加减消元法的概念

合集下载

用加减消元法解二元一次方程组-七年级数学上册课件(沪科版)

用加减消元法解二元一次方程组-七年级数学上册课件(沪科版)
x=a (5) 写解: 将方程组的解表示成 y=b 的形式.
x=a
(5) 写解:将方程组的解表示成
的形式.
y=b
课前热身
根据等式的基本性质填空: (1) 若 a=b,那么 a±c = b±c . (等式性质1) 思考:若 a=b,c=d,那么 a+c=b+d 吗? (2) 若 a=b,那么 ac = bc . (等式性质2)
探究新知
例 1 解方程组
3x 5y 21 2x 5y 11
4、解方程组
用加减法消去 x 的方法
5x-6y=33, ②
是 ①×5-②×3 ,消去 y 的方法是 ①×3+②×2 .
巩固练习
3x+5y=m+2 5、已知关于 x,y 的二元一次方程组
2x+3y=m 的解满足 x+y=-10,求代数式 m2-2m+1 的值.
巩固练习
6、已知 (3x+2y-5)2 与 │5x+3y-8│互为相反数, 则 x= 1 , y= 1 .
知识回顾 三、用代入消元法解二元一次方程组的步骤:
(1) 变形:选择一个系数比较简单的方程,用含有 x 的代数式 表示 y (或用含有 y 的代数式表示 x );
(2) 代入:将变形后的方程代入另外一个方程中,消去一个未知 数,得到一个一元一次方程;
(3) 解:解消元后的一元一次方程;
(4) 反代:把求得的未知数的值代入原方程组中任意的一个方程 (或代入变形后的方程)中,求得另一个未知数数的值;

除代入消元法,还
② 有其他方法吗?
认真观察此方程组中各个未知数的 系数有什么特点,并相互讨论看还有 没有其它的解法.

知识点消元法

知识点消元法

知识点:消元法1.消元思想:二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先求出一个未知数,然后再求出另一个未知数. 这种将未知数由多化少、逐一解决的思想,叫做消元思想.2.消元的基本思路:未知数由多变少.3.消元的基本方法:把二元一次方程组转化为一元一次方程.知识点:代入消元法1.代入消元法是解方程组的两种基本方法之一。

代入消元法就是把方程组其中一个方程的某个未知数用含另一个未知数的代数式表示,然后代入另一个方程,消去一个未知数,将二元一次方程组转化为一元一次方程来解。

这种解二元一次方程组的方法叫代入消元法,简称代入法。

2.用代入法解二元一次方程组的一般步骤:(1)从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数用含量一个未知数的代数式表示;(2)将变形后的这个关系式代入另一个方程,消去一个未知数,得到一个一元一次方程;(3)解这个一元一次方程,求出一个未知数的值;(4)将求得的这个未知数的值代入变形后的关系式中,求出另一个未知数的值;(5)把求得的两个未知数的值用符号“{”联立起来写成方程组的解的形式⎩⎨⎧b y a x ==. 要点诠释:(1)用代入法解二元一次方程组时,应先观察各项系数的特点,尽可能选择变形后比较简单和代入后化简比较容易的方程变形;(2)变形后的方程不能再代入原方程,只能代入原方程组中的另一个方程;(3)要善于分析方程的特点,寻找简便的解法。

如将某个未知数连同它的系数作为一个整体用含另一个未知数的代数式来表示,代入另一个方程,或直接将某一方程代入另一个方程,这种方法叫做整体代入法。

整体代入法是解二元一次方程组常用的方法之一,它的运用可使运算简便,提高运算速度及准确率。

知识点:加减消元法1.加减消元法是解二元一次方程组的基本方法之一,加减消元法是通过将两个方程相加(或相减)消去一个未知数,将二元一次方程组转化为一元一次方程来解,这种解法叫做加减消元法,简称加减法。

消元的方法

消元的方法

消元的方法有两种:代入消元法例:解方程组:x+y=5①6x+13y=89②解:由①得x=5-y③把③代入②,得6(5-y)+13y=89即y=59/7把y=59/7代入③,得x=5-59/7即x=-24/7∴x=-24/7y=59/7 为方程组的解我们把这种通过“代入”消去一个未知数,从而求出方程组的解的方法叫做代入消元法(elimination by substitution),简称代入法。

