排队论习题
排队论算例

排队论算例解:先根据每个状态的平衡条件建立状态方程组如下:245)1(5)4(41)1(6)3(21)1(12)2(241)1(1)1(24)1(5)1(6)1(12)1()()1(5)4()1(6)3()1(12)2()1()1()1(3)3(2)4(1)4(2)2(1)3(2)4(2)1(2)2(1)4(1)1(3)1(241=========+++=⎪⎪⎩⎪⎪⎨⎧====⎪⎪⎩⎪⎪⎨⎧+=+=+==+∑=P P P P P P P P P P P P i P P P P P P P P P P P P P P P P P P P P P i 由正则条件知:解得:076.0)0(8116)4(114.0)0(278)3(171.0)0(94)2(256.0)0(32)1(384.0)0(1)0(81211)0(8116)0(278)0(94)0(32)0()(4===========++++=∑=P P P P P P P P P P P P P P P i P i 由正则条件知:【例题4】求解下列生灭过程的状态指标?解:系统容量有限,即最多可同时容纳3个顾客。
系统中可能容纳0个、1个、2个和3个顾客,即有4个状态。
对于状态0S 有:1032P P =,即:0132P P =对于状态1S 有:120542P P P =+,即:0231P P =对于状态3S 有:3232P P =,即:0192P P =由正则条件可知,13210=+++P P P P ,即:45.00=P 故有:30.00=P 、15.02=P 、10.03=P 。
【例题5】某公路收费入口处设有一收费亭,汽车进入公路必须向收费亭交费。
收费亭的收费时间服从负指数分布,平均每辆汽车的交费时间为7.2s ,汽车的到达率为400辆/h ,服从泊松分布。
试求:(1)收费亭空闲的概率;(2)收费亭前没有车辆排队的概率;(3)收费亭前排队长度超过100m (即排队车辆超过12辆)的概率;(4)平均排队长度;(5)车辆通过收费亭所花费时间的平均值;(6)车辆的平均排队时间?解:显然这是一个M/M/1/∞∞/排队系统,收费亭是服务台,汽车是顾客,汽车向收费亭交费便是接受服务。
排队论习题

排队论 习题1.指出下列排队系统中的顾客和服务员:(1)机场起飞的客机;(2)十字路口红灯前的车辆;(3)超级市场收款台前的车辆;(4)高速公路收费口;(5)汽车加油站;(6)电报局2.到达只有一台加油设备加油站的汽车平均到达率为60台/h,由于加油站的面积较小而且较拥挤,到达的汽车中平均每4台中有一台不能进入站内而离去。
这种情况下排队等待加油的汽车队列(不计正在加油的)为3.5台,求进入该加油站汽车等待加油的平均时间。
3.某机关接待室,接待人员每天工作10小时。
来访人员的到来服从泊松分布,每天平均有90人到来,接待时间服从指数分布,平均速度为10人/时,(平均每人6分种)。
试求排队等待接待的平均人数;等待接待的多于2人的概率,如果使等待接待的人平均为两人,接待速度应提高多少?4.为开办一个小型理发店,目前只招聘了一个服务员,需要决定等待理发的顾客的位子应设立少。
假设需要理发的顾客到来的规律服从泊松流,平均每4分钟来一个,而理发的时间服从指数分布,平均3分钟一个人,如果要求理发的顾客因没有等待的位子而转向其他理发店的人数占理发的人数的7%时,应该安放几个供顾客等待的位子?5.工件按泊松流到达服务台,平均间隔时间为10分钟,假设对每一工件的服务(加工)所需间服从负指数分布,平均服务时间为8分钟。
求:⑴工件在系统内等待服务的平均数和工件在系统内平均逗留时间;⑵若要求有90%的把握使工件在系统内的逗留时间不超过30分钟,则工件的平均服务时间多是多少?⑶若每一工件的服务分两段,每段所需时间都服从负指数分布,平均都为4分钟,在这种情况下,工件在系统内的平均数是多少?6.经观察,某海关入关检查的顾客平均每小时到达10人,顾客到达服从普阿松分布,关口检服务时间服从指数分布,平均时间是5分钟,试求:⑴顾客来海边不用等待的概率;⑵海关内顾客的平均数;⑶顾客在海关内平均逗留时间;h⑷当顾客逗留时间超过1.2时,则应考虑增加海关窗口及人数,问平均达到率提高多少时,管理者才作这样的打算。
排队论练习题

