2018中考数学一轮复习 各知识点练习题分层设计六(二次根式部分)(无答案) 鲁教版
中考数学一轮复习二次根式知识点-+典型题及答案

一、选择题1.下列运算正确的是( )A .732-=B .()255-=-C .1232÷=D .03812+= 2.下列根式中,与3是同类二次根式的是( )A .12B .23C .18D .293.下列计算正确的是( ) A .325+= B .2222+= C .2651-= D .822-=4.已知526x =-,则2101x x -+的值为( )A .306-B .106C .1862--D .05.下列运算中,正确的是( )A .325+=B .321-=C .326⨯=D .3322÷= 6.若2()a b a b -=--则( )A .0a b +=B .0a b -=C .0ab =D .220a b += 7.下列运算正确的是( )A .32-=﹣6B .31182-=-C .4=±2D .25×32=5108.设,n k 为正整数,()()1314A n n =+-+,()2154A n A =++,()3274A n A =++,()4394A n A =++,…()1214k k A n k A -=+++,….,已知1002005A =,则n =( ). A .1806 B .2005 C .3612D .4011 9.下列计算不正确的是 ( ) A .35525-=B .236⨯=C 7742=D 363693=+==10.12的下列说法中错误的是( )A 1212的算术平方根B .3124<<C 12不能化简D 12是无理数二、填空题11.=___________.12.已知aa 3+5a 2﹣4a ﹣6的值为_____.13.10=,则222516x y +=______.14.若2x ﹣x 2﹣x=_____.15.已知,n=1的值________.16.若0xy >,则二次根式________.17.=_______.18.3y =,则2xy 的值为__________.19.若a 、b 都是有理数,且2222480a ab b a -+++=.20.1=-==++……=___________. 三、解答题21.先化简,再求值:24211326x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中1x =..【分析】 根据分式的运算法则进行化简,再代入求解. 【详解】原式=221(1)12(3)232(3)3(1)1x x x x x x x x x ---+⎛⎫⎛⎫÷=⋅= ⎪ ⎪+++--⎝⎭⎝⎭.将1x == 【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.22.先化简,再求值:a =1007.如图是小亮和小芳的解答过程.(1) 的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质: ;(3)先化简,再求值:269a a -+a =﹣2018.【答案】(1)小亮(22a (a <0)(3)2013.【解析】试题分析:(12a ,判断出小亮的计算是错误的;(22a 的应用错误;(3)先根据配方法把被开方数配成完全平方,然后根据正确的性质化简,再代入计算即可. 试题解析:(1)小亮(22a (a <0)(3)原式=()23a -a+2(3-a )=6-a=6-(-2007)=2013.23.(1)计算:1153208105 (2)先化简,再求值:(()228a a a a +--,其中134a =. 【答案】(1)5-2)82-a ,3【分析】(1)分别根据二次根式的除法法则、二次根式的性质、二次根式的乘法法则计算和化简各项,再合并同类二次根式即可;(2)分别根据平方差公式和单项式乘以多项式的法则计算各项,再把a 的值代入化简后的式子计算即可.【详解】 (1)1415320581054525545=5=-; (2)(()228a a a a +--2228a a a =--+82a =-,当14a =时,原式1824⎫=⨯-=⎪⎭. 【点睛】 本题考查了整式的乘法和二次根式的混合运算,属于常考题型,熟练掌握基本知识是解题的关键.24.计算(1+(2+-(3÷ (4)(【答案】(1)234)7. 【分析】 (1)先把各二次根式化为最简二次根式,然后合并即可;(2)先把各二次根式化为最简二次根式,然后合并即可;(3)根据二次根式的乘除法则运算;(4)利用平方差公式计算;【详解】(1+22=+=;(2==;(3÷==;(4)((22=-=7【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了平方差公式.25.计算(2)2;(4)【答案】(1)2)9-;(3)1;(4)【分析】(1)根据二次根式的性质和绝对值的代数意义进行化简后合并即可;(2)根据完全平方公式进行计算即可;(3)根据二次根式的乘除法法则进行计算即可;(4)先进行乘法运算,再合并即可得到答案.【详解】解:==(2)2=22-=63-=9-=1;(4)===【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.26.观察下列各式:11111122=+-=11111236=+-=111113412=+-= 请你根据上面三个等式提供的信息,猜想:(1=_____________ (2)请你按照上面每个等式反映的规律,写出用n (n 为正整数)表示的等式:______________;(3【答案】(1)1120;(211(1)n n =++;(3)1156,过程见解析 【分析】 (1)仿照已知等式确定出所求即可;(2)归纳总结得到一般性规律,写出即可;(3)原式变形后,仿照上式得出结果即可.【详解】解:(1111114520=+-=; 故答案为:1120;(2111111(1)n n n n =+-=+++;11(1)n n =++;(31156==【点睛】此题是一个阅读题目,通过阅读找出题目隐含条件.总结:找规律的题,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.27.计算(1))(121123-⎛⨯-- ⎝⎭(2)已知:11,22x y ==,求22x xy y ++的值. 【答案】(1)28-;(2)17.【分析】(1)先利用完全平方公式和平方差公式计算二次根式的乘法、负指数幂运算,再计算二次根式的加减法即可得;(2)先求出x y +和xy 的值,再利用完全平方公式进行化简求值即可得.【详解】(1)原式()((221312⎡⎤=⨯+--⎢⎥⎣⎦,(()1475452=⨯+---230=+28=-;(2)(1119,22x y==,1122x y ∴+=+=, ()11119112224xy =⨯=⨯-=, 则()222x xy y x y xy ++=+-,22=-,192=-,17=.【点睛】本题考查了二次根式的混合运算、完全平方公式和平方差公式等知识点,熟练掌握二次根式的运算法则是解题关键.28.(1)计算:21)-(2)已知a ,b 是正数,4a b +=,8ab =【答案】(1)5-2【分析】 (1)根据完全平方公式、平方差公式可以解答本题;(2)先将所求式子化简,然后将a+b=4,ab=8代入化简后的式子即可解答本题.【详解】解:(1)原式21)=-(31)(23)=---5=-;(2)原式=== a ,b 为正数,∴原式=把4a b +=,8ab =代入,则原式== 【点睛】本题考查二次根式的化简求值,完全平方公式、平方差公式,解答本题的关键是明确二次根式化简求值的方法.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由二次根式的性质,二次根式的混合运算,分别进行计算,即可得到答案.【详解】解:A A错误;B5=,故B错误;C2==,故C正确;D01213=+=,故D错误;故选:C.【点睛】本题考查了二次根式的性质,二次根式的混合运算,立方根,零指数幂,解题的关键是熟练掌握运算法则进行解题.2.A解析:A【分析】根据二次根式的性质把每一项都化为最简二次根式,再根据同类二次根式的定义判断即可.【详解】解:A=BC不是同类二次根式,不合题意;D3故选:A.【点睛】本题考查了同类二次根式的定义和二次根式的性质,属于基本题型,熟练掌握基本知识是解题关键.3.D解析:D【分析】直接利用二次根式的加减运算法则计算得出答案.【详解】解:AB、无法计算,故此选项错误;C、D,正确.故选:D.【点睛】此题主要考查了二次根式的加减运算,正确掌握相关运算法则是解题关键.4.D解析:D【分析】把x的值代入原式计算即可求出值.【详解】解:当时,原式=()2-10×()+1+1=0.故选:D.【点睛】本题考查了二次根式的化简求值,熟练掌握运算法则是解题的关键.5.C解析:C【分析】根据二次根式的加、减、乘、除运算法则对各项进行计算即可得到结果.【详解】不是同类二次根式,不能合并,故此选项错误;不是同类二次根式,不能合并,故此选项错误;=D=,故此选项错误;故选:C.【点睛】此题主要考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解答此题的关键.6.C解析:C【分析】直接利用二次根式的性质,将已知等式左边化简,可以得到a与b中至少有一个为0,进而分析得出答案即可.【详解】=--,解:∵a b∴a-b=-a-b,或b-a=-a-bab=.∴a= -a,或b=-b, ∴a=0,或b=0, ∴ab=0, ∴0故选:C.【点睛】本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键.7.B解析:B【分析】分别根据负整数指数幂的运算、立方根和算术平方根的定义及二次根式的乘法法则逐一计算可得.【详解】A 、3311228-==,此选项计算错误;B 12=-,此选项计算正确;C 2=,此选项计算错误;D 、,此选项计算错误;故选:B .【点睛】本题考查了负整数指数幂、立方根和算术平方根及二次根式的乘法,熟练掌握相关的运算法则是解题的关键.8.A解析:A【解析】【分析】利用多项式的乘法把各数开方进行计算,然后求出A 1,A 2,A 3的值,从而找出规律并写出规律表达式,再把k=100代入进行计算即可求解.【详解】∵(n+3)(n-1)+4=n 2+2n-3+4=n 2+2n+1=(n+1)2,∴A 11n =+∵(n+5)A 1+4=(n+5)(n+1)+4=n 2+6n+5+4=n 2+6n+9=(n+3)2,∴A 23n =+∵(n+7)A 2+4=(n+7)(n+3)+4=n 2+10n+21+4=n 2+10n+25=(n+5)2,∴A 35n =+⋯⋯依此类推,A k =n+(2k-1)∴A 100=n+(2×100-1)=2005解得,n=1806.故选A.【点睛】本题是对数字变化规律的考查,对被开方数整理,求出A 1,A 2,A 3,从而找出规律写出规律的表达式是解题的关键.9.D解析:D【解析】根据二次根式的加减法,合并同类二次根式,可知=故正确;=根据二次根式的性质和化简,=,故正确;根据二次根式的加减,不是同类二次根式,故不正确.故选D.10.C解析:C【分析】根据算术平方根的定义,无理数的定义及估值,二次根式的化简依次判断.【详解】A12的算术平方根,故该项正确;B、34<<,故该项正确;C=D=是无理数,故该项正确;故选:C.【点睛】此题考查算术平方根的定义,无理数的定义及估值,二次根式的化简,熟练掌握各知识点并运用解题是关键.二、填空题11.+1【分析】先将用完全平方式表示,再根据进行化简即可.【详解】因为,所以,故答案为:.【点睛】本题主要考查利用完全平方公式对无理式进行因式分解,二次根式的性质,解决本题的关键是要将二+1【分析】先将3+,()()()0000a a a a a a ⎧>⎪===⎨⎪-<⎩进行化简即可.【详解】因为(2231211+=+=+=+,11===故答案为:1.