加减消元法例:解方程组:x+y=9①x-y=5②解:①+②2x=14即x=7把x=7代入①,得7+y=9解,得:y=2∴x=7y=2 为方程组的解像这种解二元一次方程组的方法叫做加减消元法(elimination by addition-subtraction),简称加减法。

二元一次方程组的解有三种情况:1.有一组解如方程组x+y=5①6x+13y=89②x=-24/7y=59/7 为方程组的解2.有无数组解如方程组x+y=6①2x+2y=12②因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。

3.无解如方程组x+y=4①2x+2y=10②,因为方程②化简后为x+y=5这与方程①相矛盾,所以此类方程组无解。

编辑本段构成加减消元法例:解方程组x+y=5①x-y=9②解:①+②,得2x=14即x=7把x=7带入①,得:7-y=9解,得:y=-2∴x=7y=-2 为方程组的解编辑本段解法二元一次方程组有两种解法,一种是代入消元法,一种是加减消元法.例:1)x-y=32)3x-8y=43)x=y+3代入得3×(y+3)-8y=4y=1所以x=4这个二元一次方程组的解x=4y=1以上就是代入消元法,简称代入法。

利用等式的性质使方程组中两个方程中的某一个未知数前的系数的绝对值相等,然后把两个方程相加(或相减),以消去这个未知数,是方程只含有一个未知数而得以求解。

这种解二元一次方程组的方法叫作加减消元法,简称加减法。

5.2.2加减消元法(教案)

5.2.2加减消元法(教案)
接着在新课讲授环节,我注意到理论介绍部分学生听起来有些吃力,可能是因为概念的理解需要一定的时间来消化。在今后的教学中,我可能需要更多地借助直观的教具或动画,帮助学生更形象地理解加减消元法的原理。
在案例分析和重点难点解析部分,我发现通过具体的例题和比较,学生能够逐步掌握加减消元法的步骤和技巧。但同时我也意识到,对于一些基础较弱的学生来说,这些内容还是有一定难度的。我需要在课后给予他们更多的关注和指导。
1.培养学生逻辑推理能力和数学运算能力,通过加减消元法的学习,使学生能够理解和掌握解决方程组的基本方法;
2.培养学生分析问题和解决问题的能力,使学生能够运用加减消元法解决实际生活中的问题;
3.培养学生的数据观念和模型思想,让学生认识到数学在现实生活中的广泛应用,提高学生的数学应用意识;
4.培养学生的团队合作意识,通过小组讨论和合作,提高学生的交流与协作能力;
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了加减消元法的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对加减消元法的理解。我希望大家能够掌握这些知识点,并在解决实际问题中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“加减消元法在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。

加减消元法_课件

加减消元法_课件
1.已知方程组 2x-3y=6
两个方程
只要两边_分__别__相___加__就可以消去未知数y___
25x-7y=16
2.已知方程组
两个方程
25x+6y=10
只要两边_分__别__相___减__就可以消去未知数x___
练习
6x+7y=-19①
用加减法解方程组 6x-5y=17②
应用B( )
A.①-②消去y
(x+y)-(2x+y)=10-16
把这两个方程的两边分别相加或相减,就能消去这个未知数 ,这种方法叫做加减消元法,简称加减法.
例题 2x-5y=7,①
用加减消元法解方程组: 2x+3y=-1.②
解:把 ②-①得:8y=-8 y=-1
解得:x=1 x=1
所以原方程组的解是 y=-1
练习 x+3y=17
练习 2.一条船顺流航行,每小时行20km;逆流航行,每小时行 16km.求轮船在静水中的速度与水的流速.
练习
3.运输360t化肥,装载了6节火车车厢和15辆汽车;运输440t 化肥,装载了8节火车车厢和10辆汽车.每节火车车厢与每辆汽 车平均各装多少吨化肥?
思考
怎样解下面的方程组?
2x+y=1.5,
x+2y=3,
0.8x+0.6y=1.3;
3x-2y=5.
追问1 第一个方程组选择哪种方法更简便?第二个方程组选择哪种方法更简便?
追问2 我们依据什么来选择更简便的方法?
第一个方程的系数含有小数,且刚好有一个未知数的系数是1,用加减法不方便, 适合用代入法.
进一步化简得:x=6
把x=6代入①得:y=4 x=6

