圆自我测试题
《圆》基础测试(含答案)

《圆》基础测试一、选择题(每题2分,共20分)1.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有………………()(A)4个(B)3个(C)2个(D)1个2.下列判断中正确的是…………………………………………………………()(A)平分弦的直线垂直于弦;(B)平分弦的直线也必平分弦所对的两条弧(C)弦的垂直平分线必平分弦所对的两条弧(D)平分一条弧的直线必平分这条弧所对的弦3.如图,在两半径不同的同心圆中,∠AOB=∠A′OB′=60°,则…………()(A )=(B )>(C )的度数=的度数(D )的长度=的长度4.如图,已知⊙O的弦AB、CD相交于点E ,的度数为60°,的度数为100°,则∠AEC等于……………………………………………………………()(A)60°(B)100°(C)80°(D)130°5.圆内接四边形ABCD中,∠A、∠B、∠C的度数比是2︰3︰6,则∠D的度数是()(A)67.5°(B)135°(C)112.5°(D)110°6.OA平分∠BOC,P是OA上任一点,C不与点O重合,且以P为圆心的圆与OC 相离,那么圆P与OB的位置关系是………………………………………()(A)相离(B)相切(C)相交(D)不确定7.△ABC的三边长分别为a、b、c,它的内切圆的半径为r,则△ABC的面积为()(A )21(a +b +c )r (B )2(a +b +c ) (C )31(a +b +c )r (D )(a +b +c )r 8.如图,已知四边形ABCD 为圆内接四边形,AD 为圆的直径,直线MN 切圆于点B ,DC 的延长线交MN 于G ,且cos ∠ABM =23,则tan ∠BCG 的值为……( ) (A )33 (B )23 (C )1 (D )39.在⊙O 中,弦AB 和CD 相交于点P ,若P A =3,PB =4,CD =9,则以PC 、PD 的长为根的一元二次方程为…………………………………………………( )(A )x 2+9 x +12=0 (B )x 2-9 x +12=0(C )x 2+7 x +9=0 (D )x 2-7 x +9=010.已知半径分别为r 和2 r 的两圆相交,则这两圆的圆心距d 的取值范围是…( )(A )0<d <3 r (B )r <d <3 r (C )r ≤d <3 r (D )r ≤d ≤3 r三、填空题(每题2分,共20分)11.某公园的一石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为_____.12.如图,已知AB 为⊙O 的直径,∠E =20°,∠DBC =50°,则∠CBE =______.13.圆内接梯形是_____梯形,圆内接平行四边形是_______..14.如图,AB、AC是⊙O的切线,将OB延长一倍至D,若∠DAC=60°,则∠D=_____.15.如图,BA与⊙O相切于B,OA与⊙O相交于E,若AB=5,EA=1,则⊙O 的半径为______.16.已知两圆的圆心距为3,半径分别为2和1,则这两圆有______条公切线.17.正八边形有_____条对称轴,它不仅是______对称图形,还是_____对称图形.18.边长为2 a的正六边形的面积为______.19.扇形的半径为6 cm,面积为9 cm2,那么扇形的弧长为______,扇形的圆心角度数为_____.20.用一张面积为900 cm2的正方形硬纸片围成一个圆柱的侧面,则这个圆柱的底面直径为_____.三、判断题(每题2分,共10分)21.相交两圆的公共弦垂直平分连结这两圆圆心的线段………………………()22.各角都相等的圆内接多边形是正多边形……………………………………()23.正五边形既是轴对称图形,又是中心对称图形……………………………()24.三角形一定有内切圆…………………………………………………………()25.平分弦的直径垂直于弦………………………………………………………()四、解答题:(共50分)26.(8分)如图,⊙O的直径AB和弦CD相交于点E,且AE=1 cm,EB=5 cm,∠DEB=60°,求CD的长.27.(8分)如图,AB 为⊙O 的直径,P 为BA 的延长线上一点,PC 切⊙O 于点C ,CD ⊥AB ,垂足为D ,且P A =4,PC =8,求tan ∠ACD 和sin ∠P 的值.28.(8分)如图,已知ABCD 是圆内接四边形,EB 是⊙O 的直径,且EB ⊥AD ,AD与BC 的延长线交于F ,求证FD AB =DCBC .29.(12分)已知:如图,⊙O 1与⊙O 2内切于点P ,过点P 的直线交⊙O 1于点D ,交⊙O 2于点E ;DA 与⊙O 2相切,切点为C .*(1)求证PC 平分∠APD ;(2)若PE =3,P A =6,求PC 的长.30.(14分)如图,⊙O 是以AB 为直径的△ABC 的外接圆,点D 是劣弧的中点,连结AD 并延长,与过C 点的切线交于P ,OD 与BC 相交于点E .(1)求证OE =21AC ; (2)求证:AP DP =22AC BD ;(3)当AC =6,AB =10时,求切线PC 的长.参考答案1.【提示】若三点在一条直线上,则不能作出过这三点的圆,故②不对.【答案】B .【点评】本题考查直径、过不在同一条直线上的三点的圆、外心、等圆与等弧等概念,其中第②个命题不对的原因在于忽视了过三点作图的条件.2.【提示】弦的垂直平分线平分弦、垂直于弦,因此平分弦所对的两条弧.【答案】C .3.【提示】因为在圆中,圆心角的度数与它所对的弧的度数相等,而∠AOB =∠A ′OB ′,所以的度数=的度数.【答案】C .4.【提示】连结BC ,则∠AEC =∠B +∠C =21×60°+21×100°=80°.【答案】C .5.【提示】因为圆内接四边形的对角之和为180°,则∠A +∠C =∠B +∠D =180°.又因为∠A ︰∠B ︰∠C =2︰3︰6,所以∠B ︰∠D =3︰5,所以∠D 的度数为85×180°=112.5°.【答案】C .6.【提示】因为以点P 为圆心的圆与OC 相离,则P 到OC 的距离大于圆的半径.又因为角平分线上的一点到角的两边的距离相等,则点P 到OB 的距离也大于圆的半径,故圆P 与OB 也相离.【答案】A .7.【提示】连结内心与三个顶点,则△ABC 的面积等于三个三角形的面积之和,所以△ABC 的面积为21a ·r +21b ·r +21c ·r =21(a +b +c )r .