物理光学知识点大汇总
物理光学知识点总结

电磁波模型
• 1.空间周期性、时间周期性 • 2.定态光波 • 3.相位、振幅、相速度、电矢矢量量(光矢矢量量)、波矢矢、波
面面、波前、波前函数(波函数)、光程差与相位差、 复振幅、光通量量、光强 • 4.波前函数的表达式:余弦式、复振幅式 • 不不同表达式对于相位超前或滞后的描述不不同 • 5.平面面波、球面面波 • 6.傍轴条件、远场条件 • 7.光的偏振态:5种
• 1.根据波列列传播的路路径求出光程,可得到波前(即接收屏 幕)上的波前函数的相位
• 2.根据光程差确定干干涉相⻓长或干干涉相消的条件,这一一方方法 适用用于光源位置确定的情况
• 3.根据相位差确定干干涉相⻓长或干干涉相消的条件,这一一方方法 适用用于平面面波的情况
• 4.对于有反射的情形,要考虑是否存在半波损失 • 5.针对具体的干干涉装置,有不不同的相位差或光程差表达式
叠加原理理的基本物理理结果
• 1.两列列定态相干干光波的叠加
∫ •
I=1 τ
τ 0
A2dt
=
A12
2.相干干叠加的干干涉项
+
A22 + 2 A1A2 cos Δϕ
2A1 A2 cos Δϕ
• 3.非非相干干叠加
• 正交电矢矢量量的叠加
• 两列列不不同频率单色色光的叠加:光学拍
• 非非单色色光的叠加:波包,群速度
近轴条件下成像的基本关系
• 1.符号约定 • 2.物距、像距、焦距、焦平面面、光焦度 • 3.单个ns折ʹʹ +射ns =球nʹ面r−面n的= Φ物象关sfʹʹ 系+ sf(= 1高高斯公式) • 4.薄透镜的sf物ʹʹ + 象sf =关1 系(xx高ʹ 高=斯ffyʹ公ʹ 式ns、ʹ 牛牛顿公式yʹ) sʹ • 5.横向放大大率 折射面面、透镜 y = − nʹs 反射镜 y = − s • 6.共轭光线:同一一条物方方像方方光线
物理光学知识归纳总结

物理光学知识归纳总结一、光的本质与传播光的实质是电磁波,它是由电场和磁场相互垂直并向垂直传播的电磁波所组成。
光的传播具有直线传播、波动传播和光线传播三种形式。
二、光的反射与折射1. 光的反射:当光线从一种介质射向另一种介质时,遇到分界面时会发生反射。
根据入射角与法线的夹角关系,可以得到反射角与入射角相等的经验规律。
2. 光的折射:当光线从一种介质射向另一种介质时,遇到分界面时会发生折射。
根据斯涅尔定律,可以得到入射角、折射角及两种介质的折射率之间的关系。
三、光的干涉与衍射1. 光的干涉:当两束或多束光线同时作用于同一位置时,会产生干涉现象。
根据干涉现象可以推导出叠加原理和干涉条纹的产生。
2. 光的衍射:当光通过一个小孔或者通过障碍物的边缘时,会出现衍射现象。
衍射现象可以解释光的直线传播的限制性和光的波动性。
四、光的偏振与旋光现象1. 光的偏振:光的振动方向,可以沿任意方向存在的非偏振光,也可以沿一个特定方向振动的偏振光。
偏振光可以通过偏光片进行选择性透过或者阻挡。
2. 光的旋光现象:某些物质具有旋光性质,当光通过旋光物质时,光的振动方向会发生旋转。
五、光的色散与光的色彩1. 光的色散:光线在不同介质中传播时,不同频率的光会有不同的折射率,从而导致光的色散现象。
2. 光的色彩:光的色彩由不同波长的光组成,根据太阳光的色散现象,可以得到光的色彩顺序为红橙黄绿蓝靛紫。
六、光的成像与光学仪器1. 光的成像:光通过凸透镜或者凹透镜时,可以形成实像或者虚像。
根据薄透镜成像公式可以计算出物距、像距和透镜焦距之间的关系。
2. 光学仪器:利用光的传播、折射和成像原理,可以制造出各种光学仪器,如显微镜、望远镜、投影仪等。
七、光的衍射光栅与光的激光1. 光的衍射光栅:光通过光栅时,会出现衍射现象。
光栅是由很多平行的有规律的线条或者孔洞组成的光学元件,可以分散多种频率的光,并形成光的衍射光谱。
2. 光的激光:激光是一种具有高度相干性和单一频率的光。
高中物理光学部分知识点总结