第9章排队论判断下列说法是否正确:(1)若到达排队系统的顾客为泊松流,则依次到达的两名顾客之间的间隔时间服从负指数分布;(2)假如到达排队系统的顾客来自两个方面,分别服从泊松分布,则这两部分顾客合起来的顾客流仍为泊松分布;(3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序,则第1、3、5、7,…名顾客到达的间隔时间也服从负指数分布;(4)对M/M/1或M/M/C的排队系统,服务完毕离开系统的顾客流也为泊松流;(5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大量实际系统的统计研究,这样的假定比较合理;(6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后,系统将进入稳定状态;(7)排队系统中,顾客等待时间的分布不受排队服务规则的影响;(8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的平均等待时间将少于允许队长无限的系统;(9)在顾客到达的分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有关,当服务时间分别的方差越大时,顾客的平均等待时间将越长;(10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。
M/M/1、某理发店只有一名理发师,来理发的顾客按泊松分布到达,平均每小时4人,理发时间服从负指数分布,平均需6小时,求:(1)理发店空闲时间的概率;(2)店内有3个顾客的概率;(3)店内至少有1个顾客的概率;(4)在店内顾客平均数;(5)在店内平均逗留时间;(6)等待服务的顾客平均数;(7)平均等待服务时间;(8)必须在店内消耗15分钟以上的概率。
、某修理店只有一个修理工,来修理东西的顾客到达次数服从泊松分布,平均每小时4人,修理时间服从负指数分布,平均需6分钟。
求:(1)修理店空闲时间的概率;(2)店内有3个顾客的概率;(3)店内顾客平均数;(4)店内等待顾客平均数;(5)顾客在店内平均逗留时间;(6)平均等待修理时间。
排队论习题及答案

排队论习题及答案排队论习题及答案排队论是概率论和数学统计中的一个重要分支,研究的是随机事件的排队问题。
在现实生活中,我们经常会遇到排队的情况,如等候乘坐公交车、购物结账等。
排队论的研究可以帮助我们更好地理解和优化排队过程,提高效率和服务质量。
下面,我们将介绍几个排队论的习题及其解答。
习题一:某银行有两个窗口,顾客到达银行的时间服从平均到达率为λ的泊松分布,每个顾客在窗口办理业务的时间服从平均服务率为μ的指数分布。
求平均等待时间和平均排队长度。
解答:首先,我们可以根据泊松分布和指数分布的性质,得到顾客到达时间和服务时间之间的关系。
假设顾客到达时间服从泊松分布,到达率为λ,那么两个顾客到达时间之间的时间间隔服从参数为λ的指数分布。
同样,假设顾客的服务时间服从指数分布,服务率为μ,那么两个顾客的服务时间之间的时间间隔服从参数为μ的指数分布。
根据排队论的基本原理,平均等待时间等于平均排队长度除以到达率。
平均排队长度可以通过利用排队论的公式计算得到。
在本题中,根据M/M/2模型,可以得到平均排队长度的公式为:Lq = λ^2 / (2μ(μ - λ))其中,Lq表示平均排队长度,λ表示到达率,μ表示服务率。
接下来,我们可以计算平均等待时间。
根据排队论的公式,平均等待时间等于平均排队长度除以到达率。
所以,平均等待时间的公式为:Wq = Lq / λ综上所述,我们可以通过计算得到平均等待时间和平均排队长度。
习题二:某餐厅有4个服务台,每个服务台的服务时间服从平均服务率为μ的指数分布,顾客到达时间服从平均到达率为λ的泊松分布。
求平均等待时间和平均排队长度。
解答:在这个问题中,我们可以使用M/M/4模型来求解。
根据M/M/4模型,平均排队长度的公式为:Lq = (λ/μ)^4 * (1/(4! * (1 - ρ)))其中,Lq表示平均排队长度,λ表示到达率,μ表示服务率,ρ表示系统繁忙度。
平均等待时间的公式为:Wq = Lq / λ通过计算可以得到平均等待时间和平均排队长度。
排队论_运筹学

排队论例1题目:某火车站的售票处设有一个窗口,若购票者是以最简单流到达,平均每分钟到达1人,假定售票时间服从负指数分布,平均每分钟可服务2人,试研究售票窗口前排队情况解:由题设λ=1(人/分),μ=2(人/分),ρ=λμ=12平均队长L=1ρρ-=1(人)平均等待队长Lq=21ρρ-=12(人)平均等待时间Wq=λμμ(-1)=12(分)平均逗留时间W=1μλ-=1(分)顾客不需要等待的概率为P o=12,等待的顾客人数超过5人的概率为P(N≥6)=1766666111111()(1)()()()()222222n n nnn n n nPρ-∞∞∞∞=====-===∑∑∑∑1例2题目:在某工地卸货台装卸设备的设计方案中,有三个方案可供选择,分别记作甲、乙、丙。