【答案】A 8.【提示】连结BD ,则∠ABM =∠ADB .因为AD 为直径,所以∠A +∠ADB =90°,所以cos ∠ABM =23=cos ∠ADB =sin A ,所以∠A =60°.又因四边形ABCD 内接于⊙O ,所以∠BCG =∠A =60°.则tan ∠BCG =3.【答案】D .9.【提示】设PC 的长为a ,则PD 的长为(9-a ),由相交弦定理得3×4=a ·(9-a ).所以a 2-9 a +12=0,故PC 、PD 的长是方程x 2-9 x +12=0的两根.【答案】B .10.【提示】当两圆相交时,圆心距d 与两圆半径的关系为2 r -r <d <2 r +r ,即r <d <3 r .【答案】B .11.【提示】如图,AB 为弦,CD 为拱高,则CD ⊥AB ,AD =BD ,且O 在CD 的延长线上.连结OD 、OA ,则OD =22AD OA -=221213-=5(米).所以CD =13-5=8(米). 【答案】8米.12.【提示】连结AC .设∠DCA =x °,则∠DBA =x °,所以∠CAB =x °+20°.因为AB 为直径,所以∠BCA =90°,则∠CBA +∠CAB =90°.又 ∠DBC =50°,∴ 50+x +(x +20)=90.∴ x =10.∴ ∠CBE =60°.【答案】60°.13.【提示】因平行弦所夹的弧相等,等弧所对的弦相等,所以圆内接梯形是等腰梯形.同理可证圆内接平行四边形是矩形.【答案】等腰,矩形.14.【提示】连结OA .∵ AB 、AC 是⊙O 的切线,∴ AO 平分∠BAC ,且OB ⊥AB .又 OB =BD ,∴ OA =DA .∴ ∠OAB =∠DAB .∴ 3∠DAB =60°.∴ ∠DAB =20°.∴ ∠D =70°15.【提示】延长AO ,交⊙O 于点F .设⊙O 的半径为r .由切割线定理,得AB 2=AE ·AF .∴ (5)2=1·(1+2 r ).∴ r =2.【答案】2.16.【提示】因为圆心距等于两圆半径之和,所以这两圆外切,故有两条外公切线,一条内公切线.【答案】3.17.【提示】正n 边形有n 条对称轴.正2n 边形既是轴对称图形,又是中心对称图形.【答案】8,轴,中心.18.【提示】把正六边形的中心与六个顶点连结起来,所得六个等边三角形全等.每个等边三角形的面积为43·(2 a )2=3a 2,所以正六边形的面积为63a 2 19.【提示】已知扇形面积为9 cm 2,半径为6 cm ,则弧长l =692⨯=3;设圆心角的度数为n ,则1806π⋅n =3 cm ,所以n =π90.【答案】3;π90︒. 20.【提示】面积为900 cm 2的正方形的边长为30 cm ,则底面圆的周长30 cm .设直径为d ,则πd =30,故d =π30(cm ).【答案】π30 cm . 21.【答案】×.【点评】相交两圆的连心线垂直平分公共弦,反过来公共弦不一定平分连结两圆圆心的线段.22.【答案】×.【点评】矩形内接于以对角线为直径的圆,但它不是正多边形.23.【答案】×.【点评】正五边形是轴对称图形,但不是中心对称图形.24.【答案】√.【点评】作三角形的两条角平分线,设交点为I ,过I 作一边的垂线段,则以点I 为圆心,垂线段长为半径的圆即三角形的内切圆.25.【答案】×. 【点评】当被平分的弦为直径时,两直径不一定垂直. 26.【分析】因为AE =1 cm ,EB =5 cm ,所以OE =21(1+5)-1=2(cm ).在Rt △OEF 中可求EF 的长,则EC 、ED 都可用DF 表示,再用相交弦定理建立关于DF 的方程,解方程求DF 的长.【略解】∵ AE =1 cm ,BE =5 cm ,∴ ⊙O 的半径为 3 cm .∴ OE =3-1=2(cm ).在Rt △OEF 中,∠OEF =60°,∴ EF =cos 60°·OE =21·2=1(cm ). ∵ OF ⊥CD ,∴ FC =FD .∴ EC =FC -FE =FD -FE ,ED =EF +FD . 即 EC =FD -1,ED =FD +1.由相交弦定理,得 AE ·EB =EC ·ED .∴ 1×5=(FD -1)(FD +1).解此方程,得 FD =6(负值舍去).∴ CD =2FD =26(cm ).27.【提示】连结CB ,易证△PCA ∽△PBC ,所以BC AC =PB PC . 由切割线定理可求PB 的长,所以tan ∠ACD =tan ∠CBA =BC AC =PBPC . 连结OC ,则在Rt △OCP 中可求sin ∠P 的值.【略解】连结OC 、BC .∵ PC 为⊙O 的公切线,∴ PC 2=P A ·PB .∴ 82=4·PB .∴ PB =16.∴ AB =16-4=12.易证△PCA ∽△PBC .∴ BC AC =PBPC . ∵ AB 为⊙O 的直径,∴ ∠ACB =90°.又 CD ⊥AB ,∴ ∠ACD =∠B .∴ tan ∠ACD =tan B =BC AC =PB PC =168=21. ∵ PC 为⊙O 的切线,∴ ∠PCO =90°.∴ sin P =PO OC =106=5328.【提示】连结AC ,证△ABC ∽△FDC . 显然∠FDC =∠ABC .因为AD ⊥直径EB ,由垂径定理得=,故∠DAB =∠ACB .又因为∠FCD =∠DAB ,所以∠FCD =∠ACB ,故△ABC ∽△FDC ,则可得出待证的比例式.【略证】连结AC .∵ AD ⊥EB ,且EB 为直径,∴=. ∴ ∠ACB =∠DAB .∵ ABCD 为圆内接四边形,∴ ∠FCD =∠DAB ,∠FDC =∠ABC .∴ ∠ACB =∠FCD .∴ △ABC ∽△FDC .∴ FD AB =DCBC 29.【提示】(1)过点P 作两圆的公切线PT ,利用弦切角进行角的转换;在(2)题中,可通过证△PCA ∽△PEC ,得到比例式PE PC =PCPA ,则可求PC . *(1)【略证】过点P 作两圆的公切线PT ,连结CE .∵ ∠TPC =∠4,∠3=∠D .∴ ∠4=∠D +∠5,∴ ∠2+∠3=∠D +∠5.∴ ∠2=∠5.∵ DA 与⊙O 相切于点C ,∴ ∠5=∠1.∴ ∠1=∠2.即PC 平分∠APD .(2)【解】∵ DA 与⊙O 2相切于点C ,∴ ∠PCA =∠4.由(1),可知∠2=∠1.∴ △PCA ∽△PEC .