【点睛】本题主要考查利用完全平方公式对无理式进行因式分解,二次根式的性质,解决本题的关键是要将二次根式利用完全平方公式分解. 12.-4【分析】先将a 进行化简,然后再进一步分组分解代数式,最后代入求得答案即可.【详解】解:当a =-=-=-3时,原式=a3+6a2+9a -(a2+6a+9)-7a+3=a(a+3)2-(解析:-4【分析】先将a 进行化简,然后再进一步分组分解代数式,最后代入求得答案即可.【详解】解:当a-3时, 原式=a 3+6a 2+9a -(a 2+6a +9)-7a +3=a (a +3)2-(a +3)2-7a +3=7a -7-7a +3=-4.故答案为:-4.【点睛】本题综合运用了二次根式的化简,提公因式及完全平方公式法分解因式,熟练掌握分母有理化的方法及因式分解的方法是解题的关键.13.【解析】【分析】把带根号的一项移项后平方,整理后再平方,然后整理即可得解.【详解】移项得,两边平方得,整理得,两边平方得,所以,两边除以400得,1.故答案为1.【点睛】解析:【解析】【分析】把带根号的一项移项后平方,整理后再平方,然后整理即可得解.【详解】10=-两边平方得,()()22223=1003x y x y ++--+整理得,253x =- 两边平方得,22225150225256251509x x y x x -++=-+ 所以,221625400x y +=两边除以400得,222516x y +=1. 故答案为1.【点睛】本题考查了非负数的性质,此类题目难点在于把两个算术平方根通过移项分到等式左右两边.14.【解析】【分析】根据完全平方公式以及整体的思想即可求出答案.【详解】解:∵2x ﹣1= ,∴(2x ﹣1)2=3∴4x2﹣4x+1=3∴4(x2﹣x )=2∴x2﹣x=【点解析:1 2【解析】【分析】根据完全平方公式以及整体的思想即可求出答案.【详解】解:∵2x﹣,∴(2x﹣1)2=3∴4x2﹣4x+1=3∴4(x2﹣x)=2∴x2﹣x=12故答案为1 2【点睛】本题考查二次根式的运算,解题的关键是熟练运用完全平方公式,本题属于基础题型.15.【解析】根据题意,把被开方数配方为完全平方,然后代入求解,可得====.故答案是:.【解析】根据题意,把被开方数配方为完全平方,然后代入求解,可得.16.-【分析】首先判断出x,y的符号,再利用二次根式的性质化简求出答案.【详解】解:∵,且有意义,∴,∴.故答案为.【点睛】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解析:首先判断出x ,y 的符号,再利用二次根式的性质化简求出答案.【详解】解:∵0xy > ∴00x y <,<,∴x ==.故答案为.【点睛】 此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.即(0)(0)a a a a a ≥⎧==⎨-<⎩=(a ≥0,b >0). 17.【分析】 设,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.【详解】解:设,由算术平方根的非负性可得t≥0,则.故答案为:.【点睛】此题考查的是二【分析】t =,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.【详解】t =,由算术平方根的非负性可得t ≥0,则244t =+8=+8=+81)=+6=+21)=1t∴=..【点睛】此题考查的是二次根式的化简,掌握完全平方公式和二次根式的性质是解题关键.18.【解析】试题分析:根据二次根式的意义和等式的特点,可知2x-5=0,解得x=,y=-3,代入可得=-2××3=-15.解析:15-【解析】试题分析:根据二次根式的意义和等式的特点,可知2x-5=0,解得x=52,y=-3,代入可得2xy=-2×52×3=-15.19.【分析】先将原等式两边同时乘2,然后将左侧配方,然后利用平方的非负性即可求出a 和b的值,然后代入即可.【详解】解:∵∴∴∴∵∴解得:a=-4,b=-2∴=故答案为:.【点睛解析:【分析】先将原等式两边同时乘2,然后将左侧配方,然后利用平方的非负性即可求出a 和b 的值,然后代入即可.【详解】解:∵2222480a ab b a -+++=∴222448160a ab b a -+++=∴()()222448160a ab ba a -+++=+ ∴()()22240ab a +-+=∵()()2220,40a b a +-≥≥∴20,40a b a +-==解得:a=-4,b=-2=故答案为:【点睛】此题考查的是配方法、非负性的应用和化简二次根式,掌握完全平方公式、平方的非负性和二次根式的乘法公式是解决此题的关键.20.2018【分析】先根据已知等式归纳类推出一般规律,再根据二次根式的加减法与乘法运算法则即可得.【详解】第1个等式为:,第2个等式为:,第3个等式为:,归纳类推得:第n 个等式为:(其中,解析:2018【分析】先根据已知等式归纳类推出一般规律,再根据二次根式的加减法与乘法运算法则即可得.【详解】第11=,第2=,第3=归纳类推得:第n 1=-n 为正整数),则2020++,2020=+,=, 20202=-,2018=,故答案为:2018.【点睛】本题考查了二次根式的加减法与乘法运算,依据已知等式,正确归纳出一般规律是解题关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。
遵义专版2018年中考数学总复习第一篇教材知识梳理篇第1章数与式第5节二次根式精练试题20180108255

第五节 二次根式1.(2017遵义航中二模)如果ab>0,a +b<0,那么下面各式正确的是( B ) ①a b =a b ;②a b ·b a =1;③ab ÷a b=-b. A .①② B .②③ C .①③ D .①②③2.(2017绵阳中考)使代数式1x +3+4-3x 有意义的整数x 有( B ) A .5个 B .4个 C .3个 D .2个3.(2017荆州中考)下列根式是最简二次根式的是( C )A .13B .0.3C . 3D .20 4.(2017枣庄中考)实数a ,b 在数轴上对应点的位置如图所示,化简|a|+(a -b )2的结果是( A )A .-2a +bB .2a -bC .-bD .b5.(2017眉山中考)下列运算结果正确的是( A ) A .8-18=- 2 B .(-0.1)2=-0.01C .⎝ ⎛⎭⎪⎫2a b 2÷b 2a =2a bD .(-m)3m 2=-m 6 6.(2017东营中考)下列运算正确的是( B ) A .(x -y)2=x 2-y 2 B .|3-2|=2- 3 C .8-3= 5 D .-(-a +1)=a +17.(2017滨州中考)下列计算:(1)(2)2=2;(2)(-2)2=2;(3)(-23)2=12;(4)(2+3)(2-3)=-1,其中结果正确的个数为( D ) A .1 B .2 C .3 D .48.(2017连云港中考)关于8的叙述正确的是( D )A .在数轴上不存在表示8的点B .8=2+ 6C .8=±2 2D .与8最接近的整数是39.(2017咸宁中考)8的立方根是__2__.10.(2017常德中考)计算:|-2|-38=__0__.11.(2017青岛中考)计算:⎝ ⎛⎭⎪⎫24+16×6=__13__.12.(1)(2017南充中考)|1-5|+(π-3)0=;(2)(2017山西中考)418-92=.13.(2017鄂州中考)若y =x -12+12-x -6则xy =__-3__.14.(2017遵义升学三模)计算:2+(-2)2=__4__.15.(怀化中考)计算:2 0160+2|1+sin 30°|-⎝ ⎛⎭⎪⎫13-1+16.解:原式=1+2×⎪⎪⎪⎪⎪⎪1+12-3+4=1+2×32+1=1+3+1=5.16.(荆州中考)计算:|-2|+9×⎝ ⎛⎭⎪⎫12-1-4×12-(π-1)0.解:原式=2+3×2-2×22-1=2+6-2-1=5.17.(2018原创)如果(2+2)2=a +b 2(a ,b 为有理数),那么a +b 等于( D )A .2B .3C .8D .1018.(2017曲靖中考)若整数x 满足|x|≤3,则使7-x 为整数的值是__-2(或3)__.(只需填一个)19.(2017西宁中考)先化简,再求值:⎝ ⎛⎭⎪⎫n2n -m -m -n ÷m 2,其中m -n = 2.解:原式=⎣⎢⎡⎦⎥⎤n2n -m -(m +n )·1m 2=n 2-n 2+m 2n -m ·1m 2=1n -m ,∵m -n =2,∴n -m =-2, 则原式=1-2=-22.。
中考数学一轮复习二次根式知识点及练习题附解析

中考数学一轮复习二次根式知识点及练习题附解析一、选择题 1.已知21025x x -+=5﹣x ,则x 的取值范围是( ) A .为任意实数 B .0≤x≤5 C .x≥5 D .x≤52.下列计算正确的为( ).A .2(5)5-=-B .257+=C .64322+=+D .3622= 3.下列根式中,最简二次根式是( )A .13B .0.3C .3D .84.下列计算正确的是( )A .93=±B .8220-=C .532-=D .2(5)5-=-5.下列各式是二次根式的是( )A .3B .1-C .35D .4π- 6.已知,那么满足上述条件的整数的个数是( ). A .4 B .5 C .6 D .77.已知a 满足2018a -2019a -a ,则a -2 0182=( )A .0B .1C .2 018D .2 019 8.下列计算正确的是( ) A 235=B 623=C 23(3)86-=-D 321= 9.下列计算正确的是( )A 1233=B 235=C .43331=D .32252+= 10.下列二次根式中,最简二次根式是( )A 23aB 13C 2.5D 22a b -11.下列二次根式中是最简二次根式的是( )A 6B 18C 27D 1212.已知,5x y +=-,3xy =则y x x y x y的结果是( )A .23B .23-C .32D .32-二、填空题13.已知2216422x x ---=,则22164x x -+-=________.14.若实数x ,y ,m 满足等式()23532322x y m x y m x y x y +--++-=+----,则m+4的算术平方根为 ________.15.将1、2、3、6按右侧方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(5,4)与(9,4)表示的两数之积是______.16.计算:652015·652016=________. 17.已知2,n=1222m n mn +-的值________.18.已知x 51-,y 51+,则x 2+xy +y 2的值为______. 19.2m 1-1343m --mn =________. 20.下列各式:2521+n 2b 0.1y 是最简二次根式的是:_____(填序号) 三、解答题21.已知m ,n 满足m 4mn 2m 4n 4n=3+m 2n 2m 2n 2018+-++. 【答案】12015 【解析】【分析】由42m 443m mn n n +=m n 2﹣2m n )﹣3=0,将m n 2m n m n ,代入计算即可.【详解】解:∵4m n +=3,)22﹣2)﹣3=0,)2﹣23=0,+13)=0,=﹣13, ∴原式=3-23+2012=12015. 【点睛】 本题主要考查二次根式的混合运算,解题的关键是熟练掌握完全平方公式的运用及二次根式性质.22.先化简,再求值:(()69x x x x --+,其中1x =.【答案】化简得6x+6,代入得【分析】根据整式的运算公式进行化简即可求解.【详解】(()69x x x x +--+=22369x x x --++=6x+6把1x =代入原式=61)【点睛】此题主要考查实数的运算,解题的关键熟知整式的运算法则.23.