物理知识点一、光源1.定义:能够自行发光的物体.2.特点:光源具有能量且能将其它形式的能量转化为光能,光在介质中传播就是能量的传播.物理知识点二、光的直线传播1.光在同一种均匀透明的介质中沿直线传播,各种频率的光在真空中传播速度:C=3³108m/s;各种频率的光在介质中的传播速度均小于在真空中的传播速度,即 v<c。
< p="">2.本影和半影(l)影:影是自光源发出并与投影物体表面相切的光线在背光面的后方围成的区域.(2)本影:发光面较小的光源在投影物体后形成的光线完全不能到达的区域.(3)半影:发光面较大的光源在投影物体后形成的只有部分光线照射的区域.(4)日食和月食:人位于月球的本影内能看到日全食,位于月球的半影内能看到日偏食,位于月球本影的延伸区域(即“伪本影”)能看到日环食.当地球的本影部分或全部将月球反光面遮住,便分别能看到月偏食和月全食.3.用眼睛看实际物体和像用眼睛看物或像的本质是凸透镜成像原理:角膜、水样液、晶状体和玻璃体共同作用的结果相当于一只凸透镜。
发散光束或平行光束经这只凸透镜作用后,在视网膜上会聚于一点,引起感光细胞的感觉,通过视神经传给大脑,产生视觉。
理知识点三、光的反射1.反射现象:光从一种介质射到另一种介质的界面上再返回原介质的现象.2.反射定律:反射光线跟入射光线和法线在同一平面内,且反射光线和人射光线分居法线两侧,反射角等于入射角.3.分类:光滑平面上的反射现象叫做镜面反射。
发生在粗糙平面上的反射现象叫做漫反射。
镜面反射和漫反射都遵循反射定律.4.光路可逆原理:所有几何光学中的光现象,光路都是可逆的.物理知识点四.平面镜的作用和成像特点(1)作用:只改变光束的传播方向,不改变光束的聚散性质.(2)成像特点:等大正立的虚像,物和像关于镜面对称.(3)像与物方位关系:上下不颠倒,左右要交换物理光学知识点汇总:双缝干涉(1)两列光波在空间相遇时发生叠加,在某些区域总加强,在另外一些区域总减弱,从而出现亮暗相间的条纹的现象叫光的干涉现象.(2)产生干涉的条件两个振动情况总是相同的波源叫相干波源,只有相干波源发出的光互相叠加,才能产生干涉现象,在屏上出现稳定的亮暗相间的条纹.(3)双缝干涉实验规律①双缝干涉实验中,光屏上某点到相干光源、的路程之差为光程差,记为 .若光程差是波长λ的整倍数,即(n=0,1,2,3…)P点将出现亮条纹;若光程差是半波长的奇数倍(n=0,1,2,3…),P点将出现暗条纹.②屏上和双缝、距离相等的点,若用单色光实验该点是亮条纹(中央条纹),若用白光实验该点是白色的亮条纹.③若用单色光实验,在屏上得到明暗相间的条纹;若用白光实验,中央是白色条纹,两侧是彩色条纹.④屏上明暗条纹之间的距离总是相等的,其距离大小与双缝之间距离d.双缝到屏的距离及光的波长λ有关,即 .在和d不变的情况下,和波长λ成正比,应用该式可测光波的波长λ.⑤用同一实验装置做干涉实验,红光干涉条纹的间距最大,紫光干涉条纹间距最小,故可知大于小于.物理光学知识点汇总:薄膜干涉(1)薄膜干涉的成因:由薄膜的前、后表面反射的两列光波叠加而成,劈形薄膜干涉可产生平行相间的条纹.(2)薄膜干涉的应用①增透膜:透镜和棱镜表面的增透膜的厚度是入射光在薄膜中波长的.②检查平整程度:待检平面和标准平面之间的楔形空气薄膜,用单色光进行照射,入射光从空气膜的上、下表面反射出两列光波,形成干涉条纹,待检平面若是平的,空气膜厚度相同的各点就位于一条直线上,干涉条纹是平行的;反之,干涉条纹有弯曲现象.。
光学体系知识点梳理总结