∴ PE PC =PCPA .即 PC 2=P A ·PE . ∵ PE =3,P A =6,∴ PC 2=18.∴ PC =32.30.【提示】(1)因为AO =BO ,可证OE 为△ABC 的中位线,可通过证OE ∥AC 得到OE 为中位线;(2)连结CD ,则CD =BD ,可转化为证明AP DP =22AC CD .先证△PCD ∽△P AC ,得比例式AC CD =PCPD ,两边平方得22AC CD =22PC PD ,再结合切割线定理可证得22AC CD =PA PD PD ⋅2=PA PD ;(3)利用(2)可求DP 、AP ,再利用勾股定理、切割线定理可求出PC 的长.(1)【略证】∵ AB 为直径,∴ ∠ACB =90°,即 AC ⊥BC .∵ D 为的中点,由垂径定理,得OD ⊥BC .∴ OD ∥AC .又∵ 点O 为AB 的中点,∴ 点E 为BC 的中点. ∴ OE =21AC . *(2)【略证】连结CD .∵ ∠PCD =∠CAP ,∠P 是公共角,∴ △PCD ∽△P AC .∴ PC PD =ACCD . ∴ 22PCPD =22AC CD .又 PC 是⊙O 的切线,∴ PC 2=PD ·DA . ∴ PA PD PD ⋅2=22ACCD , ∴ PA PD =22AC CD .∵ BD =CD ,∴ PA PD =22AC BD . (3)【略解】在Rt △ABC 中,AC =6,AB =10,∴ BC =22610-=8.∴ BE =4.∵ OE =AC 21=3,∴ ED =2.则在Rt △BED 中,BD =22BE ED +=25, 在Rt △ADB 中,AD =22BD AB -=45.∵ AC PD =22ACBD , ∴ 54+PD PD =3620.解此方程,得 PD =55,AP =95.又 PC 2=DP ·AP , ∴ PC =5955 =15.。
圆的认识同步训练及测试题

数学学科 九年级 编辑 叶子圆的认识同步训练圆的基本元素同步训练 一:判断正误⑴弦的垂直平分线必过圆心; ⑵平分弦的直径垂直于弦; ⑶直径相等的两圆是等圆; ⑷长度相等的两条弧是等弧;⑸ 圆中最大的弦是通过圆心的弦;⑹一条弦把圆分为两条弧,这两条弧不可能相等; ⑺ 半径是弦,弦是半径; ⑻ 相等的弦所对的弧相等; 二:选择若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为a ,最小距离为b(a>b),则此圆的半径为( )A 、2a b +B 、 2a b -C 、 2a b +或2a b -D 、 a +b 或a -b三:解答题1 .用一根长为a 米的绳子,围成一个圆或正三角形或正方形,所围成的图形哪一个面积最大?2.已知☉O 的半径是5,AB 是弦,P 是直线AB 上的一点,PB=3,AB=8求tan ∠OPA 圆的基本元素同步训练答案一:判断正误 分析: 准确判断的前提是建立在对概念的正确理解上。
同学们一定要过好概念关!解: ⑴ ⑶ ⑸正确,其他错误 二:选择题C三:解答题 1:圆的面积最大2:分析:本题分两种情况讨论:P 是线段AB 上一点或P 是线段AB 外的一点。
解: ⑴ P 是线段AB 上一点, 如图过点O 作OC ⊥AB ,垂足为C 则OC 垂直平分∴在直角△OAC 中 OC=1625-在直角△POC 中 tan ∠OPA=PCOC= 3⑵P 是线段AB 外的一点, 如图过点O 作OC ⊥AB ,垂足为C 同法解得tan ∠OPA=PC OC =73圆的对称性同步训练一、选择题:1、下列命题中正确的是( )A 、平分弦的直径必垂直于弦,并且平分弦所对的两条弧;(23-1)(23-2)B 、弦所对的两条弧的中点连线垂直平分弦;C 、若两段弧的度数相等,则它们是等弧;D 、弦的垂线平分弦所对的弧。
2、如图,⊙O 中,直径CD =15cm ,弦AB ⊥CD 于点M ,OM ∶MD =3∶2,则AB 的长是( )A 、5cmB 、7cmC 、12cmD 、15cm3、已知⊙O 的半径为10cm ,弦AB ∥CD ,AB =12 cm ,CD =16 cm , 则AB 和CD 的距离是( )A 、2cmB 、14cmC 、2cm 或14cmD 、2cm 或12cm4、若圆中一弦与弦高之和等于直径,弦高长为1,则圆的半径长为( )A 、1B 、23 C 、2 D、25二、填空题:1.已知在⊙O 中弦AB 的长为8cm ,圆心到AB 的距离为3cm ,则⊙O 的半径为 cm 。
圆测试题及答案

圆测试题及答案题一:判断题1. 圆的直径是其半径的两倍。
( )2. 圆心角是由一条弦所对应的圆心的角度。
( )3. 弧度制是一种角度的衡量单位。
( )4. 圆周率的值是3.1415。
( )5. 弧长公式为l = 2πr。
( )答案:1. 错误。
圆的直径是其半径的两倍。
2. 正确。
圆心角是由一条弦所对应的圆心的角度。
3. 正确。
弧度制是一种角度的衡量单位。
4. 错误。
圆周率的值是π(约等于3.1415)。
5. 错误。
弧长公式为l = πr。
题二:选择题1. 下列哪一个是圆的特征?a) 三条边相等的平面图形b) 椭圆c) 无穷延伸的闭合曲线d) 矩形2. 弧长公式l = 2πr中,l代表的是什么?a) 圆的半径b) 圆的直径c) 圆的弧长d) 圆的面积3. 下列哪一个不是圆的元素?a) 圆周b) 半径c) 弦d) 直角答案:1. c) 无穷延伸的闭合曲线2. c) 圆的弧长3. d) 直角题三:计算题1. 已知一个圆的半径为8cm,求其直径、周长和面积分别是多少?(取π约等于3.14)2. 已知一个圆的直径为12cm,求其半径、周长和面积分别是多少?(取π约等于3.14)答案:1. 直径 = 2 ×半径 = 2 × 8cm = 16cm周长= 2π × 半径= 2 × 3.14 × 8cm ≈ 50.24cm面积= π × 半径² = 3.14 × 8cm² ≈ 201.06cm²2. 半径 = 直径 ÷ 2 = 12cm ÷ 2 = 6cm周长 = 2π × 半径= 2 × 3.14 × 6cm ≈ 37.68cm面积= π × 半径² = 3.14 × 6cm² ≈ 113.04cm²通过以上圆的测试题,我们可以巩固对圆的基本概念和计算方法的理解。
圆的认识测试题

圆的认识测试题在数学的世界里,圆是一种极其重要的形状,它涉及到许多基本的几何概念和深奥的数学原理。