加减消元法说课稿

加减消元法说课稿

加减消元法说课稿一、说教材本节课选自人教版初中数学九年级上册第五章《解二元一次方程组》的第一课时。

加减消元法是解二元一次方程组的一种常用方法,它通过将两个方程相加或相减,消去一个未知数,从而将二元一次方程组转化为一元一次方程,进而求解。

二、说教学目标1. 知识与技能:使学生掌握加减消元法的原理和步骤,能够运用该方法解决简单的二元一次方程组。

2. 过程与方法:通过观察、比较、归纳等数学活动,培养学生的分析问题、解决问题的能力。

3. 情感态度与价值观:让学生体验数学学习的乐趣,增强对数学的兴趣和信心,培养与他人合作的意识。

三、说教学重难点1. 教学重点:加减消元法的原理和具体步骤。

2. 教学难点:如何选择合适的消元方法,以及如何确定最终的解。

四、说教学方法与手段1. 教学方法:采用启发式、讨论式、探究式教学方法,引导学生主动参与学习过程。

2. 教学手段:利用多媒体教学设备展示动态图像和计算过程,提高教学效果。

五、说教学过程1. 导入新课:通过回顾过去学过的方程组解法,引出加减消元法的概念,并展示一组实例。

2. 新课讲解:详细讲解加减消元法的原理和具体步骤,包括判断哪个未知数更容易消去、如何选择合适的加减方式、计算过程等。

3. 例题演示:选取一组典型的二元一次方程组,运用加减消元法进行求解,并详细展示计算过程。

4. 课堂练习:布置一系列练习题,让学生运用所学方法解决不同类型的二元一次方程组,巩固所学知识。

5. 总结反思:引导学生总结本节课的学习内容,回顾重点和难点,鼓励学生提出疑问和建议。

六、说课后作业1. 完成课本上的习题,巩固所学知识。

2. 思考并尝试使用加减消元法解决更复杂的二元一次方程组。

七、说板书设计加减消元法说课稿一、说教材本节课内容是初中数学中的重要部分,特别是在解二元一次方程组时,加减消元法扮演着关键角色。

学生将能够运用这一方法解决实际问题,提高数学运算能力。

二、说教学目标1. 知识与技能:使学生掌握加减消元法的原理、步骤和适用条件;能够正确运用该方法求解二元一次方程组。

二元一次方程的解法

二元一次方程的解法

二元一次方程的解法二元一次方程的解:使二元一次方程左、右两边的值相等的一对未知数的值,叫做二元一次方程的一个解。

1.消元解法“消元”是解二元一次方程组的基本思路。

所谓“消元”就是减少未知数的个数,使多元方程最终转化为一元多次方程再解出未知数。

这种将方程组中的未知数个数由多化少,逐一解决的解法,叫做消元解法。

代入消元法(1)概念:将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解.。

这种解方程组的方法叫做代入消元法,简称代入法。

(2)代入法解二元一次方程组的步骤①选取一个系数较简单的二元一次方程变形,用含有一个未知数的代数式表示另一个未知数;②将变形后的方程代入另一个方程中,消去一个未知数,得到一个一元一次方程(在代入时,要注意不能代入原方程,只能代入另一个没有变形的方程中,以达到消元的目的);③解这个一元一次方程,求出未知数的值;④将求得的未知数的值代入①中变形后的方程中,求出另一个未知数的值;⑤用“{”联立两个未知数的值,就是方程组的解;⑥最后检验(代入原方程组中进行检验,方程是否满足左边=右边)。

2.加减消元法(1)概念:当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法,简称加减法.(2)加减法解二元一次方程组的步骤①利用等式的基本性质,将原方程组中某个未知数的系数化成相等或相反数的形式;②再利用等式的基本性质将变形后的两个方程相加或相减,消去一个未知数,得到一个一元一次方程(一定要将方程的两边都乘以同一个数,切忌只乘以一边,然后若未知数系数相等则用减法,若未知数系数互为相反数,则用加法);③解这个一元一次方程,求出未知数的值;④将求得的未知数的值代入原方程组中的任何一个方程中,求出另一个未知数的值;⑤用“{”联立两个未知数的值,就是方程组的解;⑥最后检验求得的结果是否正确(代入原方程组中进行检验,方程是否满足左边=右边)。