光学体系知识点梳理总结一、光学基础知识1. 光的本质光是电磁波的一种,是一种由电场和磁场交替而成的波动现象。
光是由光源发出,经过介质传播,最终影响我们的视觉系统。
2. 光的特性(1)波动特性:光具有波动性,可以表现为干涉、衍射、偏振等现象。
(2)微粒特性:光也具有微粒性,可以用光子模型解释光电效应、康普顿效应等现象。
3. 光的传播(1)直线传播:在均匀介质中,光沿着直线传播,遵循光的直线传播定律。
(2)折射现象:当光线从一种介质进入另一种介质时,会发生折射现象,遵循折射定律。
(3)反射现象:当光线从介质表面反射时,遵循反射定律。
4. 光的颜色白光是由所有可见光波长组成的,当光通过色散介质时,不同波长的光会按不同程度发生偏折,从而产生色散现象。
5. 光学仪器(1)凸透镜:透镜是一种光学元件,可以将平行入射的光线聚焦或发散。
(2)凹透镜:凹透镜同样可以将平行入射的光线聚焦或发散,与凸透镜形成对称。
(3)棱镜:通过对光的折射和衍射,可以实现光的分光和复合。
二、光学成像1. 成像原理成像是光学系统中非常重要的一部分,成像原理是指当物体放在一定位置时,通过透镜、镜面等光学元件可以在另一位置产生与实物相似的像。
2. 透镜成像透镜成像是指通过透镜实现对物体的成像,分为凸透镜和凹透镜成像。
3. 成像公式成像公式是描述透镜成像的数学关系式,可以根据物距、像距、焦距等参数计算成像的位置和大小。
4. 像的性质像的性质包括实像与虚像、正像与负像、放大与缩小等,是成像过程中需要了解的重要内容。
5. 透镜组成像透镜组成像是指通过不同透镜的组合实现对物体的成像,常见的透镜组包括双凸透镜组、凹凸透镜组等。
6. 成像畸变(1)球差:由于透镜的非理想性,会出现球差现象,导致成像的模糊和色差。
(2)色差:不同波长的光经过透镜时折射角度不同,会导致色差现象,影响成像的清晰度。
三、光学仪器1. 望远镜望远镜是一种基于透镜或镜面的光学仪器,可以放大远处物体的像,包括折射望远镜和反射望远镜。
物理光学知识点

物理光学知识点物理光学是光学的一个重要分支,主要研究光的本性、光的传播以及光与物质的相互作用等方面。
下面我们来详细了解一些关键的物理光学知识点。
一、光的波动性1、光的干涉光的干涉是指两列或多列光波在空间相遇时,相互叠加,在某些区域始终加强,在另一些区域始终减弱,从而形成稳定的强弱分布的现象。
杨氏双缝干涉实验是证明光具有波动性的经典实验。
在杨氏双缝干涉中,相邻明条纹或暗条纹的间距与光的波长、双缝间距以及双缝到光屏的距离有关。
2、光的衍射光在传播过程中遇到障碍物或小孔时,偏离直线传播路径而绕到障碍物后面传播的现象称为光的衍射。
衍射现象表明光具有波动性。
单缝衍射、圆孔衍射等都是常见的衍射现象。
衍射条纹的宽度与障碍物或小孔的尺寸以及光的波长有关。
3、光的偏振光的偏振现象表明光是一种横波。
自然光通过偏振片后会变成偏振光。
偏振光在很多领域都有重要应用,如立体电影、偏振光显微镜等。
二、光的粒子性1、光电效应当光照射到金属表面时,金属中的电子吸收光子的能量,从而逸出金属表面的现象称为光电效应。
光电效应的实验规律无法用经典物理学来解释,爱因斯坦提出了光子说,成功解释了光电效应。
光电效应方程为:$h\nu =W +\frac{1}{2}mv^2$,其中$h$为普朗克常量,$\nu$为光的频率,$W$为金属的逸出功,$m$为电子质量,$v$为电子逸出后的速度。
2、康普顿效应康普顿效应进一步证实了光的粒子性。
当 X 射线光子与物质中的电子碰撞时,光子的能量和动量发生改变,散射后的 X 射线波长变长。
三、光的传播1、光速真空中的光速是一个常量,约为$3\times 10^8$米/秒。
光在不同介质中的传播速度不同,且满足$v =\frac{c}{n}$,其中$v$为光在介质中的速度,$c$为真空中的光速,$n$为介质的折射率。
2、折射与反射当光从一种介质进入另一种介质时,会发生折射和反射现象。
折射定律为:$n_1\sin\theta_1 = n_2\sin\theta_2$,其中$n_1$和$n_2$分别为两种介质的折射率,$\theta_1$和$\theta_2$分别为入射角和折射角。
物理光学知识点总结