为了更好地理解圆的认识,以下是一份测试题:C.圆的一个边的中心到另一个边的中心的夹角一个圆的直径是6厘米,它的半径是____厘米。
一个圆的半径是4厘米,它的直径是____厘米。
解释为什么一个圆的所有半径都相等,以及这个性质在现实生活中有哪些应用。
如果一个圆的面积是25π平方厘米,那么它的半径是多少厘米?以上这份测试题,可以帮助大家复习和巩固关于圆的知识,检测大家对圆的认识和理解程度。
如果20只兔子可以换2只羊,8只羊可以换2头猪,那么,用100只兔子可以换多少头猪?答案:100只兔子=50只羊,50只羊=25头猪。
所以,用100只兔子可以换25头猪。
一个长方形的长和宽之比为4:3,如果长增加2厘米,宽增加3厘米,则面积增加54平方厘米,那么原来长方形的周长是( )厘米。
答案:设原长方形的长为4x厘米,宽为3x厘米。
根据题意,得方程(4x+2)×(3x+3)=4x×3x+54,解得x=3,所以原长方形的周长为(4×3+3×3)×2=42厘米。
小华的零花钱是100元,比小明的零花钱多2倍。
小明的零花钱是()元。
答案:根据题意,小华的零花钱是小明的零花钱的2倍多,因此小明的零花钱是100÷(2+1)=100÷3≈33(元)。
故选A。
小华和小明同时从学校出发,向相反方向行走。
小华的速度是每小时5千米,小明的速度是每小时4千米。
经过3小时后,他们之间的距离是多少千米?答案:根据题意,小华和小明同时从学校出发,向相反方向行走。
小华的速度是每小时5千米,小明的速度是每小时4千米。
经过3小时后,他们之间的距离为(5+4)×3=27千米。
圆中心的那个点叫做圆的( ),用字母( )表示。
连接圆心到圆上任意一点的线段叫做圆的( ),用字母( )表示。
《圆》单元测试

(一)课题:第一单元圆的测试题1.请写出元的直径和半径的关系(用字母表示):2.圆的周长公式用字母表示为(1)(2)3.圆的面积公式用字母表示为:4.求出下列圆的周长和面积:直径为20cm 半径为4dm 直径为80mm 半径3m周长:面积:1.画一个半径是1.5厘米的圆。
(1)用字母标出圆心、半径和直径(2)画出它的一条对称轴2.计算3.14×2= 3.14×5= 3.14×4= 3.14×6=3.14×8= 3.14×3= 3.14×9= 3.14×7=2.日本富士山是世界最著名的火山之一,底座直径约40千米,富士山的占地面积约是多少平方千米?3.天坛公园中的回音壁呈圆形。
它的内圆半径是32.5米,周长是多少米?4.一粒小石子投到平静的水中,水波大约可传5米;一片落叶掉到水中,水波大约可传1米。
哪种物体产生的水波面积大?大多少?5.餐厅有两种圆桌,小圆桌桌面直径是1.6米,是大圆桌的4/5。
(1)小圆桌与大圆桌周长比是多少?(2)大圆桌面积比小圆桌大约大多少平方米?(得数保留两位小数)6.一个圆形花坛,原来直径是15米,扩建后的直径与原来的比是4:3.扩建后花坛的周长和面积各是多少?(二)新青岛版(五四制)小学五年级下册数学完美的图形圆的综合测试题一、填空1.一个圆形桌面的直径是 2米,它的面积是()平方米。
2.已知圆的周长c,求d=(),求r=()。
3.圆的半径扩大2倍,直径就扩大()倍,周长就扩大()倍,面积就扩大()倍。
4.用圆规画一个周长50.24厘米的圆,圆规两脚尖之间的距离应是()厘米,画出的这个圆的面积是()平方厘米。
5.大圆半径是小圆半径的4倍,大圆周长是小圆周长的()倍,小圆面积是大圆面积的()。
6.一个半圆的周长是20.56分米,这个半圆的面积是()平方分米。
7.在一个面积是16平方厘米的正方形内画一个最大的圆,这个圆的面积是()平方厘米;再在这个圆内画一个最大的正方形,正方形的面积是()平方厘米。
圆测试题及答案

圆测试题及答案1. 圆的定义是什么?A. 所有点到一个点距离相等的平面图形B. 所有点到一条线距离相等的平面图形C. 所有点到一个点距离不等的平面图形D. 所有点到一条线距离不等的平面图形2. 圆的周长公式是什么?A. C = 2πrB. C = πdC. C = 2rD. C = d3. 圆的面积公式是什么?A. A = πr²B. A = 2πrC. A = πd²D. A = 2d4. 圆的半径和直径的关系是什么?A. 半径是直径的一半B. 直径是半径的两倍C. 半径是直径的三倍D. 直径是半径的三倍5. 已知圆的半径为5厘米,求圆的周长和面积。
A. 周长:10π厘米,面积:25π平方厘米B. 周长:10π厘米,面积:50π平方厘米C. 周长:20π厘米,面积:25π平方厘米D. 周长:20π厘米,面积:50π平方厘米6. 圆的切线与半径在切点处的关系是什么?A. 切线垂直于半径B. 切线平行于半径C. 切线与半径成45度角D. 切线与半径成90度角7. 圆的内接四边形的对角线的性质是什么?A. 对角线相等B. 对角线垂直C. 对角线平行D. 对角线相交于一点8. 圆的外接圆的性质是什么?A. 所有点到圆心的距离相等B. 所有点到圆心的距离不等C. 所有点到圆心的距离是半径的两倍D. 所有点到圆心的距离是半径的一半9. 如果一个圆的直径增加了10%,那么它的面积增加了多少百分比?A. 10%B. 21%C. 31.6%D. 50%10. 圆的弧长公式是什么?A. L = rθB. L = r sin(θ)C. L = r cos(θ)D. L = 2πrθ答案1. A2. A3. A4. B5. D6. A7. B8. A9. B10. A。
圆的有关性质测试题
圆有关的性质测试题一、选择题1、如右图,⊙O 的半径OA 等于5,半径OC ⊥AB 于点D ,若OD =3,则弦AB 的长为( ) A 、10B 、8C 、6D 、4二、如图,⊙O 的弦AB =8,M 是AB 的中点,且OM =3,则⊙O 的半径等于( ) A .8 B .4 C .10 D .53、若⊙O 的半径为5cm ,点A 到圆心O 的距离为4cm ,那么点A 与⊙O 的位置关系是( ) A.点A 在圆外 B. 点A 在圆上 C. 点A 在圆内 D.