8.2加减消元法(教案)

8.2加减消元法(教案)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解加减消元法的基本概念。加减消元法是将两个方程相加或相减,消去一个未知数,从而求解另一个未知数的方法。它在解二元一次方程组中具有重要意义。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示加减消元法在实际问题中的应用,以及它如何帮助我们解决问题。
2.提升学生的数学建模素养:使学生能够运用加减消元法解决实际问题,培养他们将现实问题转化为数学模型的能力,进一步强化数学应用意识。
3.增强学生的数学运算能力:通过本节课的学习,让学生熟练掌握加减消元法的运算步骤和技巧,提高他们在数学运算中的准确性和速度。
这三个方面相互关联,共同促进学生数学学科核心素养的提升,使他们在学习过程中形成持续发展的能力。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“加减消元法在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
三、教学难点与重点
1.教学重点
(1)理解加减消元法的概念:让学生明白加减消元法是将两个方程相加或相减,消去一个未知数,从而求解另一个未知数的方法。
举例:对于方程组
\[
\begin{cases}
2x + 3y = 8 \\
4x - y = 9
\end{cases}
\]Biblioteka \[\begin{cases}
2x + 3y = 8 \\
2.对于重点和难点,除了讲解和示范外,还可以设计更多有趣的练习题,让学生在实际操作中巩固知识点。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

加减消元法的概念
加减消元法是数学领域中一种基本的解题技巧,它也被称为用线性代数中的矩阵技术进行求解。

它主要是将多元一次方程组转化为多个单元一次方程,然后再依次解决。

本文将介绍加减消元法的概念,研究此法的技巧和应用,以及本文的论点。

加减消元法的概念
加减消元法是一种逐步消元的方法,它可以用来将系数矩阵中的多元一次方程转换为一个或多个单元一次方程。

根据数字解法的要求,加减消元法必须满足以下几点:
(1)将数字乘以与它相应的修正项,以便其他乘数为1;
(2)改变乘数,以便它们都为1;
(3)将乘数变换为0,以便对等式进行消元;
(4)在对等式中取出常数项,形成新的等式,以便最后得到单
元一次方程。

加减消元法的技巧
加减消元法的技巧主要有三个:
(1)增量技巧:这是一种快速改变数字的方法,其核心思想是
将原有的方程式拆成几部分,针对每个部分逐个进行消元,逐渐形成最终的结果。

(2)多项式技巧:这是一种根据多项式属性计算值的方法,主
要用来求解解系数矩阵中的方程,其中用到的公式有:
多项式估计值=多项式系数+(多项式指数-1)乘以值
(3)字母技巧:这是一种把一般形式的数学符号名称表示为字母的做法,以便简化求解过程,可以有效地帮助解决多元一次方程的问题。

加减消元法的应用
加减消元法的应用主要有两类:一类是非线性方程组的求解,另一类是线性方程组的求解。

非线性方程组可以通过加减消元法实现迭代求解,线性方程组可以通过加减消元法实现矩阵求解。

(1)非线性方程组求解:采用此方式求解的步骤主要有三步:
①将原先的非线性方程组拆分为一系列新的方程,以方便求解;
②对每个新方程进行消元,以得到它的解;
③将这些解带回原来的非线性方程组,进行最终的求解。

(2)线性方程组求解:采用此方式求解的步骤有两个:
①用加减消元法将原先的线性方程组消元为可解性方程组;
②使用矩阵技术,求解该可解性方程组,得出原系统的解。

本文的论点
加减消元法是一种简单的数学技巧,既可以用来求解非线性方程组,也可以应用于线性方程组。

它有三个主要优点:首先,它可以节省解题时间,可以提高解题效率;其次,它可以帮助用户解决复杂的问题,避免过多的分析;最后,它也可以有效地帮助解决多元一次方程的问题。

因此,本文认为,加减消元法在解决数学问题方面有着重要的意义,应该得到广泛的应用。

相关文档
最新文档