计算(1(2)(()21-【答案】(1)2;(2)24+ 【分析】(1)先将各二次根式化为最简二次根式,再进行合并即可得到答案;(2)原式运用平方差公式和完全平方公式把括号展开后,再合并同类二次根式即可得到答案.【详解】解:(1=+2=(-+2=2-(2)(()21---=22(181)=452181--+=24+.【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则和运算顺序是解答此题的关键.24.(1)已知a2+b2=6,ab=1,求a﹣b的值;b=,求a2+b2的值.(2)已知【答案】(1)±2;(2)2.【分析】(1)先根据完全平方公式进行变形,再代入求出即可;(2)先分母有理化,再根据完全平方公式和平方差公式即可求解.【详解】(1)由a2+b2=6,ab=1,得a2+b2-2ab=4,(a-b)2=4,a-b=±2.a===(2)1b===,2222a b a b ab+=+-=-=-=()22312⎝⎭【点睛】本题考查了分母有理化、完全平方公式的应用,能灵活运用公式进行变形是解此题的关键.25.计算(1))(12112-⨯--⎝⎭(2)已知:11,22x y ==,求22x xy y ++的值. 【答案】(1)28-;(2)17.【分析】(1)先利用完全平方公式和平方差公式计算二次根式的乘法、负指数幂运算,再计算二次根式的加减法即可得;(2)先求出x y +和xy 的值,再利用完全平方公式进行化简求值即可得.【详解】(1)原式()((221312⎡⎤=⨯+--⎢⎥⎣⎦,(()1475452=⨯+---230=+28=-;(2)(1119,22x y==,1122x y ∴+=+=, ()11119112224xy =⨯=⨯-=, 则()222x xy y x y xy ++=+-,22=-,192=-,17=.【点睛】本题考查了二次根式的混合运算、完全平方公式和平方差公式等知识点,熟练掌握二次根式的运算法则是解题关键.26.已知x²+2xy+y²的值.【答案】16【解析】分析:(1)根据已知条件先计算出x+y=4,再利用完全平方公式得到x²+2xy+y²=(x+y )²,然后利用整体代入的方法计算.本题解析:∵x² +2xy+y² =(x+y)²,∴当∴x²+2xy+y²=(x+y)²=(2−=16.27.(1)计算)(2201113-⎛⎫--•- ⎪⎝⎭ (2)已知,,a b c为实数且2c =2c ab -的值 【答案】(1)13;(2)12-【分析】(1)利用完全平方公式、负整数指数幂、零指数幂分别计算再合并即可;(2)先依据二次根式有意义的条件,求得a 、b 、c 的值,然后再代入计算即可.【详解】(1))(2201113-⎛⎫--•- ⎪⎝⎭31=+⨯=4+9=13;(2)根据二次根式有意义的条件可得:∵()2303010a a b ⎧-≥⎪⎪-≥⎨⎪-+≥⎪⎩,∴3a =,1b =-,∴2c =∴(()2223112c ab -=-⨯-=-【点睛】本题主要考查了二次根式的混合运算,二次根式有意义的条件以及二次根式的化简求值,熟练掌握二次根式有意义的条件是解题的关键.28.计算:(1;(2)))213【答案】(1)2)1-.【分析】(1)根据二次根式的混合运算法则可以算得答案.(2)结合整式的乘法公式和二次根式的运算法则计算.(1)原式==(2)原式=212---=1-.【点睛】本题考查二次根式的运算,熟练掌握二次根式的意义、性质和运算法则是解题关键.29.计算:(1 (2)()()2221-【答案】2)1443【分析】(1)先化成最简二次根式,然后再进行加减运算即可;(2)套用平方差公式和完全平方式进行运算即可.【详解】解:(1)原式=23223323,(2)原式(34)(12431)1124311443,故答案为:1443.【点睛】本题考查二次根式的四则运算,熟练掌握二次根式的四则运算是解决本题的关键. 30.计算下列各题:(1(2)2-.【答案】(1)2)2--【分析】(1)根据二次根式的运算顺序和运算法则计算即可;(2)利用平方差、完全平方公式进行计算.【详解】解:(1)原式==;(2)原式22(5=--+525=---2=--本题考查二次根式的加减乘除混合运算,熟练掌握运算法则和乘法公式是关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据二次根式的性质得出5-x≥0,求出即可.【详解】|5|5x x ==-=-,∴5-x≥0,解得:x≤5,故选D .【点睛】本题考查了二次根式的性质的应用,注意:当a≥0,当a≤0.2.D解析:D【分析】根据二次根式的性质、二次根式的加法以及混合运算的法则逐项进行判断即可.【详解】A 5=,故A 选项错误;B B 选项错误;C .++=222,故C 选项错误;D 2=,正确, 故选D .【点睛】本题考查了二次根式的运算,熟练掌握各运算的运算法则是解题的关键.3.C解析:C【分析】根据最简二次根式的定义,可得答案.【详解】A、被开方数含分母,故选项A不符合题意;B、被开方数是小数,故选项B不符合题意;C、被开方数不含开的尽的因数,被开方数不含分母,故C符合题意;D、被开方数含开得尽的因数,故D错误不符合题意;故选:C.【点睛】本题考查了最简二次根式,被开方数不含开的尽的因数或因式,被开方数不含分母.4.B解析:B【分析】直接利用二次根式的性质化简得出答案.【详解】3=,故此选项错误;=,正确;D. 5=,故此选项错误;故选:B【点睛】此题主要考查了二次根式的加减,正确掌握二次根式的性质是解题关键.5.A解析:A【分析】根据二次根式定义和有意义的条件:被开方数是非负数,即可判断.【详解】解:A、符合二次根式有意义条件,符合题意;B、-1<0B选项不符合题意;C、是三次根式,所以C选项不符合题意;D、π-4<0D选项不符合题意.故选:A.【点睛】a≥0.6.C解析:C【解析】【分析】利用分母有理化进行计算即可.【详解】由原式得:所以,因为,, 所以. 故选:C【点睛】此题考查解一元一次不等式的整数解,解题关键在于分母有理化. 7.D解析:D【解析】【分析】根据二次根式的被开数的非负性,求的a 的范围,然后再化简绝对值,最后,依据二次根式的定义进行变形即可.【详解】 解:等式20182019a a +--=a 成立,则a ≥2019,∴2019a -, 2019a -,∴a-2019=20182,∴a-20182=2019.故选D .【点睛】本题主要考查的是二次根式有意义的条件,求得a 的取值范围是解题的关键.8.B解析:B【分析】根据二次根式加减运算和二次根式的性质逐项排除即可.【详解】2与3A 选项错误;6626322===B 选项正确; 23(3)8321-=-=,所以C 选项错误;2与3D 选项错误;故选答案为B .【点睛】本题考查了二次根式加减运算和二次根式的性质,掌握同类二次根式的定义和二次根式的性质是解答本题的关键.9.A解析:A【分析】A中,首先将12进行化简为23,然后进一步计算便可判断其正误;B中,被开方数不同的两个二次根式之和不等于和的二次根式,据此可对B进行判断;C中,合并同类二次根式后即可作出判断;D中,无法进行合并运算,据此可对D进行判断.【详解】-=-=,正确,故选项A符合题意;解:A.1232333B.2与3不是同类二次根式,不能合并,故选项B不符合题意;C.43333-=,故选项C不符合题意;D.3与22不能合并,故选项D不符合题意.故选:A.【点睛】此题主要考查了二次根式的加减运算,能够判断出二次根式是同类二次根式是解答此题的关键.10.A解析:A【解析】试题分析:最简二次根式是指不能继续化简的二次根式,A、原式=;B、是最简二次根式,不能化简;C、原式=;D、原式=.考点:最简二次根式11.A解析:A【分析】根据最简二次根式的定义判断即可.【详解】A6是最简二次公式,故本选项正确;B1832C2733D12=23故选A.【点睛】本题考查了最简二次根式,掌握最简二次根式的定义是解题的关键.12.B解析:B【分析】由x+y=-5,xy=3可得到x <0,y <0,再利用二次根式的性质化简得到原式==-,然后把xy=3代入计算即可. 【详解】∵x+y=−5,xy=3,∴x<0,y<0,∴原式===-(x <0,y <0),当xy=3时,原式=-故选B.【点睛】此题考查二次根式的化简求值,解题关键在于先化简.二、填空题13.3【解析】设,则 可化为:,∴,两边同时平方得:,即:,∴,解得:,∴.故答案为:.点睛:本题的解题要点是:设原式中的,从而使原式结构变得简单,这样应用二次根式的相关运算法则化简变形解析:【解析】设24x a -====两边同时平方得:128a a +=++4=,∴3216a =,解得:12a =,===故答案为:点睛:本题的解题要点是:设原式中的24x a -=,从而使原式结构变得简单,这样应用二次根式的相关运算法则化简变形即可求得a 的值,使问题得到解决.14.3【解析】【分析】先根据二次根式有意义的条件得出x+y 的值,再根据非负数的性质列出关于x ,y ,m 的方程组,求出m 的值,进而可得出结论.【详解】依题意得:,解得:x=1,y=1,m =5,∴3解析:3【解析】【分析】先根据二次根式有意义的条件得出x +y 的值,再根据非负数的性质列出关于x ,y ,m 的方程组,求出m 的值,进而可得出结论.【详解】依题意得:35302302x y m x y m x y +--=⎧⎪+-=⎨⎪+=⎩,解得:x =1,y =1,m =5,∴==3.故答案为3.【点睛】 本题考查了二次根式有意义得条件及非负数的性质,熟知二次根式具有非负性是解答此题的关键.15.【解析】试题解析:(5,4)表示第5排从左向右第4个数是:,(9,4)表示第9排从左向右第4个数,可以看出奇数排最中间的一个数都是1, 第9排是奇数排,最中间的也就是这排的第5个数是1,那么第解析:【解析】试题解析:(5,4)表示第5排从左向右第4,(9,4)表示第9排从左向右第4个数,可以看出奇数排最中间的一个数都是1, 第9排是奇数排,最中间的也就是这排的第5个数是1,那么第4, ∴(5,4)与(9,4)故答案为16.【解析】原式=.故答案为.【解析】原式=20152015=17.【解析】根据题意,把被开方数配方为完全平方,然后代入求解,可得====. 故答案是:.【解析】根据题意,把被开方数配方为完全平方,然后代入求解,可得.18.4【详解】根据完全平方公式可得:原式=-xy==5-1=4.解析:4【详解】根据完全平方公式可得:原式=2()x y +-xy=251515151)222=5-1=4. 19.21【分析】根据二次根式及同类二次根式的定义列出方程组即可求出答案.【详解】∵最简二次根式与是同类二次根式,∴ ,解得,,∴故答案为21.解析:21【分析】根据二次根式及同类二次根式的定义列出方程组即可求出答案.【详解】∴1221343nm m-=⎧⎨-=-⎩,解得,73mn=⎧⎨=⎩,∴7321.mn=⨯=故答案为21.20.②③【分析】根据最简二次根式的被开方数不含分母;被开方数不含能开得尽方的因数或因式,可得答案.【详解】②③是最简二次根式,故答案为②③.【点睛】本题考查最简二次根式的定义,解析:②③【分析】根据最简二次根式的被开方数不含分母;被开方数不含能开得尽方的因数或因式,可得答案.【详解】是最简二次根式,故答案为②③.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。
2018中考数学一轮复习1.4二次根式课件随堂演练最新版

知识点二 二次根式的性质
1. a _≥__0(a≥0).
2.( )2=__(a≥0).
3. =a ____.a a 2 |a|
中,a的取值范围是全体实数,化简 略a<0的情况.
时,不要忽
4. a b =__a___b_(a≥0,b≥0).
5.
a
=___a __(a≥0,b>0). b
b
知识点三 二次根式的运算
于__.