不能肯定4、如图,已知⊙O 是正方形ABCD 的外接圆,点E 是AD 上任意一点,则∠BEC 的度数为 ( ) A. 30° B. 45°C. 60°D. 90°五、如图,AB 是⊙O 的直径,AB =4,AC 是弦,AC =23,∠AOC 为( )A .120° B.130C .140°D .150°六、如图,⊙O 的半径为5,若OP =3,,则通过点P 的弦长可能是 ( )A .3B .6C .9D .12 7、如图,AB 为⊙O 的直径,AC 交⊙O 于E 点,BC 交⊙O 于D 点,CD =BD ,∠C=70°,现给出以下四个结论: ① ∠A=45°; ②AC=AB ;③ ; ④CE·AB=2BD 2其中正确结论的个数为 ( )A .1个B .2个C .3个D .4个八、如图,AB 是⊙O 的直径,点D 在AB 的延长线上,DC 切⊙O 于C ,若25A =∠.则D ∠等于( ) A .20 B .30 C .40 D .50九、如右图,已知圆的半径是5,弦AB 的长是6,则弦AB 的弦心距是( )A .3B .4C .5D .810、如图,AB 是⊙O 的直径,CD 为弦,AB CD ⊥于E ,则下列结论中不.成立的是( ) A.∠A ﹦∠D B.CE ﹦DE C.∠ACB ﹦90°D .CE ﹦BD11、如图,半径为10的⊙O 中,弦AB 的长为16,则这条弦的弦心距为( )O P(第5题)︵ ︵ AE =(A )6 (B )8 (C )10 (D )12二、填空题1、已知⊙O 的半径为6cm ,弦AB 的长为6cm ,则弦AB 所对的圆周角的度数是 _____.二、如第18题图,已知过D 、A 、C 三点的圆的圆心为E ,过B 、E 、F 三点的圆的圆心为D ,若是∠A =63 º,那么∠B = º.3、如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且CO =CD ,则∠PCA = °.4、如图,AB 为⊙O 的直径,弦CD ⊥AB ,E 为BC 上一点,若∠CEA=28,则∠ABD=°.五、一条弦把圆分成2:3两部份,那么这条弦所对的圆周角的度数为__________. 六、如图,点A 、B 、C 在圆O 上,且040BAC ∠=,则BOC ∠= .7、如图,⊙O 的半径OA =5cm ,弦AB =8cm ,点P 为弦AB 上一动点,则点P 到圆心O 的最短距离是 cm .八、若是一边长为20cm 的等边三角形硬纸板恰好能不受损地从用铁丝围成的圆形铁圈中穿过,那么铁圈直径的最小值为 cm (铁丝粗细忽略不计). 三、解答题1、如图,在Rt ABC △中,90C ∠=,BE 平分ABC ∠交AC 于点E ,点D 在AB 边上且DE BE ⊥. (1)判断直线AC 与DBE △外接圆的位置关系,并说明理由; (2)若662AD AE ==,,求BC 的长.C(第1题)BDAEOAPB第17题图二、如图,BC 是⊙O 的直径,AD ⊥CD ,垂足为D ,AC 平分∠BCD ,AC =3,CD =1,求⊙O 的半径.3、已知A 、B 、C 是半径为2的圆O 上的三个点,其中点A 是弧BC 的中点,连接AB 、AC ,点D 、E 别离在弦AB 、AC 上,且知足AD =CE .(1)求证:OD =OE ;(2)连接BC ,当BC =22时,求∠DOE 的度数.4、如图,AB 是⊙O 的直径,点A 、C 、D 在⊙O 上,过D 作PF ∥AC 交⊙O 于F 、交AB 于E , 且∠BPF =∠ADC .(1)判断直线BP 和⊙O 的位置关系,并说明你的理由; (2)当⊙O 的半径为5,AC =2,BE =1时,求BP 的长.ODCBAE OD CBAPO ED CBA五、如图,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若⊙O的半径32r=,2AC=,AB=BC求AB长度。
心理学画圆测试题及答案
心理学画圆测试题及答案心理学画圆测试是一种常见的心理测评方法,通过被试者绘制圆形的方式,可以反映其个人内在特征和心理状态。
下面是一些常见的心理学画圆测试题及其答案,供大家参考。
1. 请你画一个圆。
答案:此题并没有固定的标准答案,被试者可以根据自己的想象和感受绘制一个符合自己想法的圆。
画圆的形状、大小、粗细等可以因个人差异而有所不同。
2. 请你在画布上画两个圆。
答案:同样地,此题没有特定的正确答案,个体的回答也会有所不同。
可能有人会画两个大小相等的圆,也可能有人画两个大小不同的圆,这些都是被试者根据自己的感受和认知所做出的选择。
3. 请你绘制一个大圆和两个小圆。
答案:这道题也是开放性问题,没有固定的标准答案。
被试者可以自由发挥,绘制自己理解的大圆和两个小圆。
大圆和小圆的关系可以是大小不同、位置相对等,具体形态取决于被试者的个人想法。
4. 请你画一个圆并将其划分成四个相等的部分。
答案:此题的关键是将圆划分成四个相等的部分。
正确答案是在圆中心画一个十字,将圆划分为四个相等的扇形区域。
但是,人们的认知和绘画水平不同,有些人可能分割不够精确,因此答案可能会有些偏差。
5. 请你画一个圆,并在圆内画出一个三角形。
答案:对于此题,被试者需要绘制一个圆,并在圆的内部画一个三角形。
三角形的大小、位置可以因个人的想法而异,符合三角形特征即可。
以上是一些常见的心理学画圆测试题及答案。
心理学画圆测试的结果并不仅仅关注于图形本身,更重要的是通过被试者的表现来分析其内心特征和心理状态。
在进行画圆测试时,除了观察被试者的图形,心理学专家还会结合被试者的口头表述和其他行为来进行综合分析和解读。
需要注意的是,仅通过画圆测试无法全面准确地评估一个人的心理状况,其结果需要在临床实践中进行进一步的分析和解读。
此外,在进行心理测评时,应该由专业心理学专家进行指导和解读,以确保结果的准确性和有效性。
初中数学《圆》综合能力测试
第24章圆综合能力测试一、填空题(每题3分,共30分)1.如图,已知AB是⊙O的弦,P是AB上一点,若AB=10cm,PB=4cm,OP=5cm,则⊙O的半径等于______cm.(第1题)(第2题)(第3题)2.如图,AB是⊙O的直径,若AB=4cm,∠D=30°,则∠B=______,AC=______cm.3.(易错题)如图,已知∠AOB=30°,C是射线OB上的一点,且OC=4,若以C为圆心,r为半径的圆与射线OA有两个不同的交点,则r的取值范围是________.4.如果半径分别为2和3的两个圆外切,那么这两个圆的圆心距是______.5.如图,宽为2cm的刻度尺在圆上移动,当刻度尺的一边与圆相切时,另一边与圆两个交点处的读数恰好为“2”和“8”(单位:cm)则该圆的半径为______cm.(第5题)(第6题)(第7题)6.如图,⊙A的圆心坐标为(0,4),若⊙A的半径为3,则直线y=x与⊙A•的位置关系是_________.7.