目的是选取使总费用最小的方案,有关费用(损失)如下表所示设货车按最简单流到达,平均每天(按10小时计算)到达15车,每车平均装货500袋,卸货时间服从负指数分布,每辆车停留1小时的损失为10元。
解:平均到达率λ=1.5车/小时,服务率μ依赖于方案μ甲=1000/500/袋小时袋车=2车/小时μ乙=2000/500/袋小时袋车=4车/小时μ丙=6000/500/袋小时袋车=12车/小时由(7.2.6),1辆车在系统内平均停留时间为W甲=12-1.5=2(小时/车)W乙=14-1.5=0.4(小时/车)W丙=112-1.5=0.095(小时/车)每天货车在系统停留的平均损失费为W⨯10⨯15,每天的实际可变费用(如燃料费等)为(可变操作费/天)⨯设备忙的概率=c p(元/天)而ρ甲=0.75 , ρ乙=0.375 , ρ丙=0.125,所以每个方案的费用综合如下表所示:23例3 题目:要购置计算机,有两种方案.甲方案是购进一大型计算机,乙方案是购置n 台小型计算机.每台小型计算机是大型计算机处理能力的1n设要求上机的题目是参数为λ的最简单流,大型计算机与小型计算机计算题目的时间是负指数分布,大型计算机的参数是μ.试从平均逗留时间、等待时间看,应该选择哪一个方案 解:设ρ=λμ,按甲方案,购大型计算机 平均等待时间 q W 甲=ρμρ(1-)=λμμλ(-)平均逗留时间 W 甲=1μλ- 按乙方案,购n 台小型计算机,每台小计算机的题目到达率为n λ,服务率为nμ, ρ=//n n λμ=λμ平均等待时间 W q 乙=nρμρ(1-)=n ρμρ(1-)=nW q 甲平均逗留时间 W 乙=1n nμλ-=n μλ-=nW 甲所以只是从平均等待时间,平均逗留时间考虑,应该购置大型计算机4例4题目:设船到码头,在港口停留单位时间损失c 1 元,进港船只是最简单流,参数为λ,装卸时间服从参数为μ的负指数分布,服务费用为c μ2,c 2是一个正常数.求使整个系统总费用损失最小的服务率μ 解:因为平均队长L λμλ=-,所以船在港口停留的损失费为1c λμλ-,服务费为c μ1,因此总费用为 1c F c λμμλ=+-2 求μ使F 达到最小,先求F 的导数12()c dF c d λμμλ=-+-2 让dF d μ=0,解出2μλ=因为 22F u μμ*=∂∂=22()c λμλ*-1>0 (μ>λ) 最优服务率是μ*,当μμ*=时, 12()[c F c c λμλ*=+5例5题目:一个理发店只有一个理发师,有3个空椅供等待理发的人使用,设顾客以最简单流来到,平均每小时5人,理发师的理发时间服从负指数分布,平均每小时6人.试求L ,q L ,W ,q W解:λ=5(人/小时) , μ=5(人/小时) , k =4 , 56ρ= 用公式(7.2.10),(7.2.11),(7.2.12),(7.2.13)得到565555[16()5()]666 1.9715[1()]66L -+==- 5555(1)[16()]66 1.97 1.2251()6q L -=+=- 55555()[1()]660.101()6P -==- 5(1)z LLW P λλ==-=1.9750.9=0.438(小时)0.271qq zL W λ==(小时)6例6题目:给定一个//1/M M k 系统,具有λ=10(人/小时), μ=30(人/小时),k =2.管理者想改进服务机构.方案甲是增加等待空间,使k =3.方案乙是将平均服务率提高到μ=40(人/小时),设服务每个顾客的平均收益不变,问哪个方案获得更大收益,当λ增加到每小时30人,又将有什么结果?解:由于服务每个顾客的平均收益不变,因此服务机构单位时间的收益与单位时间内实际进入系统的平均人数k n 成正比(注意,不考虑成本)!(1)(1)1k k k k n p λρλρ+-=-=- 方案甲:k=3, λ=10, μ=3033411()310[]11()3n -=-=9.75 方案乙: k=2, λ=10, μ=40223110(1())311()4n -=-=9.5 因此扩大等待空间收益更大 当λ增加到30人/小时时,λρμ==1.这时方案甲有3330()31n =+=22.5(人/小时) 而方案乙是把μ提高到μ=40人/小时. λρμ==3040<1, k=2 2233(1())430[]31()4n -=-=22.7(人/小时) 所以当λ=30人/小时时,提高服务效益的收益比扩大等待空间的收益大7例7题目:一个大型露天矿山,考虑建设矿山卸矿场,是建一个好呢?还是建两个好.