2
C.7
的结果
D.-7 的结果等
现代人每天生活在纷繁、复杂的社会当中,紧张、高速的节奏让人难得有休闲和放松的时光。人们在奋斗事业的搏斗中深感身心的疲惫。然而,如果你细心观察,你会发现作 为现代人,其实人们每天都在尽可能的放松自己,调整生活节奏,追求充实快乐的人生。看似纷繁的社会里,人们的生活方式其实也不复杂。大家在忙忙碌碌中体味着平凡的 人生乐趣。由此我悟出一个道理,那就是----生活简单就是幸福。生活简单就是幸福。一首优美的音乐、一支喜爱的歌曲,会让你心境开朗。你可以静静地欣赏你喜爱的音乐, 可以在流荡的旋律中回忆些什么,或者什么都不去想;你可以一个人在房间里大声的放着摇滚,也可以在网上用耳麦与远方的朋友静静地共享;你还可以一边放送着音乐,一 边做着家务....生活简单就是幸福。一杯清茶,或一杯咖啡,放在你的桌边,你的心情格外的怡然。你可以浏览当天的报纸,了解最新的国内外动态,哪怕是街头趣闻;或者捧 一本自己喜欢的杂志、小说,从字里行间获得那种特别的轻松和愉悦....生活简单就是幸福。经过精心的烹制,一桌可心的菜肴就在你的面前,你招呼家人快来品尝,再备上最 喜欢的美酒,这是多么难得的享受!生活简单就是幸福。春暖花开的季节,或是清风送爽的金秋,你和家人一起,或是朋友结伴,走出户外,来一次假日的郊游,享受大自然 带给你的美丽、芬芳。吸一口新鲜的空气,忘却都市的喧嚣,身心仿佛受到一番洗涤,这是一种什么样的轻松感受!生活简单就是幸福。你参加朋友们的一次聚会,那久违的 感觉带给你温馨和激动,在觥酬交错之间你享受与回味真挚的友情。朋友,是那样的弥足珍贵....生活简单就是幸福。周末的夜晚,一家老小围坐在电视机旁,尽享团圆的欢乐 现代人越来越会生活,越来越会用各种不同的方式来放松自己。垂钓、上网、打牌、玩球、唱卡拉OK、下棋.....不一而足。人们根据自己的兴趣爱好寻找放松身心的最佳方式, 在相对固定的社交圈子里怡然的生活,而且不断的扩大交往的圈子,结交新的朋友有时,你会为新添置的一套漂亮时装而快乐无比;有时,你会为孩子的一次小考成绩优异而 倍感欣慰;有时,你会为刚参加的一项比赛拿了名次而喜不自胜;有时,你会为完成了上司交给的一个任务而信心大增生活简单就是幸福!生活简单就是幸福,不意味着我们 放弃了对目标的追逐,是在忙碌中的停歇,是身心的恢复和调整,是下一步冲刺的前奏,是以饱满的精力和旺盛的热情去投入新的“战斗”的一个“驿站”;生活简单就是幸 福,不意味着我们放弃了对生活的热爱,是于点点滴滴中去积累人生,在平平淡淡中寻求充实和快乐。放下沉重的负累,敞开明丽的心扉,去过好你的每一天。生活简单就是 幸福!我的心徜徉于春风又绿的江南岸,纯粹,清透,雀跃,欣喜。原来,真正的愉悦感莫过于触摸到一颗不染的初心。人到中年,初心依然,纯真依然,情怀依然,幸甚至 哉。生而为人,芳华刹那,真的不必太多要求,一盏茶,一本书,一颗笃静的心,三两心灵知己,兴趣爱好一二,足矣。亦舒说:“什么叫做理想生活?不用吃得太好穿得太 好住得太好,但必需自由自在,不感到任何压力,不做工作的奴隶,不受名利的支配,有志同道合的伴侣,活泼可爱的孩子,丰衣足食,已经算是理想。”时间如此猝不及防, 生命如此仓促,忠于自己的内心才是真正的勇敢,以不张扬的姿态,将自己活成一道独一无二的风景,才是最大的成功。试问,你有多久没有靠在门槛上看月亮了,你有多久 没有在家门口的那棵大树下乘凉了,你有多久没有因为一个人一件事而心生感动了,你又有多久没有审视自己的内心了?与命运的较量中,我们被迫前行,却忘记了来时的方
中考数学一轮复习二次根式知识点及练习题附解析

一、选择题1.若有意义,则 x 的取值范围是 ( ) A .3x >B .3x ≥C .3x ≤D .x 是非负数 2.下列计算正确的是( ) A3=±B0-=C=D5=-3.下列计算正确的是( ) A=B3= C= D.21= 4.x 的取值范围是( )A .0x <B .0xC .2xD .2x5.如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是( )123A .BC .D6.已知m=1n=1( ) A .±3B .3C .5D .97.a 的值是( ) A .2B .-1C .3D .-1或38.是同类二次根式,那么a 的值是( ) A .﹣2B .﹣1C .1D .29.30x -=成立的x 的值为( )A .-2B .3C .-2或3D .以上都不对10.下面计算正确的是() A.BCD 2-二、填空题11.化简并计算:...+=________.(结果中分母不含根式)12.设四边形ABCD 是边长为1的正方形,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第二个正方形AEGH ,如此下去…….⑴记正方形ABCD 的边长为11a =,按上述方法所作的正方形的边长依次为234,,,,n a a a a ,请求出234,,a a a 的值;⑵根据以上规律写出n a 的表达式.13.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a ﹣b |+2()a b +的结果是_____.14.222a a ++-1的最小值是______. 15.已知整数x ,y 满足20172019y x x =+--,则y =__________.16.计算:(6+5)2015·(6-5)2016=________. 17.将一组数2,2,6,22,10,…,251按图中的方法排列:若2的位置记为(2,3),7的位置记为(3,2),则这组数中最大数的位置记为______.18.1+x有意义,则x 的取值范围是____.19.28n n 为________. 20.12a 1-能合并成一项,则a =______.三、解答题21.先化简再求值:321943x y x y x x x x y ⎛- ⎝,其中340x y --=. 【答案】(25x x xy -3 【分析】先根据二次根式的混合运算顺序和运算法则化简原式,再利用非负数的性质得出x ,y 的值,继而将x 、y 的值代入计算可得答案. 【详解】解:4y x ⎛- ⎝ ((=-(2x =-∵ 30x - ∴ 3,4x y == 当3,4x y ==时原式(23=-==【点睛】本题主要考查了二次根式的化简求值,解题的关键是掌握非负数的性质和二次根式的混合运算顺序和法则.22.计算:【答案】【分析】先将括号内的二次根式进行化简并合并,再进行二次根式的乘法运算即可. 【详解】解:=== 【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.23.先观察下列等式,再回答下列问题:111111112=+-=+;111112216=+-=+1111133112=+-=+(1) (2)请你按照上面各等式反映的规律,用含n 的等式表示(n 为正整数).【答案】(1)1120(2)()111n n ++(n 为正整数) 【解析】试题分析:(1)从三个式子中可以发现,第一个加数都是1,第二个加数是个分数,设分母为n ,第三个分数的分母就是n+1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积.所以由此可计算给的式子;(2)根据(1)找的规律写出表示这个规律的式子.试题解析:(1)=1+14−141+=1120,1120(2)1 n −1 n 1+=1+()1n n 1+ (n 为正整数).a =,也考查了二次根式的运算.此题是一道阅读题目,通过阅读找出题目隐含的条件.总结:找规律的题目,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.24.计算(11)1)⨯; (2)【答案】(12+;(2). 【解析】分析:先将二次根式化为最简,然后再进行二次根式的乘法运算.详解:(1)11+;=()31-2 ;(2)原式=(2,==3⨯==点睛:此题考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.25.观察下列各式.====…… 根据上述规律回答下列问题. (1)接着完成第⑤个等式: _____;(2)请用含(1)n n ≥的式子写出你发现的规律; (3)证明(2)中的结论.【答案】(1=2(n =+3)见解析 【分析】(1)当n=5=(2(n =+ (3)直接根据二次根式的化简即可证明. 【详解】解:(1=(2(n =+(3=(n ==+【点睛】此题主要考查探索数与式的规律,熟练发现规律是解题关键.26.计算(1(2)21)-【答案】(1)4;(2)3+ 【分析】(1)先把各根式化为最简二次根式,再去括号,合并同类项即可; (2)利用平方差公式和完全平方公式计算即可. 【详解】解:(1)解:原式=4=+4=-(2)解:原式()22161=---63=-+3=+ 【点睛】本题考查了二次根式的混合运算,注意先化简,再进一步利用计算公式和计算方法计算.27.计算:(1)-(2)【答案】(1)21 【分析】(1)先把二次根式化为最简二次根式,然后合并即可; (2)先利用二次根式的乘除法则运算,再合并即可. 【详解】解:(1)原式==(2)原式3+21==.【点睛】本题考查二次根式的混合运算:在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质.28.计算:(1 ;(2)))213【答案】(1)2)1-. 【分析】(1)根据二次根式的混合运算法则可以算得答案. (2)结合整式的乘法公式和二次根式的运算法则计算. 【详解】(1)原式==(2)原式=212---=1-.【点睛】本题考查二次根式的运算,熟练掌握二次根式的意义、性质和运算法则是解题关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】直接利用二次根式有意义的条件进而分析得出答案.【详解】有意义的x的取值范围是:x≥3.故选:B.【点睛】本题考查二次根式有意义的条件,解题关键是正确掌握定义和二次根式有意义的条件.2.B解析:B【分析】直接利用二次根式的性质化简得出答案.【详解】=,故此选项错误;3=,正确;D. 5=,故此选项错误;故选:B【点睛】此题主要考查了二次根式的加减,正确掌握二次根式的性质是解题关键.3.A解析:A【分析】分别进行二次根式的乘除法、加减法运算,然后选择正确答案.【详解】解:======,原式计算错误;D. 2220=-=,原式计算错误; 故应选:A 【点睛】本题考查了二次根式的乘除法和加减法,掌握运算法则是解答本题的关键.4.D解析:D 【分析】根据二次根式有意义的条件(被开方数≥0),列出不等式求解即可得到答案; 【详解】即:20x -≥ , 解得:2x , 故选:D ; 【点睛】本题主要考查了二次根式有意义的条件,掌握二次根式有意义即被开方数≥0是解题的关键.5.B解析:B 【解析】【分析】由图形可知,第n (n =案.【详解】由图形可知,第n (n =∴第8=,则第9行从左至右第5=,故选B .【点睛】本题主要考查数字的变化类,解题的关键是根据题意得出第n 行最后一个数为6.B解析:B 【分析】由已知可得:2,(11m n mn +==+-=-,【详解】由已知可得:2,(11m n mn +==+-=-,原式3===故选B 【点睛】考核知识点:二次根式运算.配方是关键.7.C解析:C 【分析】根据同类二次根式的性质即可求出答案. 【详解】由题意可知:a 2-3=2a ∴解得:a=3或a=-1当a=-1时,该二次根式无意义, 故a=3 故选C . 【点睛】本题考查二次根式的概念,解题的关键是熟练正确理解最简二次根式以及同类二次根式的概念.8.D解析:D 【分析】根据最简二次根式与同类二次根式的定义列方程组求解. 【详解】由题意,得 7-2a=3,解得a=2, 故选D . 【点睛】此题主要考查了同类二次根式的定义,即:二次根式化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.9.B解析:B 【分析】根据二次根式有意义的条件以及二次根式的乘法进行分析即可得答案. 【详解】x 30-=,0=0=, ∴x=-2或x=3,又∵2030x x +≥⎧⎨-≥⎩, ∴x=3, 故选B. 【点睛】本题考查了二次根式的乘法以及二次根式有意义的条件,熟练掌握相关知识是解题的关键.10.B解析:B 【分析】根据二次根式的混合运算方法,分别进行运算即可. 【详解】解:A A 选项错误;B ===3,故B 选项正确;C ==C 选项错误;D .2(2)2-==,故D 选项错误;故选B . 【点睛】考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.二、填空题11.【分析】根据=,将原式进行拆分,然后合并可得出答案. 【详解】 解:原式= =. 故答案为. 【点睛】此题考查了二次根式的混合运算,解答本题的关键是将原式进行拆分,有一定的技巧性,注意仔细观【分析】-,将原式进行拆分,然后合并可得出答案. 【详解】解:原式====220400x x x-.【点睛】此题考查了二次根式的混合运算,解答本题的关键是将原式进行拆分,有一定的技巧性,注意仔细观察.12.(1)a2=,a3=2,a4=2;(2)an =(n 为正整数).【解析】(1)∵四边形ABCD 是正方形,∴AB=BC =1,∠B=90°.∴在Rt△ABC 中,AC ===.同理:AE =2,EH =2,解析:(1)a 2,a 3=2,a 4=;(2)a n n 为正整数).【解析】(1)∵四边形ABCD 是正方形,∴AB =BC =1,∠B =90°.∴在Rt △ABC 中,ACAE =2,EH =,…,即a 2a 3=2,a 4=(2)an n 为正整数).13.﹣2b【解析】由题意得:b <a <0,然后可知a-b >0,a+b <0,因此可得|a ﹣b|+=a ﹣b+[﹣(a+b )]=a ﹣b ﹣a ﹣b=﹣2b .故答案为﹣2b .点睛:本题主要考查了二次根式和绝对解析:﹣2b【解析】由题意得:b <a <0,然后可知a-b >0,a+b <0,因此可得|a ﹣=a ﹣b+[﹣(a+b )]=a ﹣b ﹣a ﹣b=﹣2b .故答案为﹣2b .点睛:本题主要考查了二次根式和绝对值的性质与化简.特别因为a.b都是数轴上的实数,注意符号的变换.14.0【解析】【分析】先将化简为就能确定其最小值为1,再和1作差,即可求解。
