时,d +|BC |最小,最小值是多少?(其中d 是外心C 到直线c 的距离)命题意图 本题考查轨迹方程的求法、抛物线的性质、数形结合思想及分析、探索问题、综合解题的能力知识依托 求曲线的方程、抛物线及其性质、直线的方程错解分析 ①建立恰当的直角坐标系是解决本题的关键,如何建系是难点,②第二问中确定C 点位置需要一番分析技巧与方法 本题主要运用抛物线的性质,寻求点C 所在位置,然后加以论证和计算,得出正确结论,是条件探索型题目解 (1)以直线b 为x 轴,以过A 点且与b 直线垂直的直线为y 轴建立直角坐标系 设△AMN 的外心为C (x ,y ),则有A (0,p )、M (x –p ,0),N (x +p ,0), 由题意,有|CA |=|CM |∴2222)()(y p x x p y x ++-=-+,化简,得x 2=2py它是以原点为顶点,y 轴为对称轴,开口向上的抛物线 (2)由(1)得,直线c 恰为轨迹E 的准线 由抛物线的定义知d =|CF |,其中F (0,2p)是抛物线的焦点 ∴d +|BC |=|CF |+|BC |由两点间直线段最短知,线段BF 与轨迹E 的交点即为所求的点 直线BF 的方程为p x y 2141+=联立方程组 ⎪⎩⎪⎨⎧=+=pyx p x y 221412得⎪⎪⎩⎪⎪⎨⎧+=+=.16179)171(41p y p x 即C 点坐标为(p p 16179,4171++) 此时d +|BC |的最小值为|BF |=p 217例3已知三个向量a 、b 、c ,其中每两个之间的夹角为120°,若|a |=3,|b |=2,|c |=1,则a 用b 、c 表示为解析 如图–a 与b ,c 的夹角为60°,且|a |=|–a |=3 由平行四边形关系可得–a =3c +23b , ∴a =–3c –23b答案 a =–3c –23b 例4 假设每一架飞机引擎在飞行中故障率为1–p ,且各引擎是否有故障是独立的,如有至少50%的引擎能正常运行,飞机就可成功飞行,则对于多大的p 而言,4引擎飞机比2引擎飞机更为安全?2 解析 飞机成功飞行的概率分别为 4引擎飞机为4222443342224)1(4)1(6C )1(C )1(C P P P P P P P P P P +-+-=+-+- 2引擎飞机为222212)1(2C )1(C P P P P P P +-=+-⋅要使4引擎飞机比2引擎飞机安全,则有6P 2(1–P )2+4P 2(1–P )+P 4≥2P (1–P )+P 2,解得P ≥32即当引擎不出故障的概率不小于32时,4引擎飞机比2引擎飞机安全学生巩固练习1 已知直线l ⊥平面α,直线m ⊂平面β,有下面四个命题,其中正确命题是( ) ①α∥β⇒l ⊥m ②α⊥β⇒l ∥m ③l ∥m ⇒α⊥β ④l ⊥m ⇒α∥βA ①与②B ①与③C ②与④D ③与④ 2 某邮局只有0.60元,0.80元,1.10元的三种邮票 现有邮资为7.50元的邮件一件,为使粘贴邮票的张数最少,且资费恰为7.50元,则最少要购买邮票( )A 7张B 8张C 9张D 10张 3 观察sin 220°+cos 250°+sin20°cos50°=43,sin 215°+cos 245°+sin15°·cos45°=43, 写出一个与以上两式规律相同的一个等式4 在四棱锥P —ABCD 中,侧棱P A ⊥底面ABCD ,底面ABCD 是矩形,问底面的边BC 上是否存在点E(1)使∠PED =90°;(2)使∠PED 为锐角 证明你的结论5 已知非零复数z 1,z 2满足|z 1|=a ,|z 2|=b ,|z 1+z 2|=c (a 、b 、c 均大于零),问是否根据上述条件求出12z z ?请说明理由 6 是否存在都大于2的一对实数a 、b (a >b )使得ab ,ab,a –b ,a +b 可以按照某一次序排成一个等比数列,若存在,求出a 、b 的值,若不存在,说明理由7 直线l 过抛物线y 2=2px (p >0)的焦点且与抛物线有两个交点,对于抛物线上另外两点A 、B 直线l 能否平分线段AB ?试证明你的结论8 三个元件T 1、T 2、T 3正常工作的概率分别为0.7、0.8、0.9,将它们的某两个并联再和第三个串联接入电路,如图甲、乙、丙所示,问哪一种接法使电路不发生故障的概率最大?