估计矿车按最简单流到达,平均每小时到达15辆,卸车时间也服从负指数分布,平均卸车时间是3分钟,每辆卡车售价8万元,建设第二个卸矿场需要投资14万元解:平均到达率 λ=15(辆/小时) 平均服务率 μ=20(辆/小时) 只建一个卸矿场的情况:1ρρ==1520=0.75 在卸矿场停留的平均矿车数0,,,,,,q q q q p p L L W W λμL λμλ=-=152015-=3(辆)建两个卸矿场的情况:ρ=0.75,2μ=2λμ=0.375 2101220[10.75(0.75)]0.452!22015P -=++=- 220.451520(0.75)0.750.120.750.871!(22015)L +=+=+=-因此建两个卸矿场可减少在卸矿场停留的矿车数为:3-0.87=2.13辆.就是相当于平均增加2.13辆矿车运矿石.而每辆卡车的价格为8万元,所以相当于增加2.13⨯8=17.04万元的设备,建第二个卸矿场的投资为14万元,所以建两个卸矿场是合适的.8例8题目:有一个///M M c ∞系统,假定每个顾客在系统停留单位时间的损失费用为c 1元,每个服务设备单位时间的单位服务率成本为c 2元.要求建立几个服务台才能使系统单位时间平均总损失费用最小解:单位时间平均损失费为F c L c c μ=+12要求使F 达到最小的正整数解c *,通常用边际分析法:找正整数c *,使其满足{()(1)()(1)F c F c F c F c ****≤+≤-由()(1)F c F c **≤+,得到122()(1)(1)c L c c c c L c c c μμ****+≤+++所以 21()(1)c L c L c c μ**-+≤ 同样,由()(1)F c F c **≤-得到21(1)()c L c L c c μ**--≥因此c *必须满足不等式21()(1)c L c L c c μ**-+≤≤(1)()L c L c **-- 取c =1,2,…,计算()L c 与(1)L c +之差,若21c c μ落在()(1)L c L c **-+,(1)()L c L c **--之间,c *就是最优解9例9题目:某公司中心实验室为各工厂服务,设做实验的人数按最简单流到来.平均每天48(人次/天),1c =6(元).作实验时间服从负指数分布,平均服务率为μ=25(人次/天),2c =4(元),求最优实验设备c *,使系统总费用为最小. 解:λ= 48(人次/天),μ=25(人次/天),λμ=1.92 按///M M c ∞计算0P ,()L c 等(注意以下公式只对0 1.92cρ=<1成立). 201100(1.92)(1.92)[]!(1)!( 1.92)n P n c c ρ--==+--∑12(1.92)() 1.92(1)!( 1.92)c L c P c c +=+-- 将计算结果列成下表21c c μ=1006=16.67 所以取c *=3,总费用最小10例10题目:设有2个工人看管5台自动机,组成//2/5/5M M 系统,λ=1(次/运转小时),μ=4(次/小时),求平均停止运转机器数L 、平均等待修理数q L 以及每次出故障的平均停止运转时间W 、平均等待修理时间q W解:14λμ=,18c λμ=由(7.3.1),(7.3.2)有 0P =0.3149 1P =0.391 2P =0.197 由(7.3.3),(7.3.4)有 q L =0.118,L =1.094,c λ=3.906 由(7.3.5),(7.3.6)有W =0.28(小时),q W =0.03(小时)实际上,这些数量指标有表可查例11题目:设某厂有自动车床若干台,各台的质量是相同的,连续运转时间服从负指数分布,参数为λ,工人的技术也差不多,排除故障的时间服从负指数分布,参数为μ.设λμ=0.1,有两个方案.方案一:3个工人独立地各自看管6台机器.方案二,3个工人共同看管20台机器,试比较两个方案的优劣解:方案一.因为是分别看管,可以各自独立分析,是3个//1/6M M 系统.由上面的公式可求出01P -=0.5155,c =0.5155, a =5.155Lq =0.3295, L =0.845,(1)q =0.4845,(1)r =0.0549方案二.m =20,c =3,λμ=0.1,可求得c =1.787,a =17.87,q L =0.339 L =2.126,(3)q =0.4042,(3)r =0.01695机器损失系数,修理工人损失系数都小于方案一,所以方案二较好11例12题目:某露天铁矿山,按设计配备12辆卡车参加运输作业(每辆载重160吨,售价72万元),备用车8辆,要求保证同时有12辆车参加运输的概率不低于0.995.