中考数学一轮复习二次根式知识点及练习题及答案

一、选择题1.下列计算正确的是( ) A .()25-=﹣5 B .4y =2y C .822aaa=D .235+=2.二次根式1x -中字母x 的取值可以是( ) A .2B .0C .12-D .-13.若实数m 、n 满足等式402n m -+=-,且m 、n 恰好是等腰ABC 的两条边的边长,则ABC 的周长( ) A .12B .10C .8D .6 4.下列计算正确的是( )A .325+=B .2222+=C .2651-=D .822-=5.计算:()555+=( )A .55+B .555+C .525+D .105 6.式子2x -在实数范围内有意义,则x 的取值范围是( ) A .0x <B .0xC .2xD .2x7.“分母有理化”是我们常用的一种化简的方法,如:23(23)(23)74323(23)(23)+++==+--+,除此之外,我们也可以用平方之后再开方的方式来化简一些有特点的无理数,如:对于3535+--,设3535x =+--,易知3535+>-,故0x >,由22(3535)35352(35)(35)2x =+--=++--+-=,解得2x =,即35352+--=.根据以上方法,化简3263363332-+--++后的结果为( ) A .536+ B .56+ C .56- D .536- 8.若实数a ,b 满足+=3,﹣=3k ,则k 的取值范围是( )A .﹣3≤k ≤2B .﹣3≤k ≤3C .﹣1≤k ≤1D .k ≥﹣19.下列二次根式中,最简二次根式是( ) A 23a B 13C 2.5D 22a b -10.使式子2124x x ++-成立的x 的取值范围是( ) A .x≥﹣2B .x >﹣2C .x >﹣2,且x ≠2D .x≥﹣2,且x ≠2二、填空题11.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a ﹣b |+2()a b +的结果是_____.12.已知a 73+a 3+5a 2﹣4a ﹣6的值为_____. 13.下面是一个按某种规律排列的数阵:11第行325 62第行7223 10 11 233第行 13154 1732 19254第行根据数阵排列的规律,第 5 行从左向右数第 3 个数是 ,第 n (n 3≥ 且 n 是整数)行从左向右数第 n 2- 个数是 (用含 n 的代数式表示). 14.若实数x ,y ,m 满足等式()23532322x y m x y m x y x y +--+-=+---m+4的算术平方根为________.15.已知|a ﹣20072008a -=a ,则a ﹣20072的值是_____. 16.11882. 17.若a 、b 为实数,且b 2211a a -+-+4,则a+b =_____. 18.3a ,小数部分是b 3a b -=______. 191262_____.20.12a 1-能合并成一项,则a =______.三、解答题21.1123124231372831-+-1【分析】先根据二次根式的乘除法法则计算乘除法,同时分别化简各加数中的二次根式,最后计算加减法.【详解】22-+=1)2(3+⨯=121.【点睛】此题考查二次根式的混合运算,二次根式的化简,正确掌握二次根式的化简法则是解题的关键.22.若x,y为实数,且y12.求xyyx++2-xyyx+-2的值.【分析】根据二次根式的性质,被开方数大于等于0可知:1﹣4x≥0且4x﹣1≥0,解得x=14,此时y=12.即可代入求解.【详解】解:要使y有意义,必须140410xx-≥⎧⎨-≤⎩,即1414xx⎧≤⎪⎪⎨⎪≥⎪⎩∴x=14.当x=14时,y=12.又∵xyyx++2-xyyx+-2=-|∵x=14,y=12,∴xy<yx.∴+当x=14,y=12时,原式=.【点睛】(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.23.计算:21)3)(3--【答案】.【解析】【分析】先运用完全平方公式、平方差公式进行化简,然后进行计算.【详解】解:原式2222]-4【点睛】本题主要考查了二次根式的化简;特别是灵活运用全平方公式、平方差公式是解答本题的关键.24.阅读下面的解答过程,然后作答:m和n,使m2+n2=a 且,则a可变为m2+n2+2mn,即变成(m+n)2例如:∵=)2+)2=)2∴请你仿照上例将下列各式化简(12【答案】(1)2-【分析】参照范例中的方法进行解答即可. 【详解】解:(1)∵22241(1+=+=,1=(2)∵2227-=-=,∴==25.先化简再求值:4y x ⎛- ⎝,其中30x -=.【答案】(2x - 【分析】先根据二次根式的混合运算顺序和运算法则化简原式,再利用非负数的性质得出x ,y 的值,继而将x 、y 的值代入计算可得答案. 【详解】解:4y x ⎛- ⎝ ((=-(2x =-∵ 30x - ∴ 3,4x y == 当3,4x y ==时原式(23=-==【点睛】本题主要考查了二次根式的化简求值,解题的关键是掌握非负数的性质和二次根式的混合运算顺序和法则.26.先化简,再求值:(()69x x x x --+,其中1x =.【答案】化简得6x+6,代入得 【分析】根据整式的运算公式进行化简即可求解. 【详解】(()69x x x x +--+=22369x x x --++ =6x+6把1x=代入原式=61)【点睛】此题主要考查实数的运算,解题的关键熟知整式的运算法则.27.一样的式子,其实我==3==,1===;以上这种化简的步骤叫做分母有理化还可以用以下方法化简:221111===-=(12)化简:2n+++【答案】(1-2.【解析】试题分析:(12看出5-3,根据平方差公式分解因式,最后进进约分即可.(2)先每一个二次根式分母有理化,再分母不变,分子相加,最后合并即可.试题解析:(1)=====(2)原式2n+++=12.考点:分母有理化.28.计算(1))(12112-⨯--⎝⎭(2)已知:11,22x y ==,求22x xy y ++的值.【答案】(1)28-;(2)17. 【分析】(1)先利用完全平方公式和平方差公式计算二次根式的乘法、负指数幂运算,再计算二次根式的加减法即可得;(2)先求出x y +和xy 的值,再利用完全平方公式进行化简求值即可得. 【详解】(1)原式()((221312⎡⎤=⨯+--⎢⎥⎣⎦,(()1475452=⨯+---230=+28=-;(2)(1119,22x y==,1122x y ∴+=+=,()11119112224xy =⨯=⨯-=,则()222x xy y x y xy ++=+-,22=-,192=-, 17=. 【点睛】本题考查了二次根式的混合运算、完全平方公式和平方差公式等知识点,熟练掌握二次根式的运算法则是解题关键.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C解析:C 【分析】根据二次根式的性质对A 、B 进行判断;利用分母有理化对C 进行判断;利用二次根式的加减法对D 进行判断. 【详解】解:A 、原式=5,所以A 选项错误;B 、原式=,所以B 选项错误;Ca =,所以C 选项正确;D D 选项错误. 故选:C . 【点睛】本题主要考查了二次根式的性质以及合并同类项法则,正确化简各式是解题的关键.2.A解析:A 【分析】根据二次根式有意义,被开方数非负列出不等式,求解,再依此选择合适的选项. 【详解】 解:由题意得: x-1≥0 解之:x≥1.1>. 故选:A . 【点睛】本题考查二次根式有意义的条件.理解二次根式有意义,被开方数非负是解题关键.3.B解析:B 【分析】先根据绝对值的非负性、二次根式的非负性求出m 、n 的值,再根据三角形的三边关系、等腰三角形的定义求出第三边长,然后根据三角形的周长公式即可得. 【详解】由题意得:20,40m n -=-=, 解得2,4m n ==,设等腰ABC 的第三边长为a ,,m n 恰好是等腰ABC 的两条边的边长,n m a n m ∴-<<+,即26a <<,又ABC 是等腰三角形, 4a n ∴==,++=,则ABC的周长为24410故选:B.【点睛】本题考查了绝对值的非负性、二次根式的非负性、三角形的三边关系、等腰三角形的定义等知识点,根据三角形的三边关系和等腰三角形的定义求出第三边长是解题关键.4.D解析:D【分析】直接利用二次根式的加减运算法则计算得出答案.【详解】解:AB、无法计算,故此选项错误;C、D,正确.故选:D.【点睛】此题主要考查了二次根式的加减运算,正确掌握相关运算法则是解题关键.5.B解析:B【分析】根据乘法分配律可以解答本题.【详解】)5=5+故选:B.【点睛】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.6.D解析:D【分析】根据二次根式有意义的条件(被开方数≥0),列出不等式求解即可得到答案;【详解】x-≥,即:20x,解得:2故选:D;【点睛】本题主要考查了二次根式有意义的条件,掌握二次根式有意义即被开方数≥0是解题的关键.7.D解析:D 【分析】根据题中给的方法分别对633633--+和3232-+进行化简,然后再进行合并即可. 【详解】设633633x =--+,且633633-<+, ∴0x <,∴26332(633)(633)633x =---+++, ∴212236x =-⨯=, ∴6x =-, ∵3252632-=-+, ∴原式5266=--536=-, 故选D . 【点睛】本题考查了二次根式的混合运算,涉及了分母有理化等方法,弄清题意,理解和掌握题中介绍的方法是解题的关键.8.C解析:C 【解析】依据二次根式有意义的条件即可求得k 的范围. 解:若实数a ,b 满足+=3,又有≥0,≥0,故有0≤≤3 ①,0≤≤3,则﹣3≤-≤0 ②+②可得﹣3≤﹣≤3,又有﹣=3k ,即﹣3≤3k ≤3,化简可得﹣1≤k ≤1.故选C .点睛:本题主要考查了二次根式的意义和性质.解题的关键在于二次根式具有双非负性,即≥0(a ≥0),利用其非负性即可得到0≤≤3,0≤≤3,并对0≤≤3变形得到﹣3≤-≤0,进而即可转化为关于k 的不等式组,求出k 的取值范围.9.A解析:A 【解析】试题分析:最简二次根式是指不能继续化简的二次根式,A 、原式=;B 、是最简二次根式,不能化简;C 、原式=;D 、原式=. 考点:最简二次根式 10.C解析:C【分析】根据分式和二次根式有意义的条件(分式的分母不为零,二次根式的被开方数为非负数)即可得到结果.【详解】解:由题意得:2x -40≠,2x ∴≠±,又∵20x +≥,∴x ≥-2.∴x 的取值范围是:x>-2且2x ≠.故选C.【点睛】本题考查了分式和二次根式有意义的条件,解不等式,是基础题.二、填空题11.﹣2b【解析】由题意得:b <a <0,然后可知a-b >0,a+b <0,因此可得|a ﹣b|+=a ﹣b+[﹣(a+b )]=a ﹣b ﹣a ﹣b=﹣2b . 故答案为﹣2b .点睛:本题主要考查了二次根式和绝对解析:﹣2b【解析】由题意得:b <a <0,然后可知a-b >0,a+b <0,因此可得|a ﹣()2a b +=a ﹣b+[﹣(a+b )]=a ﹣b ﹣a ﹣b=﹣2b .故答案为﹣2b .点睛:本题主要考查了二次根式和绝对值的性质与化简.特别因为a .b 都是数轴上的实数,注意符号的变换. 12.-4【分析】先将a 进行化简,然后再进一步分组分解代数式,最后代入求得答案即可.【详解】解:当a=-=-=-3时,原式=a3+6a2+9a-(a2+6a+9)-7a+3=a(a+3)2-(解析:-4【分析】先将a进行化简,然后再进一步分组分解代数式,最后代入求得答案即可.【详解】-3时,解:当a原式=a3+6a2+9a-(a2+6a+9)-7a+3=a(a+3)2-(a+3)2-7a+3=7a-7-7a+3=-4.故答案为:-4.【点睛】本题综合运用了二次根式的化简,提公因式及完全平方公式法分解因式,熟练掌握分母有理化的方法及因式分解的方法是解题的关键.13.;.【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】观察表【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】观察表格中的数据可得,第5行从左向右数第3=∵第(n-1,∴第n(n≥3且n是整数)行从左向右数第n-2个数是..【点睛】本题是对数字变化规律的考查,观察出被开方数是连续自然数并且每一行的最后一个数的被开方数是所在的行数乘比行数大1的数是解题的关键.14.3【解析】【分析】先根据二次根式有意义的条件得出x+y的值,再根据非负数的性质列出关于x,y,m的方程组,求出m的值,进而可得出结论.【详解】依题意得:,解得:x=1,y=1,m=5,∴3解析:3【解析】【分析】先根据二次根式有意义的条件得出x+y的值,再根据非负数的性质列出关于x,y,m的方程组,求出m的值,进而可得出结论.【详解】依题意得:35302302x y mx y mx y+--=⎧⎪+-=⎨⎪+=⎩,解得:x=1,y=1,m=5,∴==3.故答案为3.【点睛】本题考查了二次根式有意义得条件及非负数的性质,熟知二次根式具有非负性是解答此题的关键.15.2008【解析】分析:本题首先能够根据二次根式的被开方数为非负数的条件,得到a的取值范围;再根据a的取值范围,化简去掉绝对值;最后进行整理变形.