参考答案1 解析 ①l ⊥α且α∥β⇒l ⊥β,m ⊂β⇒l ⊥m ②α⊥β且l ⊥α⇒l ∥β,但不能推出l ∥m ③l ∥m ,l ⊥α⇒m ⊥α,由m ⊂β⇒α⊥β ④l ⊥m ,不能推出α∥β 答案 B2 解析 选1.1元5张,0.6元2张,0.8元1张 故8张 答案 B3 解析 由50°–20°=(45°–15°)=30°可得sin 2α+cos 2(α+30°)+sin αcos(α+30°)=43 答案 sin 2α+cos 2(α+30°)+sin αcos(α+30°)=434 解 (1)当AB ≤21AD 时,边BC 上存在点E ,使∠PED =90°;当AB >21AD 时,使∠PED =90°的点E 不存在 (只须以AD 为直径作圆看该圆是否与BC 边有无交点)(证略)(2)边BC 上总存在一点,使∠PED 为锐角,点B 就是其中一点连接BD ,作AF ⊥BD ,垂足为F ,连PF ,∵P A ⊥面ABCD ,∴PF ⊥BD ,又△ABD 为直角三角形,∴F 点在BD 上,∴∠PBF 是锐角同理,点C 也是其中一点5 解 ∵|z 1+z 2|2=(z 1+z 2)(1z +2z )=|z 1|2+|z 2|2+(z 12z +1z z 2) ∴c 2=a 2+b 2+(z 12z +1z z 2) 即 z 12z +1z z 2=c 2–a 2–b 2 ∵z 1≠0,z 2≠0,∴z 12z +1z ·z 2=12112221z z z z z z z z +=|z 2|2(21z z )+|z 1|2(12z z ) 即有 b 2(21z z )+a 2(12z z)=z 1z 2+z 1z 2 ∴b 2(21z z )+a 2(12z z)=c 2–a 2–b 2∴a 2(12z z )2+(a 2+b 2–c 2)(12z z )+b 2=0 这是关于12z z 的一元二次方程,解此方程即得12z z的值 6 解 ∵a >b ,a >2,b >2,∴ab ,a b ,a –b ,a +b 均为正数,且有ab >a +b >ab,ab >a +b >a –b 假设存在一对实数a ,b 使ab ,ab,a +b ,a –b 按某一次序排成一个等比数列,则此数列必是单调数列 不妨设该数列为单调减数列,则存在的等比数列只能有两种情形,即①ab ,a +b ,a –b ,a b , 或 ②ab ,a +b ,a b ,a –b 由(a +b )2≠ab ·ab 所以②不可能是等比数列,若①为等比数列,则有⎪⎩⎪⎨⎧+=+=⎪⎩⎪⎨⎧⋅=-+-=+22710257 ))(()()(2b a a bab b a b a b a ab b a 解得 经检验知这是使ab ,a +b ,a –b ,ab成等比数列的惟一的一组值 因此当a =7+25,b =22710+时,ab ,a +b ,a –b ,a b 成等比数列7 解 如果直线l 垂直平分线段AB ,连AF 、BF ,∵F (2p,0)∈l ∴|F A |=|FB |,设A (x 1,y 1),B (x 2,y 2),显然x 1>0,x 2>0,y 1≠y 2,于是有(x 1–2p )2+y 12=(x 2–2p)2+y 22, 整理得 (x 1+x 2–p )(x 1–x 2)=y 22–y 12=–2p (x 1–x 2)显然x 1≠x 2(否则AB ⊥x 轴,l 与x 轴重合,与题设矛盾)得 x 1+x 2–p =–2p 即x 1+x 2=–p <0,这与x 1+x 2>0矛盾, 故直线l 不能垂直平分线段AB8 解 设元件T 1、T 2、T 3能正常工作的事件为A 1、A 2、A 3,电路不发生故障的事件为A ,则P (A 1)=0.7,P (A 2)=0.8,P (A 3)=0.9(1)按图甲的接法求P (A ) A =(A 1+A 2)·A 3, 由A 1+A 2与A 3相互独立,则P (A )=P (A 1+A 2)·P (A 3)又P (A 1+A 2)=1–P (21A A +)=1–P (1A ·2A ) 由A 1与A 2相互独立知1A 与2A 相互独立,得P (1A ·2A )=P (1A )·P (2A )=[1–P (A 1)]·[1–P (A 2)] =(1–0.7)×(1–0.8)=0.06,∴P (A 1+A 2)=0.1–P (1A ·2A )=1–0.06=0.94,∴P(A)=0.94×0.9=0.846(2)按图乙的接法求P(A)A=(A1+A3)·A2且A1+A3与A2相互独立,则P(A)=P (A1+A3)·P(A2),用另一种算法求P(A1+A3)∵A1与A3彼此不互斥,根据容斥原理P(A1+A3)=P(A1)+P(A3)–P(A1A3),∵A1与A3相互独立,则P(A1·A3)=P(A1)·P(A3)=0.7×0.9=0.63,P(A1+A3)=0.7+0.9–0.63=0.97∴P(A)=P(A1+A3)·P(A2)=0.97×0.8=0.776(3)按图丙的接法求P(A),用第三种算法A=(A2+A3)A1=A2A1+A3A1,∵A2A1与A3A1彼此不互斥,据容斥原理,则P(A)=P(A1A2)+P(A1A3)–P(A1A2A3),又由A1、A2、A3相互独立,得P(A1·A2)=P(A1)P(A2)=0.8×0.7=0.56,P(A3A1)=P(A3)·P(A1)=0.9×0.7=0.63,P(A1A2A3)=P(A1)·P(A2)·P(A3)=0.7×0.8×0.9=0.504,∴P(A)=0.56+0.63–0.504=0.686综合(1)、(2)、(3)得,图甲、乙、丙三种接法电路不发生故障的概率值分别为0.846,0.776,0.686故图甲的接法电路不发生故障的概率最大课前后备注。