设每辆平均连续运输时间为3个月,服从负指数分布.有两个修理队负责修理工作,修理时间服从负指数分布.平均修复时间为5天.问这个设计是否合理.解:由假设知,这是////M M c m N m +系统,m =12,1λ=3,1μ=6(月)c =2我们有m c λμ=0.3333,c μλ=36用c N ≤的公式,求N ,要求00.995Nn n p =≥∑设N =2,有Nnn p=∑=0.9474,当N =3时,有Nnn p=∑=0.9968.所以3辆备用车就能达到要求,原设计用的备用车太多当N =3时,卡车的利用律(2)q =0.793712例13题目:假定例2.1中工人的到达服从泊松分布,λ=8人/小时,试分别计算1h 内到达4,5,6,…,12个工人的概率。
新人教版四年级数学上册合理安排时间、排队论练习题

新人教版四年级数学上册合理安排时间、排队论练习题1.XXX要学做炒鸡蛋,妈妈告诉她这道菜需要敲蛋(1分钟)、搅蛋(1分钟)、切葱(1分钟)、洗锅(2分钟)、烧热锅(2分钟)、烧热油(1分钟)和炒蛋(4分钟)。
我们如何合理安排时间呢?首先可以在敲蛋和搅蛋的时候同时切葱,这样可以节省1分钟。
接下来可以在切葱的时候开始烧锅,这样可以节省2分钟。
在烧锅的同时可以洗锅,这样可以节省2分钟。
当锅烧热后,可以开始烧油,这样可以节省1分钟。
最后炒蛋需要4分钟,所以总共需要9分钟。
2.一只平底锅只能煎两条鱼,煎一条鱼需要4分钟(正反面各2分钟)。
我们需要煎三条鱼,所以可以先煎两条鱼,这需要8分钟。
接着再煎第三条鱼,这需要再煎2分钟。
所以总共需要10分钟。
3.XXX、XXX、XXX三人各拿一只水桶去接水,水龙头给三只桶注满水所需的时间分别是4分钟、3分钟、1分钟。
现在只有一个水龙头可以接水,我们如何安排能使他们总的等候时间最短?我们可以先让XXX去接水,这需要1分钟。
接着XXX和XXX同时去接水,这需要4分钟。
所以总共需要5分钟。
4.妈妈要做鱼和米饭,杀鱼和洗鱼需要5分钟,烧鱼需要10分钟,淘米需要2分钟,做米饭需要15分钟。
我们可以在烧鱼的同时开始淘米,这样可以节省10分钟。
当鱼煮好后,可以开始做米饭,这需要15分钟。
所以总共需要32分钟。
5.XXX要帮妈妈做家务,需要用洗衣机洗衣服(20分钟)、扫地(10分钟)、整理书桌(10分钟)和晾衣服(5分钟)。
我们可以先把洗衣机开启,这需要20分钟。
在洗衣服的同时,可以开始扫地,这需要10分钟。
接着可以整理书桌,这需要10分钟。
最后晾衣服需要5分钟。
所以总共需要45分钟。
6.XXX需要完成上网查资料(10分钟)、打印资料(5分钟)、读英语故事(4分钟)和练口算(3分钟)四项作业。
我们可以先上网查资料和打印资料,这需要15分钟。
接着可以读英语故事,这需要4分钟。
最后练口算需要3分钟。
排队论习题及答案

《运筹学》第六章排队论习题1. 思考题(1)排队论主要研究的问题是什么;(2)试述排队模型的种类及各部分的特征;(3)Kendall 符号C B A Z Y X /////中各字母的分别代表什么意义;(4)理解平均到达率、平均服务率、平均服务时间和顾客到达间隔时间等概念; (5)分别写出普阿松分布、负指数分布、爱尔朗分布的密度函数,说明这些分布的主要性质;(6)试述队长和排队长;等待时间和逗留时间;忙期和闲期等概念及他们之间的联系与区别。
2.判断下列说法是否正确(1)若到达排队系统的顾客为普阿松流,则依次到达的两名顾客之间的间隔时间服从负指数分布;(2)假如到达排队系统的顾客来自两个方面,分别服从普阿松分布,则这两部分顾客合起来的顾客流仍为普阿松分布;(3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序,则第1、3、5、7,┉名顾客到达的间隔时间也服从负指数分布; (4)对1//M M 或C M M //的排队系统,服务完毕离开系统的顾客流也为普阿松流; (5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大量实际系统的统计研究,这样的假定比较合理;(6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后,系统将进入稳定状态;(7)排队系统中,顾客等待时间的分布不受排队服务规则的影响;(8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的平均等待时间少于允许队长无限的系统;(9)在顾客到达分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有关,当服务时间分布的方差越大时,顾客的平均等待时间就越长; (10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。