详解:∵|a﹣2007|+=a,∴a≥2008,解析:2008【解析】分析:本题首先能够根据二次根式的被开方数为非负数的条件,得到a的取值范围;再根据a的取值范围,化简去掉绝对值;最后进行整理变形.详解:∵|a﹣2007=a,∴a≥2008,∴a﹣2007=a,=2007,两边同平方,得:a﹣2008=20072,∴a﹣20072=2008.故答案为:2008.点睛:解决此题的关键是能够得到a的取值范围,从而化简绝对值并变形.16.【解析】【详解】根据二次根式的性质和二次根式的化简,可知==.故答案为.【点睛】此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可.【解析】【详解】22.故答案为2. 【点睛】 此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可.17.5或3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得,解得a =1,或a =﹣解析:5或3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得221010a a ⎧-≥⎨-≥⎩, 解得a =1,或a =﹣1,b =4,当a =1时,a +b =1+4=5,当a =﹣1时,a +b =﹣1+4=3,故答案为5或3.【点睛】本题考查了函数表达式有意义的条件,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.18.【详解】若的整数部分为a,小数部分为b,∴a=1,b=,∴a-b==1.故答案为1.解析:【详解】a,小数部分为b,∴a=1,b1,∴-b1)=1.故答案为1.19.6【分析】利用二次根式乘除法法则进行计算即可.【详解】===6,故答案为6.【点睛】本题考查了二次根式的乘除法,熟练运用二次根式的乘除法法则是解题的关键.解析:6【分析】==进行计算即可.【详解】=6,故答案为6.【点睛】本题考查了二次根式的乘除法,熟练运用二次根式的乘除法法则是解题的关键.20.4【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.【详解】解:=2,由最简二次根式与能合并成一项,得a-1=3.解解析:4【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.【详解】能合并成一项,得a-1=3.解得a=4.故答案为:4.【点睛】本题考查同类二次根式和最简二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。
中考数学一轮复习二次根式知识点总结含答案
一、选择题1.若01x <<=( ). A .2xB .2x-C .2x -D .2x2.下列各式计算正确的是( )A =B =C .23=D 2=-3.下列计算正确的是( )A =B .2=C .1=D =4.下列各式一定成立的是( )A 2a b =+B 21a =+C 21a =-D ab =5.已知m 、n m ,n )为( ) A .(2,5)B .(8,20)C .(2,5),(8,20)D .以上都不是6.设a b 21b a-的值为( )A 1+B 1+C 1D 17.设1199++S 的最大整数[S]等于( ) A .98B .99C .100D .1018.下列计算正确的是( )A 6=±B .=C .6=D =(a≥0,b≥0)9.设0a >,0b >=的值是( ) A .2B .14C .12D .315810.古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦﹣秦九韶公式:如果一个三角形的三边长分别是a ,b ,c ,记2a b cp ++=,那么三角形的面积为()()()S p p a p b p c =---如图,在ABC ∆中,A ∠,B ,C ∠所对的边分别记为a ,b ,c ,若5a =,6b =,7c =,则ABC ∆的面积为( )A .66B .63C .18D .192二、填空题11.将2(3)(0)3a a a a-<-化简的结果是___________________.12.计算(π-3)02-211(223)-4--22--()的结果为_____. 13.实数a ,b 在数轴上的位置如图所示,则化简()22b a b +-﹣|a +b |的结果是_____.14.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a ﹣b |+2()a b +的结果是_____.15.已知a 73+a 3+5a 2﹣4a ﹣6的值为_____. 16.已知72x =-,a 是x 的整数部分,b 是x 的小数部分,则a-b=_______ 17.已知实数m 、n 、p 满足等式33352m n m n m n p m n p -+--+----,则p =__________.18.3a ,小数部分是b 3a b -=______. 19.化简:3222=_____. 20.若实数23a =-,则代数式244a a -+的值为___. 三、解答题21.计算:(1(2))((222+-+.【答案】(1) 【分析】(1)先化简二次根式,再合并同类二次根式即可; (2)根据平方差公式化简,再化简、合并同类二次根式即可. 【详解】(1==(2))((222+-+=2223--+ =5-4-3+2 =022.(112=3=4=;……写出④ ;⑤ ;(2)归纳与猜想.如果n 为正整数,用含n 的式子表示这个运算规律; (3)证明这个猜想.【答案】(12=5==;(2=3)证明见解析. 【解析】 【分析】(1)根据题目中的例子直接写出结果; (2)根据(1)中的特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子进行化简,即可得到等号右边的式子,从而可以解答本题. 【详解】解:(1)由例子可得,④5=25,(2)如果n 为正整数,用含nn,(3)证明:∵n 是正整数,n .n.故答案为5=25 n;(3)证明见解析. 【点睛】本题考查了二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.23.已知m ,n 满足m 4n=3+.【答案】12015【解析】 【分析】由43m n +=2﹣2)﹣3=0,将,代入计算即可.【详解】解:∵4m n +=3,)22﹣2)﹣3=0,)2﹣23=0,+13)=0,=﹣13,∴原式=3-23+2012=12015.【点睛】本题主要考查二次根式的混合运算,解题的关键是熟练掌握完全平方公式的运用及二次根式性质.24.已知x=2,求代数式(7+x 2+(2)x【答案】2【解析】试题分析:先求出x 2,然后代入代数式,根据乘法公式和二次根式的性质,进行计算即可.试题解析:x 2=(2)2=7﹣则原式=(7﹣+(2=49﹣25.小明在解决问题:已知2a2﹣8a+1的值,他是这样分析与解的:∵=2∴a﹣2=∴(a﹣2)2=3,a2﹣4a+4=3∴a2﹣4a=﹣1∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1请你根据小明的分析过程,解决如下问题:(1(2)若,求4a2﹣8a+1的值.【答案】(1)9;(2)5.【解析】试题分析:(1)此式必须在把分母有理化后才能实现化简,即各分式分子分母同乘以一个因式,使得1===.(2)先对a1,若就接着代入求解,计算量偏大.模仿小明做法,可先计算2(1)a-的值,就能较为简单地算出结果;也可对这个二次三项式进行配方,再代入求值.后两种方法都比直接代入计算量小很多.解:(1)原式=1)+++⋯(2)∵1a===,解法一:∵22(1)11)2a-=-=,∴2212a a-+=,即221a a-=∴原式=24(2)14115a a-+=⨯+=解法二∴原式=24(211)1a a-+-+24(1)3a=--211)3 =--4235=⨯-=点睛:(1得22=-=-a b,去掉根号,实现分母有理化.(2)当已知量为根式时,求这类二次三项式的值,直接代入求值,计算量偏大,若能巧妙利用完全平方公式或者配方法,计算要简便得多.26.-10【分析】先根据二次根式的性质和平方差公式化简,然后再进行计算即可【详解】=(22⎡⎤--⎢⎥⎣⎦=()212--10+.10.【点睛】本题主要考查了二次根式的性质、平方差公式,灵活运用二次根式的性质化简是解答本题的关键.27.先化简,再求值:2222212⎛⎫----÷⎪-+⎝⎭x y x yxx x xy y,其中x y==.【答案】原式x yx-=-,把x y==代入得,原式1=-.【详解】试题分析:先将括号里面进行通分,再将能分解因式的分解因式,约分化简即可.试题解析:2222212⎛⎫----÷⎪-+⎝⎭x y x yxx x xy y()()()222=x yx y x xx x x x y x y-⎛⎫---⋅⎪+-⎝⎭=y x x yx x y ---⋅+ x yx-=-把x y ==代入得:原式1==-+考点:分式的化简求值.28.先化简,再求值:2443(1)11m m m m m -+÷----,其中2m =.【答案】22mm-+ 1. 【解析】分析:先根据分式的混合运算顺序和运算法则化简原式,再将m 的值代入计算可得.详解:原式=221m m --()÷(31m -﹣211m m --) =221m m --()÷241m m --=221m m --()•122m m m --+-()() =﹣22m m -+=22m m-+当m ﹣2时,原式===﹣1+=1.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据二次根式的意义先化简各项,再进行分式的加减运算可得出解. 【详解】 解:∵0<x <1, ∴0<x <1<1x, ∴10x x +>,10x x-<.原式=11x x x x+-- =11x x x x ++- =2x . 故选D .点睛:本题考查了二次根式的性质和绝对值化简,也考查了分式的加减.2.C解析:C 【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题. 【详解】2,故选项A 错误;=2,故选项B 错误;C. 23=,故选项C 正确;2=,故选项D 错误;故选C. 【点睛】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.3.D解析:D【分析】直接利用二次根式的加减运算法则计算得出答案.【详解】解:AB、无法计算,故此选项错误;C、D,正确.故选:D.【点睛】此题主要考查了二次根式的加减运算,正确掌握相关运算法则是解题关键.4.B解析:B【分析】分别利用二次根式的性质化简求出即可.【详解】解;A2=|a+b|,故此选项错误;B2+1,正确;C,无法化简,故此选项错误;D,故此选项错误;故选:B.【点睛】本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键.5.C解析:C【分析】根据二次根式的性质分析即可得出答案.【详解】解:∵m、n是正整数,∴m=2,n=5或m=8,n=20,当m=2,n=5时,原式=2是整数;当m=8,n=20时,原式=1是整数;即满足条件的有序数对(m,n)为(2,5)或(8,20),故选:C.【点睛】本题考查了二次根式的性质和二次根式的运算,估算无理数的大小的应用,题目比较好,有一定的难度.6.B解析:B 【分析】首先分别化简所给的两个二次根式,分别求出a 、b 对应的小数部分,然后化简、运算、求值,即可解决问题. 【详解】∴a ,∴b ,∴21b a -, 故选:B . 【点睛】该题主要考查了二次根式的化简与求值问题;解题的关键是灵活运用二次根式的运算法则来分析、判断、解答.7.B解析:B 【分析】1111n n =+-+,代入数值,求出=99+1-1100,由此能求出不大于S 的最大整数为99.【详解】∵==()211n n n n ++=+ =111+1n n-+, ∴=1111111+11122399100-++-+++- =199+1100- =100-1100,∴不大于S 的最大整数为99.故选B.【点睛】1111n n=+-+是解答本题的基础. 8.D解析:D6=,故A 不正确;根据二次根式的除法,可直接得到2=,故B 不正确;根据同类二次根式的性质,可知C 不正确;=(a≥0,b≥0)可知D 正确.故选:D 9.C解析:C【分析】=变形后可分解为:)=0,从而根据a>0,b>0可得出a和b的关系,代入即可得出答案.【详解】由题意得:a=+15b,∴+)=0,=,a=25b,12.故选C.【点睛】本题考查二次根式的化简求值,有一定难度,根据题意得出a和b的关系是关键.10.A解析:A【分析】利用阅读材料,先计算出p的值,然后根据海伦公式计算ABC∆的面积;【详解】7a=,5b=,6c=.∴56792p++==,∴ABC∆的面积S==故选A.【点睛】考查了二次根式的应用,解题的关键是代入后正确的运算,难度不大.二、填空题11..【分析】根据二次根式的性质化简即可.【详解】∵a<0.∴a-3<0,∴==.故答案为:.【点睛】本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键.解析:【分析】根据二次根式的性质化简即可.【详解】∵a <0.∴a -3<0,∴(a -=-=故答案为:【点睛】本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键.12.﹣6【解析】根据零指数幂的性质,二次根式的性质,负整指数幂的性质,可知(π-3)0=1﹣(3﹣2)﹣4×﹣4=1﹣3+2﹣2﹣4=﹣6.