如图,△ABC内接于圆O,要使过点A的直线EF与⊙O相切于点A,则图中的角应满足的条件是_________.(只填一个即可)8.圆锥底面圆的半径为5cm,母线长为8cm,则它的侧面积为_______.(•用含 的式子表示)9.已知圆锥的底面半径为40cm,母线长为90cm.•则它的侧面展开图的圆心角为_______.10.矩形ABCD中,AB=5,BC=12,如果分别以A,C 为圆心的两圆相切,点D在⊙C内,点B在⊙C外,那么⊙A的半径r的取值范围为_________.二、选择题(每题3分,共30分)11.如图,在⊙O中,P是弦AB的中点,CD是过点P的直径,则下列结论中不正确的是()A.AB⊥CD B.∠AOB=4∠ACDC.»»D.PO=PDAD BD(第11题)(第16题)(第17题)12.下列命题中,真命题是()A.圆周角等于圆心角的一半 B.等弧所对的圆周角相等C.垂直于半径的直线是圆的切线 D.过弦的中点的直线必经过圆心13.(易错题)半径分别为5和8的两个圆的圆心距为d,若3<d≤13,•则这两个圆的位置关系一定是()A.相交 B.相切 C.内切或相交 D.外切或相交14.过⊙O内一点M的最长弦长为10cm,最短弦长为8cm,那么OM约长为()A.3cm B.6cm C.41cm D.9cm15.半径相等的圆的内接正三角形、正方形、正六边形的边长之比为()A.1:2:3 B.3:2:1 C.3:2:1 D.1:2:316.如图,已知⊙O的直径AB与弦AC的夹角为35°,过C点的切线PC与AB•的延长线交于点P,则∠P等于()A.15° B.20° C.25° D.30°17.如图所示,在直角坐标系中,A点坐标为(-3,-2),⊙A的半径为1,P为x•轴上一动点,PQ切⊙A于点Q,则当PQ最小时,P点的坐标为()A.(-4,0) B.(-2,0)C.(-4,0)或(-2,0) D.(-3,0)圆周,C点是»BE上的任18.如图,»BE是半径为6的⊙D的14意一点,△ABD•是等边三角形,则四边形ABCD的周长P的取值范围是()A.12<P≤18 B.18<P≤24C.18<P≤D.12<P≤19.一个滑轮起重装置如图所示,滑轮半径是10cm,当重物上升10cm时,•滑轮的一条半径OA绕轴心O,绕逆时针方向旋转的角度约为(•假设绳索与滑轮之间没有滑动, 取3.14,结果精确到1°)()A.115°B.160°C.57°D.29°(第18题)(第19题)(第20题)20.如图所示,在同心圆中,两圆半径分别是2和1,∠AOB=120°,•则阴影部分面积为()A.4πB.2πC.4π3 D.π三、解答题(共60分)21.(8分)如图,CE是⊙O的直径,弦AB⊥CE于D,若CD=2,AB=6,求⊙O•半径的长.22.(8分)如图,AB是⊙O的直径,BC切⊙O于B,AC交⊙O于P,E是BC•边上的中点,连结PE,PE与⊙O相切吗?若相切,请加以证明;若不相切,请说明理由.23.(12分)在同一平面内,已知点O到直线L的距离为5,以点O为圆心,r•为半径画圆,探究、归纳:(1)当r=_______时,⊙O上有且只有一个点到直线L的距离等于3;(2)当r=_______时,⊙O上有且只有三个点到直线L的距离等于3;(3)随着r的变化,⊙O上到直线L的距离等于3的点的个数有哪些变化?并求出相对应的r的值或取值范围(不必写出计算过程).24.(12分)如图,石景山游乐园的观览车半径为25m,已知观览车绕圆心O顺时针做匀速运动,旋转一周用12分钟.某人从观览车的最低处(地面A处)乘车,问经过4分钟后,此人距地面CD的高度是多少米?(观览车距最低处地面高度不计)25.(8分)如图,两个半圆中,长为4的弦,AB与直径CD•平行且与小半圆相切,那么图中阴影部分的面积等于多少?26.(12分)如图,AB是半圆的直径,点M是半径OA的中点,点P在线段AM•上运动(不与点M重合),点Q在半圆O上运动,且总保持PQ=PO,过点Q作⊙O的切线交BA•的延长线于点C.(1)当∠QPA=60°时,请你对△QCP的形状做出猜想,并给予证明;(2)当QP⊥AB时,△QCP的形状是________三角形;(3)由(1)、(2)得出的结论,请进一步猜想当点P 在线段AM上运动到任何位置时,△QCP一定是_______三角形.答案:1.7 2.30° 2 3.2<x≤4 4.5 5.1346.相交 7.∠BCA=∠BAE等 8.40 cm29.160° 10.1<r<8或18<r<2511.D 12.B 13.D 14.A 15.B 16.B 17.D18.C 19.C 20.B21.连接OA.∵CE是直径,AB⊥CE,∴AD=12AB=3.∵CD=2,∴OD=OC-CD=OA-2.•由勾股定理,得OA2-OD2=AD2,∴OA2-(OA-2)2=9,解得OA=134,∴⊙O的半径等于134.22.相切理由:证OP⊥PE即可.23.(1)2 (2)8(3)当0<r<2时,有0个点;当r=2时,有1个点;当2<r<8时,有2•个点;当r=8时,有3个点;当8<r时,有4个点.24.连接OA,由题意得OA⊥CD.设旋转4分钟后,此人到达B处,•连结OB,•则∠AOB=360°×412=120°,过B、O分别作BE⊥CD于E,OF⊥BE于F,•∴∠BFO=•90•°,•∴四边形OFEA为矩形.∴FE=OA=25,∠BOF=120°-90°=30°.在Rt△BFO中,OB=25,∴BF=12OB=252,•∴BE=BF+FE=252+25=37.5,∴人距地面37.5m.25.将小半圆向右平移,使两圆的圆心重合,则阴影部分面积等于半环形面积.∴作OE⊥AB于E,连结OA.∴AE=1AB=2.2∴S阴=1π·OA2-12π·OE2=12π(OA2-OE2)2=1π·AE2=12·π·22=2π.226.(1)△QCP是等边三角形.理由:连结OQ,则CQ⊥OQ,∵PQ=PO,∠QPC=60°,∴∠POQ=∠PQO=30°,∴∠C=90°-30°=60°,∴∠C=∠CQP=∠QCP=60°,∴△QCP是等边三角形.(2)等腰直角(3)等腰。
圆的经典测试题及答案