3.某店有一个修理工人,顾客到达过程为Poisson 流,平均每小时3人,修理时间服从负指数分布,平均需19分钟,求: (1)店内空闲的时间; (2)有4个顾客的概率; (3)至少有一个顾客的概率; (4)店内顾客的平均数; (5)等待服务的顾客数; (6)平均等待修理的时间;(7)一个顾客在店内逗留时间超过15分钟的概率。
(完整word版)《运筹学》_第六章排队论习题及_答案

《运筹学》第六章排队论习题转载请注明1. 思考题(1)排队论主要研究的问题是什么;(2)试述排队模型的种类及各部分的特征;(3)Kendall 符号C B A Z Y X /////中各字母的分别代表什么意义;(4)理解平均到达率、平均服务率、平均服务时间和顾客到达间隔时间等概念; (5)分别写出普阿松分布、负指数分布、爱尔朗分布的密度函数,说明这些分布的主要性质;(6)试述队长和排队长;等待时间和逗留时间;忙期和闲期等概念及他们之间的联系与区别。
2.判断下列说法是否正确(1)若到达排队系统的顾客为普阿松流,则依次到达的两名顾客之间的间隔时间服从负指数分布;(2)假如到达排队系统的顾客来自两个方面,分别服从普阿松分布,则这两部分顾客合起来的顾客流仍为普阿松分布;(3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序,则第1、3、5、7,┉名顾客到达的间隔时间也服从负指数分布; (4)对1//M M 或C M M //的排队系统,服务完毕离开系统的顾客流也为普阿松流; (5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大量实际系统的统计研究,这样的假定比较合理;(6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后,系统将进入稳定状态;(7)排队系统中,顾客等待时间的分布不受排队服务规则的影响;(8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的平均等待时间少于允许队长无限的系统;(9)在顾客到达分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有关,当服务时间分布的方差越大时,顾客的平均等待时间就越长; (10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。
3.某店有一个修理工人,顾客到达过程为Poisson 流,平均每小时3人,修理时间服从负指数分布,平均需19分钟,求: (1)店内空闲的时间; (2)有4个顾客的概率; (3)至少有一个顾客的概率; (4)店内顾客的平均数; (5)等待服务的顾客数; (6)平均等待修理的时间;(7)一个顾客在店内逗留时间超过15分钟的概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排队论习题1. 一个车间内有10台相同的机器,每台机器运行时每小时能创造4元的利润,且平均每小时损坏一次。
而一个修理工修复一台机器平均需4小时。
以上时间均服从指数分布。
设一名修理工一小时工资为6元,试求:(i )该车间应设多少名修理工,使总费用为最小;解:这个排队系统可以看成是有限源排队模型M/M/s/10,已知 11,0.25,4,104m λλμρμ====== 设修理工数为s ,由公式()()11010!!!!!!s m n n n n n s m m p m n n m n s s ρρ---==⎡⎤=+⎢⎥--⎣⎦∑∑()11001m q nn ss s s n q n n n L n s p L np L s p =--===-⎛⎫=++- ⎪⎝⎭∑∑∑ 目标函数为min 64s s L =+,用lingo 求解得到1s =,此时平均队长9.5s L =台,又因为当维修工数10s =时平均队长8s L =,说明此模型不合理。
对模型进行修正,由于要求顾客的平均到达率小于系统的平均服务率,才能使系统达到统计平衡。
所以假设一名修理工修复一台机器平均需0.5小时,即设2μ=。
用lingo 求解得维修工数3s =,平均队长,此时的最小费用为35.97元。