故答案为﹣6.解析:﹣6【解析】根据零指数幂的性质01(0)a a =≠,二次根式的性质,负整指数幂的性质1(0)pp a a a -=≠,可知(π-3)0-21-2()=1﹣(3﹣)﹣4×2﹣4=1﹣﹣﹣4=﹣6. 故答案为﹣6.13.3b【分析】先判断a ,b 的取值范围,并分别判断a-b ,a+b 的符号,再根据二次根式的性质和绝对值的性质化简,计算即可求解.【详解】解:由数轴可知:b >0,a ﹣b <0,a+b <0,∴原式=|解析:3b【分析】先判断a ,b 的取值范围,并分别判断a-b ,a+b 的符号,再根据二次根式的性质和绝对值的性质化简,计算即可求解.【详解】解:由数轴可知:b >0,a ﹣b <0,a +b <0,∴原式=|b |+|a ﹣b |﹣|a +b |=b﹣(a﹣b)+(a+b)=b﹣a+b+a+b=3b,故答案为:3b【点睛】=和绝对值的性质是解题的关a键.14.﹣2b【解析】由题意得:b<a<0,然后可知a-b>0,a+b<0,因此可得|a﹣b|+=a﹣b+[﹣(a+b)]=a﹣b﹣a﹣b=﹣2b.故答案为﹣2b.点睛:本题主要考查了二次根式和绝对解析:﹣2b【解析】由题意得:b<a<0,然后可知a-b>0,a+b<0,因此可得|a﹣=a﹣b+[﹣(a+b)]=a﹣b﹣a﹣b=﹣2b.故答案为﹣2b.点睛:本题主要考查了二次根式和绝对值的性质与化简.特别因为a.b都是数轴上的实数,注意符号的变换.15.-4【分析】先将a进行化简,然后再进一步分组分解代数式,最后代入求得答案即可. 【详解】解:当a=-=-=-3时,原式=a3+6a2+9a-(a2+6a+9)-7a+3=a(a+3)2-(解析:-4【分析】先将a进行化简,然后再进一步分组分解代数式,最后代入求得答案即可.【详解】-3时,解:当a原式=a3+6a2+9a-(a2+6a+9)-7a+3=a(a+3)2-(a+3)2-7a+3=7a-7-7a+3=-4.故答案为:-4.【点睛】本题综合运用了二次根式的化简,提公因式及完全平方公式法分解因式,熟练掌握分母有理化的方法及因式分解的方法是解题的关键.16.【分析】先把x 分母有理化求出x= ,求出a 、b 的值,再代入求出结果即可.【详解】∵∴∴∴【点睛】本题考查了分母有理化和估算无理数的大小的应用,解此题的关键是求a 、b 的值.解析:6【分析】先把x 分母有理化求出2 ,求出a 、b 的值,再代入求出结果即可.【详解】2x === ∵23<<∴425<<∴4,242a b ==-=∴42)6a b -=-=【点睛】本题考查了分母有理化和估算无理数的大小的应用,解此题的关键是求a 、b 的值. 17.5【解析】试题解析:由题可知,∴,∴,∴,①②得,,解方程组得,∴.故答案为:5.解析:5【解析】试题解析:由题可知3030m n m n -+≥⎧⎨--≥⎩, ∴3m n +=,0=,∴35200m n p m n p +--=⎧⎨--=⎩①②, ①-②得2620m n +-=,31m n +=,解方程组331m n m n +=⎧⎨+=⎩得41m n =⎧⎨=-⎩, ∴4(1)5p m n =-=--=.故答案为:5.18.【详解】若的整数部分为a ,小数部分为b ,∴a=1,b=,∴a-b==1.故答案为1.解析:【详解】a ,小数部分为b ,∴a =1,b1,∴-b1)=1.故答案为1.19.【分析】直接合并同类二次根式即可.【详解】解:.故答案为【点睛】合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.解析:【分析】直接合并同类二次根式即可.【详解】解:=.故答案为【点睛】合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变. 20.3【解析】∵ =,∴=(a-2)2==3,故答案为3.解析:3【解析】∵a =∴244a a -+=(a-2)2=()222+=3, 故答案为3.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。
中考数学一轮复习二次根式知识点及练习题含答案
一、选择题1.下列计算正确的是( )A .()222a b a b -=-B .()322x x 8x ÷=+C .1a a a a ÷⋅=D 4=-2.对于所有实数a ,b ,下列等式总能成立的是( )A .2a b =+B 22a b =+C a b =+D a b =+ 3.下列各式中,正确的是( )A 2=±B =C 3=-D 2=4.有意义,则x 的取值范围是( ) A .x≠2 B .x >-2 C .x <-2 D .x≠-25.下列各式中正确的是( )A 6B 2=-C 4D .2(=76.下列式子中,为最简二次根式的是( )A B C D7.已知m 、n m ,n )为( )A .(2,5)B .(8,20)C .(2,5),(8,20)D .以上都不是8.若a,b =,则a b 的值为( ) A .12 B .14 C .321+ D9.设0a >,0b >=的值是( )A .2B .14C .12D .3158 10.下列属于最简二次根式的是( )A .8B .5C .4D .13 二、填空题 11.已知实数,x y 满足()()22200820082008x x y y ----=,则2232332007x y x y -+--的值为______.12.实数a ,b 在数轴上的位置如图所示,则化简()22b a b +-﹣|a +b |的结果是_____.13.已知实数a 、b 、c 在数轴上的位置如图所示,化简2a ﹣|a ﹣c |+2()c b -﹣|﹣b |=_______.14.若()()22223310x y x y +++-+=,则222516x y +=______. 15.222a a ++-1的最小值是______.16.若613-的整数部分为x ,小数部分为y ,则(213)x y +的值是___.17.已知|a ﹣2007|+2008a -=a ,则a ﹣20072的值是_____.18.已知a ,b 是正整数,若有序数对(a ,b )使得112()a b+的值也是整数,则称(a ,b )是112()a b +的一个“理想数对”,如(1,4)使得112()a b+=3,所以(1,4)是112()a b +的一个“理想数对”.请写出112()a b+其他所有的“理想数对”: __________. 19.计算:11882--=_____________. 20.实数a 、b 在数轴上的位置如图所示,则化简()222a b a b -+-=_____.三、解答题21.小明在解决问题:已知a 23+2a 2-8a +1的值,他是这样分析与解答的: 因为a 23+()()32323+-=23,所以a -2所以(a -2)2=3,即a 2-4a +4=3.所以a 2-4a =-1.所以2a 2-8a +1=2(a 2-4a)+1=2×(-1)+1=-1. 请你根据小明的分析过程,解决如下问题:(1)计算:= - . (2)… (3)若a,求4a 2-8a +1的值.【答案】 ,1;(2) 9;(3) 5【分析】(11==;(2)根据例题可得:对每个式子的分子和分母中同时乘以与分母中的式子相乘符合平方差公式的根式,去掉分母,然后合并同类项二次根式即可求解;(3)首先化简a ,然后把所求的式子化成()2413a --代入求解即可.【详解】(1)计算:1=; (2)原式)1...11019=++++==-=;(3)1a ===, 则原式()()224213413a a a =-+-=--,当1a =时,原式2435=⨯-=.【点睛】本题考查了二次根式的化简求值,正确读懂例题,对根式进行化简是关键.22.在学习了二次根式后,小明同学发现有的二次根式可以写成另一个二次根式的平方的形式.比如:2224312111-=-=-+=).善于动脑的小明继续探究:当a b m n 、、、为正整数时,若2a n +=+),则有22(2a m n =+,所以222a m n =+,2b mn =.请模仿小明的方法探索并解决下列问题:(1)当a b m n 、、、为正整数时,若2a n =+),请用含有mn 、的式子分别表示a b 、,得:a = ,b = ;(2)填空:13-( - 2;(3)若2a m +=(),且a m n 、、为正整数,求a 的值.【答案】(1)223a m n =+,2b mn =;(2)213--;(3)14a =或46.【解析】试题分析:(1)把等式)2a n +=+右边展开,参考范例中的方法即可求得本题答案; (2)由(1)中结论可得:2231324a m nb mn ⎧=+=⎨==⎩,结合a b m n 、、、都为正整数可得:m=2,n=1,这样就可得到:213(1-=-;(3)将()2a m +=+右边展开,整理可得:225a m n =+,62mn =结合a m n 、、为正整数,即可先求得m n 、的值,再求a 的值即可.试题解析:(1)∵2a n =+),∴223a m n +=++,∴2232a m n b mn =+=,;(2)由(1)中结论可得:2231324a m nb mn ⎧=+=⎨==⎩ , ∵a b m n 、、、都为正整数,∴12m n =⎧⎨=⎩ 或21m n =⎧⎨=⎩ , ∵当m=1,n=2时,223713a m n =+=≠,而当m=2,n=1时,22313a m n =+=, ∴m=2,n=1,∴(2131--;(3)∵222()52a m m n +=+=++∴225a m n =+,62mn = ,又∵a m n 、、为正整数,∴=1=3m n ,, 或者=3=1m n ,,∴当=1=3m n ,时,46a =;当=3=1m n ,,14a =,即a 的值为:46或14.23.-10【分析】先根据二次根式的性质和平方差公式化简,然后再进行计算即可【详解】=(22⎡⎤--⎢⎥⎣⎦=()212--10+.10.【点睛】本题主要考查了二次根式的性质、平方差公式,灵活运用二次根式的性质化简是解答本题的关键.24.计算(2)2;(4)【答案】(1)2)9-;(3)1;(4)【分析】 (1)根据二次根式的性质和绝对值的代数意义进行化简后合并即可;(2)根据完全平方公式进行计算即可;(3)根据二次根式的乘除法法则进行计算即可;(4)先进行乘法运算,再合并即可得到答案.【详解】解:==(2)2=22-=63-=9-=1;(4)===【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.25.观察下列各式:11111122=+-=11111236=+-=111113412=+-= 请你根据上面三个等式提供的信息,猜想:(1=_____________ (2)请你按照上面每个等式反映的规律,写出用n (n 为正整数)表示的等式:______________;(3【答案】(1)1120;(211(1)n n =++;(3)1156,过程见解析 【分析】 (1)仿照已知等式确定出所求即可;(2)归纳总结得到一般性规律,写出即可;(3)原式变形后,仿照上式得出结果即可.【详解】解:(1111114520=+-=; 故答案为:1120;(2111111(1)n n n n =+-=+++;11(1)n n =++;(31156== 【点睛】此题是一个阅读题目,通过阅读找出题目隐含条件.总结:找规律的题,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.26.已知x y ==求下列各式的值: (1)22x xy y -+; (2).y x x y+ 【答案】(1) 72;(2)8. 【分析】计算出xy=12, (1)把x 2-xy+y 2变形为(x+y )2-3xy ,然后利用整体代入的方法计算;(2)把原式变形为2()2x y xy xy+-,然后利用整体代入的方法计算. 【详解】∵x =,y ==32∴xy=12, (1)22x xy y -+=(x+y )2-3xy,=2132-⨯=72; (2)y x x y +=2212()22812x y xy xy -⨯+-==.【点睛】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.27.计算(1))(12112-⨯--⎝⎭(2)已知:11,22x y ==,求22x xy y ++的值. 【答案】(1)28-;(2)17.【分析】(1)先利用完全平方公式和平方差公式计算二次根式的乘法、负指数幂运算,再计算二次根式的加减法即可得;(2)先求出x y +和xy 的值,再利用完全平方公式进行化简求值即可得.【详解】(1)原式()((221312⎡⎤=⨯+--⎢⎥⎣⎦,(()1475452=⨯+---230=+28=-;(2)(1119,22x y ==,1122x y∴+=+=, ()11119112224xy =⨯=⨯-=, 则()222x xy y x y xy ++=+-, 22=-,192=-,17=.【点睛】本题考查了二次根式的混合运算、完全平方公式和平方差公式等知识点,熟练掌握二次根式的运算法则是解题关键.28.(1|5-+;(2)已知实数a 、b 、c 满足|3|a +=,求2(b a +的值.【答案】(1)5;(2)4【分析】(1)先利用二次根式的乘法法则和绝对值的意义计算,再进行回头运算即可;(2)先根据二次根式有意义的条件确定b 的值,再根据非负数的和的意义确定a ,c 的值,然后再计算代数式的值即可.【详解】解:(15-+5)=+5=+5=(2)由题意可知:5050b b -≥⎧⎨-≥⎩, 解得5b =由此可化简原式得,30a +=30a ∴+=,20c -=3a ∴=-,2c =22((534b a ∴+=--=【点睛】可不是考查了二次根式的混合运算以及二次根式的化简求值,熟练掌握运算法则和运算顺序是解答此题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据完全平方公式,整式的除法,分式的乘除法,二次根式的性质和化简运算法则逐一计算作出判断.