圆的经典测试题及答案一、选择题1.中国科学技术馆有“圆与非圆"展品,涉及了“等宽曲线"的知识.因为圆的任何一对平行切线的距离总是相等的,所以圆是"等宽曲线除了例以外,还有一些几何图形也是"等宽曲线”,如勒洛只角形(图1),它是分别以等边三角形的征个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧.三段圆弧围成的曲边三角形.图2是等宽的勒洛三角形和圆.D图1 图2下列说法中错误的是()A. 勒洛三角形是轴对称图形B. 图1中,点A到BC上任意一点的距离都相等C. 图2中,勒洛三角形上任意一点到等边三角形DEF的中心0]的距离都相等D. 图2中,勒洛三角形的周长与圆的周长相等【答案】C【解析】【分析】根据轴对称形的定义,可以找到一条直线是的图像左右对着完全重合,则为轴对称图形•鲁列斯曲边三角形有三条对称轴.鲁列斯曲边三角形可以看成是3个圆心角为60。
,半径为DE 的扇形的重叠,根据其特点可以进行判断选项的正误.【详解】鲁列斯曲边三角形有三条对称轴,就是等边三角形的各边中线所在的直线,故正确:点A到RC上任意一点的距离都是DE,故正确;勒洛三角形上任意一点到等边三角形DEF的中心O]的距离都不相等,0|到顶点的距离是到边的中点的距离的2倍,故错误;60 x DE DE鲁列斯曲边三角形的周长=3x -------------------- eDE".圆的周长=2x——7T=DEx7t f故说法180 2正确.故选C.【点睛】主要考察轴对称图形,弧长的求法即对于新概念的理解.22.如图,氐ABC 的外接圆是00,半径A0=5, sinB=y ,则线段AC 的长为()【答案】C 【解析】 【分析】首先连接CO 并延长交00于点D,连接AD, 2。
0的半径是5, sinB=-,即可求得答案. 【详解】解:连接CO 并延长交00于点D,连接AD,B由CD 是<30的直径,可得ZCAD=90°, •・• ZB 和ZD 所对的弧都为弧AC,2AZB=ZD,即 sinB=sinD=y , •••半径 A0=5, ACD=10,.AC AC 2 :.sm D = ---- = =—CD 10 5AAC=4t 故选:C. 【点睛】本题考查了同弧所对的圆周角相等,以及三角函数的内容,注意到直径所对的圆周角是直 角是解题的关键.3.如图,在00,点 A 、B 、C 在00 ±,若ZOAB = 54°9 则ZC(cB. 2C. 4D ・5Fh CD 是OO 的直径,可得ZCAD=90%又由A. 54°B. 27°C. 36°D. 46°【答案】C【解析】【分析】先利用等腰三角形的性质和三角形内角和计算出ZAOB的度数,然后利用圆周角解答即可.【详解】解:-:OA = OB,.•・ZOBA=ZOAB=54°,・•・ XAOB = 180° - 54°・ 54°=72°,1・•・ ZACB= - ZAOB=36°.2故答案为C.【点睛】本题考查了三角形内角和和圆周角定理,其中发现并正确利用圆周角定理是解题的关键.4.下列命题是假命题的是( )A. 三角形两边的和大于第三边B. 正六边形的每个中心角都等于6(TC. 半径为R的圆内接正方形的边长等于屈D. 只有正方形的外角和等于360。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆自我测试题(时间90分满分100分)一. 填空(本题共26分,每空2分)1.在半径为10cm的⊙O中,弦AB长为10cm,则O点到弦AB的距离是______cm.3.圆外切等腰梯形的周长为20cm,则它的腰长为______cm.4.AB是⊙O的直径,C为⊙O上一点,CD⊥AB于D,AD=4cm,,BD=9cm,则CD=______cm,BC=______cm.5.若扇形半径为4cm,面积为8cm,则它的弧长为______cm.6.如图,PA、PB、DE分别切⊙O于A、B、C点,若圆O的半径为6,OP=10,则△PDE的周长为______.7.如图,PA=AB,PC=2,PO=5,则PA=______.8.斜边为AB的直角三角形顶点的轨迹是______.9.若两圆有且仅有一条公切线,则两圆的位置关系是______.10.若正六边形的周长是24cm,它的外接圆半径是______,内切圆半径是______.二. 选择题(本题共32分,每小题4分)在下列各题的四个备选答案中,只有一个是正确的,请你将正确答案前的字母填在括号内.1.两圆半径分别为2和3,两圆相切则圆心距一定为[]A.1cmB.5cmC.1cm或6cmD.1cm或5cm2.弦切角的度数是30°,则所夹弧所对的圆心角的度数是[]A.30°B.15°C.60°D.45°3.在两圆中,分别各有一弦,若它们的弦心距相等,则这两弦[]A.相等B.不相等C.大小不能确定D.由圆的大小确定∠PAD= []A.10°B.15°C.30°D.25°5.如图,PA、PB分别切⊙O于A、B,AC是⊙O的直径,连接AB、BC、OP,则与∠APO相等的角的个数是[]A.2个B.3个C.4个D.5个6.两圆外切,半径分别为6、2,则这两圆的两条外公切线的夹角的度数是[]A.30°B.60°C.90°D.120°7.正六边形内接于圆,它的边所对的圆周角是[]A.60°B.120°C.60或120D.30°或150°A.7cmB.8cmC.7cm或8cmD.15cm三.(本题共6分)已知:如图,PBA是⊙O的割线,PC切⊙O于C,PED过点四.(本题7分)在同心圆O中,AB是大圆的直径,与小圆交于C、D,EF是大圆的弦,且切小圆于C,ED交小圆于G,若大圆半径为6,小圆半径为4,求EG的长.五.(本题8分)已知:如图AB为半圆O的直径,过圆心O作EO⊥AB,交半圆于F,过E作EC 切⊙O于M,交AB的延长线于C,在EC上取一点D,使CD=OC求证:DF是⊙O的切线.六.(本题8分)已知:如图△ABC内接于⊙O,∠BAC相邻的外角∠CAD的平分线AE交BC延长线于E,延长EA交⊙O于F,连BF七.(本题5分)已知:两圆内切于P,大圆的弦PA,PB分别交小圆于C、D,求证:PC·BD=PD·AC八.(本题8分)如图EB是⊙O的直径,A是BE的延长线上一点,过A作⊙O的切线AC,切点为D,过B作⊙O的切线BC,交AC于点C,若EB=BC=6,求:AD、AE的长.圆自我测试题参考答案一、填空(本题共28分,第空4分)5. 46.16二.选择题(本题共30分,每小题3分)1.D2.C3.D4.B5.B6.B7.D8.C三.(本题6分)解:连OC∵AP是⊙O的割线,CP是切线CP=2∵PC是切线∴OC⊥PC∵∠DPC=45°∠POC=45°∴OC=CP=2即⊙O的半径为2四.(本题7分)解:∵AO=6,CO=4∴AC=2,在Rt△ECD中由切割线定理五.