(1)程序:model:lamda=1;mu=2;rho=lamda/mu;m=10;load=m*rho;L_s=@pfs(load,s,m);lamda_e=lamda*(m-L_s);min=6*s+4*L_s;@gin(s);endLocal optimal solution found.Objective value: 35.97341Objective bound: 35.97341Infeasibilities: 0.1000005E-09Extended solver steps: 0Total solver iterations: 388Variable ValueLAMDA 1.000000MU 2.000000RHO 0.5000000M 10.00000LOAD 5.000000L_S 4.493352S 3.000000LAMDA_E 5.506648(ii)若要求不能运转的机器的期望数小于4台,则应设多少名修理工;L ,求得应设解:同上,用有限源排队模型求解,增加约束条件4s4名修理工。
程序:model:lamda=1;mu=2;rho=lamda/mu;m=10;load=m*rho;L_s=@pfs(load,s,m);lamda_e=lamda*(m-L_s);min =6*s+4*L_s;L_s<4;@gin (s);endLocal optimal solution found.Objective value: 38.85625Objective bound: 38.85625Infeasibilities: 0.000000Extended solver steps: 2Total solver iterations: 702Variable Value Reduced Cost LAMDA 1.000000 0.000000 MU 2.000000 0.000000 RHO 0.5000000 0.000000 M 10.00000 0.000000LOAD 5.000000 0.000000 L_S 3.714062 0.000000 S 4.000000 2.882840LAMDA_E 6.285938 0.000000(iii )若要求损坏机器等待修理的时间少于4小时,又应设多少名修理工。
解:同第一问解法相同,首先只增加约束条件4q q L W λ=<小时,求得8s L >,不合理。
因此再增加一个约束条件5s L <,解得等待时间为4小时,应设3名修理工。
程序model :lamda=1;mu=2;rho=lamda/mu;m=10;load=m*rho;L_s=@pfs (load,s,m);lamda_e=lamda*(m-L_s);L_q=L_s-(1-p_0);w_s=L_s/lamda_e;w_q=L_q/lamda_e;min =6*s+4*L_s;w_q<4;L_s<5;@gin(s);endLocal optimal solution found.Objective value: 35.97341Objective bound: 35.97341Infeasibilities: 0.1000005E-09Extended solver steps: 0Total solver iterations: 99Variable Value LAMDA 1.000000 MU 2.000000 RHO 0.5000000 M 10.00000 LOAD 5.000000 L_S 4.493352 S 3.000000 LAMDA_E 5.506648 L_Q 3.609552 P_0 0.1162004 W_S 0.8159868 W_Q 0.65548992. 到达某铁路售票处顾客分两类:一类买南方线路票,到达率为1λ/小时,另一类买北方线路票,到达率为2λ/小时,以上均服从泊松分布。
该售票处设两个窗口,各窗口服务一名顾客时间均服从参数10μ=的指数分布。
试比较下列情况时顾客分别等待时间:(i )两个窗口分别售南方票和北方票;(ii )每个窗口两种票均出售。