【详解】解: A .()222a b a 2ab b -=-+,选项错误;B .()3322x x 8x x 8x ÷=÷=,选项正确;C .111a a 1a a a ÷⋅=⋅=,选项错误;D 44=-=,选项错误.故选:B .2.B解析:B【详解】解:A 、错误,∵2=+a bB 、正确,因为a 2+b 2≥0a 2+b 2;CD =|a +b |,其结果a+b 的符号不能确定.故选B .3.B解析:B【分析】本题可利用二次根式的化简以及运算法则判断A 、B 、C 选项;利用立方根性质判断D 选项.【详解】A ,故该选项错误;B ==C 3=,故该选项错误;D 11223334=(2)2==,故该选项错误;故选:B .【点睛】本题考查二次根式以及立方根,二次根式计算时通常需要化为最简二次根式,然后按照运算法则求解即可,解题关键是细心.4.B解析:B【分析】根据二次根式的被开方数是非负数,且分母不能为零,可得答案.【详解】有意义,得:20x+>,解得:2x>-.故选:B.【点睛】本题考查了二次根式有意义的条件,利用被开方数是非负数,分母不能为零得出不等式是解题关键.5.D解析:D【分析】直接利用二次根式的性质分别化简得出答案.【详解】解:A,故A错误;B12=,故B错误;C=C错误;D、2(=7,故D正确;故选:D.【点睛】此题主要考查了二次根式的乘除,正确化简二次根式是解题关键.6.B解析:B【分析】根据最简二次根式的定义即可求出答案.【详解】2=,故A不是最简二次根式;是最简二次根式,故B正确;,故C不是最简二次根式;=D不是最简二次根式;故选:B.【点睛】本题考查最简二次根式,解题的关键是正确理解最简二次根式的定义,本题属于基础题型.7.C解析:C【分析】根据二次根式的性质分析即可得出答案.【详解】解:∵m、n是正整数,∴m=2,n=5或m=8,n=20,当m=2,n=5时,原式=2是整数;当m=8,n=20时,原式=1是整数;即满足条件的有序数对(m,n)为(2,5)或(8,20),故选:C.【点睛】本题考查了二次根式的性质和二次根式的运算,估算无理数的大小的应用,题目比较好,有一定的难度.8.B解析:B【解析】【分析】将a可化简为关于b的式子,从而得到a和b的关系,继而能得出ab的值.【详解】a=b44=.∴14ab=.故选:B.【点睛】本题考查二次根式的乘除法,有一定难度,关键是在分母有理化时要观察b的形式.9.C解析:C【分析】=变形后可分解为:)=0,从而根据a>0,b>0可得出a和b的关系,代入即可得出答案.【详解】由题意得:a=+15b,∴+)=0,=,a=25b,12.故选C.【点睛】本题考查二次根式的化简求值,有一定难度,根据题意得出a和b的关系是关键.10.B解析:B【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【详解】解:A,不符合题意;BC=2,不符合题意;D3,不符合题意;故选B.【点睛】本题考查了最简二次根式的定义.在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.二、填空题11.1【分析】设a=,b=,得出x,y及a,b的关系,再代入代数式求值.【详解】解:设a=,b=,则x2−a2=y2−b2=2008,∴(x+a)(x−a)=(y+b)(y−b)=2008……解析:1【分析】设x,y及a,b的关系,再代入代数式求值.【详解】解:设x2−a2=y2−b2=2008,∴(x+a)(x−a)=(y+b)(y−b)=2008……①∵(x−a)(y−b)=2008……②∴由①②得:x+a=y−b,x−a=y+b∴x=y,a+b=0,∴,∴x2=y2=2008,∴3x2﹣2y2+3x﹣3y﹣2007=3×2008−2×2008+3(x−y)−2007=2008+3×0−2007=1.故答案为1.【点睛】本题主要考查了二次根式的化简求值,解题的关键是求出x,y及a,b的关系.12.3b【分析】先判断a,b的取值范围,并分别判断a-b,a+b的符号,再根据二次根式的性质和绝对值的性质化简,计算即可求解.【详解】解:由数轴可知:b>0,a﹣b<0,a+b<0,∴原式=|解析:3b【分析】先判断a,b的取值范围,并分别判断a-b,a+b的符号,再根据二次根式的性质和绝对值的性质化简,计算即可求解.【详解】解:由数轴可知:b>0,a﹣b<0,a+b<0,∴原式=|b|+|a﹣b|﹣|a+b|=b ﹣(a ﹣b )+(a +b )=b ﹣a +b +a +b=3b ,故答案为:3b【点睛】a =和绝对值的性质是解题的关键.13.-2a【分析】根据数轴判断出a 、b 、c 的正负情况以及大小情况,然后根据绝对值和二次根式的性质去掉根号和绝对值号,再进行计算即可得解.【详解】由图可知,∴∴﹣|a ﹣c|+﹣|﹣b|=解析:-2a【分析】根据数轴判断出a 、b 、c 的正负情况以及大小情况,然后根据绝对值和二次根式的性质去掉根号和绝对值号,再进行计算即可得解.【详解】由图可知,0c a b <<<∴00.a c c b >,<|a ﹣c ﹣|﹣b |=||()||a ac c b b =()aa cbc b =aa cbc b =-2a .【点睛】本题考查二次根式的性质与化简和化简绝对值.在解决本题时需注意①对于任意实数a ,都有||a =;②在化简绝对值时,绝对值内如果是一个多项式,要给化简后的结果带上括号.14.【解析】【分析】把带根号的一项移项后平方,整理后再平方,然后整理即可得解.【详解】移项得,两边平方得,整理得,两边平方得,所以,两边除以400得,1.故答案为1.【点睛】解析:【解析】【分析】把带根号的一项移项后平方,整理后再平方,然后整理即可得解.【详解】10=-两边平方得,()()22223=1003x y x y ++--+整理得,253x =- 两边平方得,22225150225256251509x x y x x -++=-+ 所以,221625400x y +=两边除以400得,222516x y +=1. 故答案为1.【点睛】本题考查了非负数的性质,此类题目难点在于把两个算术平方根通过移项分到等式左右两边.15.0【解析】【分析】先将化简为就能确定其最小值为1,再和1作差,即可求解。
全国2018年中考数学真题分类汇编 第4讲 二次根式(无答案)
第4讲 二次根式知识点1 二次根式有意义的条件 知识点2 最简二次根式与同类二次根式知识点3 二次根式的性质 知识点4 二次根式的运算知识点1 二次根式有意义的条件(2018达州)2.二次根式42+x 中的x 的取值范围是( )A .2-<xB .2-≤xC .2->xD .2-≥x (2018怀化)(2018扬州)2. )A .3x >B .3x <C .3x ≥D .3x ≠(2018泸州)13. x 的取值范围是 . (2018北京)10. 若x 在实数范围内有意义,则实数x 的取值范围是 。
(2018徐州)(2018广西六市同城)(2018广安)(2018新疆建设兵团)(2018白银)12.有意义的x的取值范围是.(2018湖州)(2018济宁)(2018连云港)9x的取值范围是_____________.(2018南京)9.x的取值范围是.(2018南通)3.在实数范围内有意义,则x的取值范围是()A.3x>x≤ D.3x< C.3x≥ B.3知识点2 最简二次根式与同类二次根式(2018兰州)(2018曲靖)(2018烟台)(2018杭州)3.下列计算正确的是( ) A. 222=B. 222±=C. 242=D. 242±=(2018无锡)(2018广州)15.如图,数轴上点A 表示的数为a ,化简:a =__2__.(2018泰州)2.下列运算正确的是( )2(2018上海)(2018德阳)答案:B(2018聊城)8.下列计算正确的是( )A .==C .==(2018衡阳)6.下列各式中正确的是( )A 3=±B 3=-C 3=D =(2018绵阳)等式1x 3-x 1x 3-x +=+成立的x 的取值范围在数轴上可表示为( )A B C D(2018重庆A 卷)7.估计( A. 1和2之间 B.2和3之间 C.3和4之间 D.4和5之间 【答案】B 【解析】(2,而4到5之间,所以2在2到3之间【点评】此题主要考查二次根式的混合运算及估算无理数的大小,属于中考当中的简单题。
中考数学一轮复习二次根式知识点-+典型题附解析
中考数学一轮复习二次根式知识点-+典型题附解析一、选择题1.,a ==b a 、b 可以表示为 ( )A .10a b +B .10-b aC .10abD .b a2. )A B . C .D .3.下列运算正确的是( )A =B . 3C =﹣2D =4.下列运算中,正确的是( )A =B 1=C =D = 5.下列运算正确的是( )A .32-=﹣6B 12-C =±2D .=6.下列说法错误的个数是( )a =;④数轴上的点都表示有理数A .1个B .2个C .3个D .4个 7.已知226a b ab +=,且a>b>0,则a b a b +-的值为( )A B C .2 D .±28.有意义,则字母x 的取值范围是( ) A .x≥1B .x≠2C .x≥1且x =2D ..x≥-1且x ≠29.已知a 满足2018a -a ,则a -2 0182=( )A .0B .1C .2 018D .2 01910.x 的取值范围是( )A .x ≥1B .x >1C .x ≤1D .x <111.若|x 2﹣4x+4|x+y 的值为( )A .3B .4C .6D .912. )A .18B .13C .24D .0.3二、填空题13.已知412x =-,则()21142221x x x x -⎛⎫+⋅= ⎪-+-⎝⎭_________ 14.已知实数,x y 满足()()22200820082008x x y y ----=,则2232332007x y x y -+--的值为______. 15.设a ﹣b=2+3,b ﹣c=2﹣3,则a 2+b 2+c 2﹣ab ﹣ac ﹣bc=_____.16.若a ,b ,c 是实数,且21416210a b c a b c ++=-+-+--,则2b c +=________.17.实数a ,b 在数轴上的位置如图所示,则化简()22b a b +-﹣|a +b |的结果是_____.18.为了简洁、明确的表示一个正数的算术平方根,许多数学家进行了探索,期间经历了400余年,直至1637年法国数学家笛卡儿在他的《几何学》中开始使用“”表示算数平方根.我国使用根号是由李善兰(1811-1882年)译西方数学书时引用的,她在《代数备旨》中把图1所示题目翻译为: 22164?a x a x +=则图2所示题目(字母代表正数)翻译为_____________,计算结果为_______________.19.若2x ﹣3x 2﹣x=_____.20.已知实数m 、n 、p 满足等式33352m n m n m n p m n p -+--+----,则p =__________.三、解答题21.先阅读下列解答过程,然后再解答:2m n +,a b ,使a b m +=,ab n =,使得22)a b m +=a b n =)a b ==>7,12m n ==,由于437,4312+=⨯=,即:227+=,=2===+。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(二次根式部分)A级基础题
1.下列二次根式是最简二次根式的是( )
A.1
2
B. 4
C. 3
D.8
2.下列计算正确的是( )
A.20=2 10
B.2·3= 6
C.4-2= 2
D.-2=-3
3.若a<1,化简a-2-1=( )
A.a-2 B.2-a C.a D.-a
4.计算:3 2-2=( ) A.3 B. 2 C.2 2 D.4 2
5.如图,数轴上A、B两点表示的数分别为-1和3,点B关于点A的对称点为C,则点C所表示的数为( )
A.-2- 3 B.-1- 3 C.-2+ 3 D.1+ 3
6.计算:12+3=__________.7.计算18-2 1
2
=________.
8.已知一个正数的平方根是3x-2和5x+6,则这个数是__________.
9.若将三个数-3,7,11表示在数轴上,其中能被如图所示的墨迹覆盖的数是__________.
10.计算:3tan30°-(π-2 011)0+8-|1-2|.
B 级 中等题
11.设a =19-1,a 在两个相邻整数之间,则这两个整数是( )
A .1和2
B .2和3
C .3和4
D .4和5
12.如果a -2=1-2a ,则( )
A .a <12
B .a ≤12
C .a >12
D .a ≥12
13.已知m =1+2,n =1-2,则代数式m 2+n 2
-3mn 的值为( )
A .9
B .±3 C.3 D .5
14.若20n 是整数,则正整数n 的最小值为________.
15.如图,矩形OABC 的边OA 长为2,边AB 长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )
A .2.5
B .2 2 C. 3 D. 5
16.计算:(sin30°)-2+0
-|3-18|+83×(-0.125)3.
C 级 拔尖题
17.若x -2y +9与|x -y -3|互为相反数,则x +y 的值为( )
A .3
B .9
C .12
D .27
18.已知x ,y 为实数,且满足1+x -(y -1)1-y =0,那么x 2 011-y 2 011=______.
选做题
19.已知y =2x -5+5-2x -3,则2xy 的值为(
) A .-15 B .15 C .-152 D.152。