(本题8分)证明:连OM∵CO=CD∴∠ODC=∠COD∵M是切点,OM是半径∴OM⊥CE又∵EO⊥AC∴∠1=∠E∵∠ODC=∠E+∠2 ∠COD=∠1+∠3∴∠2=∠3∴OF=OM OD=OD∴△OFD≌△OMD∴∠DFO=∠DMO=Rt∠∴DF是⊙O的切线六.(本题8分)证明:∵∠1=∠2,∠2=∠3∴∠1=∠3又∵∠1=∠FBC∴∠3=∠FBC在△FBE和△FAB中,∠F=∠F,∠3=∠FBE∴△FBE∽△FAB七.(本题5分)证明:连CD、AB,过P作两圆的公切线MN ∵∠APM=∠CDP=∠ABP∴AB∥CD即PC·BD=PD·AC八.(本题8分)解:设AE=x,连结OD,则∠ADO=90°又∵∠ABC=90°,∠A=∠A∴△ADO∽△ABC∴x=2,x=-6(舍)即:AE=2圆复习测试题(B )一、选择题(每小题2分,共8分)1.一只封闭的圆柱形水桶(桶的厚度忽略不计),底面直径为20cm ,母线长为40cm ,盛了半桶水,现将该水桶水平放置后如图1所示,则水所形成的几何体的表面积为( ) (A )800 cm 2 (B ) (800+400π) cm 2 (C )(800+500π)cm 2 (D )(1600+1200π)cm 2图12.如图2,小颖同学在手工制作中,把一个边长为12cm 的等边三角形纸片贴到一个圆形的纸片上,若三角形的三个顶点恰好都在这个圆上,则该圆的半径为( )(A )32cm (B )33cm (C )43cm (D )4cm图23.如图3,已知AD 是△ABC 的外接圆的直径,AD =13 cm ,5cos 13B,则AC 的长等于( )(A )5 cm (B )6 cm (C )10 cm (D )12 cm 4.如图4,P 为正三角形ABC 外接圆上一点,则∠APB =( ) (A)150° (B)135° (C)115° (D)120°二、填空题(每小题3分,共12分) 1.点P 到⊙O 的最大距离为20cm ,最小距离是10cm ,则圆的半径是______. 2.等边三角形的边长为6,以三角形的外接圆的圆心为圆心,3为半径作圆,则此圆与等边三角形三边的位置关系_______.3.如图5,AB 是半圆O 的直径,弦AD 、BC 相交于点P ,且CD 、AB 的长分别是一元二次方程x 2-7x+12=0的两根,则tan ∠DPB=______.图3D图4图5 图64.如图2,⊙O1和⊙O2内切,它们的半径分别为3和1,过O1作⊙O2的切线,切点为A,则OA的长为_____.三、解答题(每小题6分,共18分)1.某乡薄铁社厂的王师傅要在长为25cm,宽为18cm的薄铁板上裁出一个最大的圆和两个尽可能大的小圆.他先画出了如图7的草图,但他在求小圆半径时遇到了困难,请你帮助王师傅计算出这两个小圆的半径.图72.如图8-1、8-2、8-3、…、8-n,M、N分别是⊙O的内接正三角形ABC、正方形ABCD、正五边形ABCDE、…、正n边形ABCDE…的边AB、BC上的点,且BM=CN,连结OM、ON.(1)求图8-1中∠MON的度数;(2)图8-2中∠MON的度数是_________,图8-3中∠MON的度数是_________;(3)试探究∠MON的度数与正n边形边数n的关系(直接写出答案).3.如图9,⊙O1和⊙O2外切于点P,直线AB是两圆的外公切线,A,B为切点,试判断以线段AB为直径的圆与直线O1O2的位置关系,并说明理由.图9参考答案:一、1.B 2.C 3.D 4.D二、1. 5cm 或15cm ; 2.相切 3.37; 4.3 三、1.如图,连结OO 1、O 1O 2、O 2O ,则△OO 1O 2是等腰三角形. 作OA ⊥O 1O 2,垂足为A ,则O 1A=O 2A.由图可知大圆的半径是9cm.设小圆的半径为xcm ,在Rt △OAO 1中,依题意,得(9+x)2=(9-x)2+(25-9-x)2. 整理,得x 2-68x+256=0.解得x 1=4,x 2=64. 因为x 2=64>9,不合题意,舍去.所以x=4. 答:两个小圆的半径是4cm.2. 解:(1)连结OA 、OB . ∵正△ABC 内接于⊙O ,∴AB=AC ,∠OAM=∠OBN=30°, ∠AOB=120°. 又∵BM =CN ,∴AM=BN ,又∵OA=OB , ∴△AOM ≌△BON . ∴∠AOM=∠BON . ∴∠AON=∠AOB=120°. (2)90°,72°. (3)360MON n︒∠=. 3.解:直线O 1O 2与以线段AB 为直径的圆相切. 理由如下: 过P 作⊙01,⊙02的公切线PM 交AB 于点M ,则 AM=MB=MP ,O 1O 2⊥MP. ∴M 点为以线段AB 为直径的圆的圆心,且点P 在⊙M 上. ∵⊙01和⊙O 2外切于点P , ∴直线O 102过点P. ∴直线01O 2与以线段AB 为直径的圆相切.圆的测试题姓名 分数一、 填空1、一个圆的直径是6厘米,它的周长是( ),面积是( )2、在同一个圆里,直径和半径的比是( )3、在一个边长是8厘米的正方形内画一个最大的圆,这个圆的周长是( )4、一座挂钟,分针长12厘米,经过45分钟,分针尖端走过( )厘米。
5、一个圆的周长是12.56厘米,它的面积是( )6、一环形纸板,内圆半径是3厘米,外圆直径是10厘米,这个环形纸板的面积是( )7、一个半径是4厘米的圆,如果半径减少2厘米,则它的 周长减少( )厘米。
8、圆的面积是120厘米,圆内一扇形的面积是90厘米,则这个扇形的圆心角是( )度。
9、圆的周长从5π增加到8π,它的半径比原来增加了( )(填几分之几) 10、在 一个圆里画一个最大的正方形,这个正方形的对角线是3厘米,圆的面积是( )平方厘米,比正方形面积多( )平方厘米。
11、周长相等的正方形、长方形、圆,它们的面积( )最大。
12、大圆的半径是小圆的直径,大圆周长是小圆周长的( )倍,小圆面积是大圆面积的( )13、儿童三轮脚踏车,前轮直径是3分米,后轮直径是2分米,前轮转动50周所行的路程,后轮要转( )周。
14、圆的直径扩大3倍,它的周长扩大( )倍,它的面积扩大( )倍。
15、如果一个圆的半径增加3厘米,它的直径增加( )厘米,周长增加( )厘米,面积增加( )平方厘米。
16、有一个直径是6厘米的半圆形铁片,这个铁片的周长是( )厘米,面积是( ) 17、有一个半圆的铁片,周长是30.86厘米,则半径是( )厘米 ,面积是( )平方厘米 二、判断对错1、半径是2厘米的圆的周长和面积相等。
( )2、长方形 、正方形、三角形和圆都是轴对称图形。