(分别比较122,4,6,8λλ==时的情形)解:(i )这一排队系统可以看成是一个单服务台等待制模型M /M /1/∞ 其中12λλ=,10μ=,12λλρμμ==由公式()()1212q W λλμμλμμλ==-- 用lingo 求解得到达率()12λλ=/小时平均等待时间/分钟 2 1.5 44 69 8 24程序model :s=1;lamda=2;mu=10;rho=lamda/mu;l_q=rho^2/(1-rho);w=l_q/lamda;w_q=w*60;end解:(ii )这一排队系统可以看成多服务台等待制模型(M /M / s /∞)其中122λλ==,平均服务率120.50.52λλλ=+=,10μ=,20.210λρμ=== 由公式()()()0,!1,1s s s q s q q c s p s c s L L W ρρρρρρλ=-=-=用lingo 求解得到达率()12λλ=/小时平均等待时间/秒 2 3.6364 415 635.6044 8 68.5714程序model :s=2;lamda_1=4;lamda_2=4;mu=10;lamda=1/2*lamda_1+1/2*lamda_2; rho=lamda/mu;rho_s=rho/s;P_wait=@peb (rho,s);p0=2*(1-rho_s)/rho^2*P_wait;L_q=P_wait*rho_s/(1-rho_s);W_q=L_q/lamda*60*60;end3. 一名修理工负责5台机器的维修,每台机器平均每2h 损坏一次,又修理工修复一台机器平均需时18.75min ,以上时间均服从负指数分布。
试求:(1)所有机器均正常运转的概率;(2)等待维修的机器的期望数;(3)假如希望做到有一半时间所有机器都正常运转,则该修理工最多看管多少台机器。
(4)假如维修工工资为8元/h ,机器不能正常运转时的损失为40/h ,则该修理工看管多少台机器较为经济合理。
解:这个排队系统可以看成是有限源等待模型M/M/1/5 已知11260120λ==⨯,118.75μ=, ,5m λρμ== (1)(2)由公式 ()()10001!!1m n n m q n m p m n L n p ρ-==⎡⎤=⎢⎥-⎣⎦=-∑∑用lingo 求解得所有机器均正常运转的概率为0.3874,等待维修的机器的期望数为0.4670(1)(2)model :lamda=1/(2*60);mu=1/18.75;rho=lamda/mu;s=1;m=5;load=m*rho;L_s=@pfs(load,s,m);p_0=1-(m-L_s)*rho;lamda_e=lamda*(m-L_s);L_q=L_s-(1-p_0);end结果:Variable ValueLAMDA 0.8333333E-02MU 0.5333333E-01RHO 0.1562500S 1.000000M 5.000000LOAD 0.7812500L_S 1.079549P_0 0.3874295LAMDA_E 0.3267042E-01 L_Q 0.4669786(3)在上述基础上,增加目标函数、约束条件00.5p解得假如希望做到有一半时间所有机器都正常运转,则该修理工最多看管3台机器。
程序model:lamda=1/(2*60);mu=1/18.75;rho=lamda/mu;s=1;load=m*rho;L_s=@pfs(load,s,m);p_0=1-(m-L_s)*rho;max=m;p_0>1/2;@gin(m);endLocal optimal solution found.Objective value: 3.000000Objective bound: 3.000000Infeasibilities: 0.000000Extended solver steps: 1Total solver iterations: 288Variable Value Reduced Cost LAMDA 0.8333333E-02 0.000000 MU 0.5333333E-01 0.000000 RHO 0.1562500 0.000000 S 1.000000 0.000000 LOAD 0.4687500 0.000000 M 3.000000 -1.000000 L_S 0.5069116 0.000000 P_0 0.6104549 0.000000(4)model:lamda=1/(2*60);mu=1/18.75;rho=lamda/mu;s=1;load=m*rho;L_s=@pfs(load,s,m);min=40*L_s+8*mu;@gin(m);@bnd(1,m,5);end结果:Objective value: 5.832072 Variable Value Reduced CostLAMDA 0.8333333E-02 0.000000MU 0.5333333E-01 0.000000RHO 0.1562500 0.000000S 1.000000 0.000000LOAD 0.1562500 34.59459M 1.000000 0.000000L_S 0.1351351 0.000000。