物理光学知识点总结1. 光的基本概念- 光是一种电磁波,具有波动性和粒子性(光子)。
- 可见光谱是人眼能够感知的光的范围,大约在380纳米至750纳米之间。
2. 光的传播- 光在均匀介质中沿直线传播。
- 光速在不同介质中不同,真空中的光速约为299,792,458米/秒。
- 光的传播遵循光的折射定律和反射定律。
3. 反射定律- 入射光线、反射光线和法线都在同一平面内。
- 入射角等于反射角,即θi = θr。
4. 折射定律(Snell定律)- n1 * sin(θ1) = n2 * sin(θ2),其中n1和n2是两种介质的折射率,θ1和θ2分别是入射角和折射角。
5. 光的干涉- 干涉是两个或多个光波相遇时,光强增强或减弱的现象。
- 干涉条件是两束光的频率相同,且相位差恒定。
- 常见的干涉现象有双缝干涉和薄膜干涉。
6. 光的衍射- 衍射是光波遇到障碍物或通过狭缝时发生弯曲和展开的现象。
- 单缝衍射、圆孔衍射和光栅衍射是常见的衍射现象。
7. 光的偏振- 偏振光是电磁波振动方向受到限制的光。
- 线性偏振、圆偏振和椭圆偏振是偏振光的三种类型。
- 偏振片可以用来控制光的偏振状态。
8. 光的散射- 散射是光在传播过程中遇到粒子时发生方向改变的现象。
- 散射的强度与粒子大小、光波长和入射光强度有关。
- 常见的散射现象有大气散射,导致天空呈现蓝色。
9. 光的颜色和色散- 颜色是光的另一种表现形式,与光的波长有关。
- 色散是光通过介质时不同波长的光因折射率不同而分离的现象。
- 棱镜可以将白光分解成不同颜色的光谱。
10. 光的量子性- 光电效应表明光具有粒子性,光子的能量与其频率成正比。
- 波恩提出的波函数描述了光子的概率分布。
- 量子光学是研究光的量子性质的学科。
11. 光的相干性和光源- 相干光具有固定的相位关系,激光是一种高度相干的光源。
- 光源可以是自然的,如太阳,也可以是人造的,如激光器和灯泡。
12. 光学仪器- 望远镜、显微镜、光纤和光学传感器都是利用光学原理工作的仪器。
初中物理光学知识点总结

初中物理光学知识点总结一、光的基础知识1. 光的传播- 光在同种均匀介质中沿直线传播。
- 光速在真空中约为3×10^8 m/s,在其他介质中速度会减小。
2. 光的反射- 反射定律:入射光线、反射光线和法线在同一平面内,且入射角等于反射角。
- 镜面反射:光滑表面反射光线规律性强,反射光线与入射光线平行。
- 漫反射:粗糙表面反射光线规律性弱,反射光线向各个方向散射。
3. 光的折射- 折射现象:光线从一种介质进入另一种介质时,传播方向发生改变。
- 折射定律:斯涅尔定律,n1sinθ1 = n2sinθ2,其中n1和n2分别为两种介质的折射率,θ1和θ2分别为入射角和折射角。
- 折射率:表示光在介质中传播速度相对于真空中速度的比值。
4. 光的颜色- 可见光是电磁波谱中的一部分,波长大约在380 nm到750 nm之间。
- 颜色由光的波长决定,不同波长的光对应不同的颜色。
- 光谱:通过棱镜可以将白光分解为不同颜色的光,形成彩虹般的光谱。
二、透镜及其成像1. 透镜的类型- 凸透镜:两侧向外凸起,能使平行光线汇聚于一点。
- 凹透镜:两侧向内凹陷,能使平行光线发散。
2. 透镜成像规律- 凸透镜成像:- 当物体位于焦点之内,成正立、放大的虚像。
- 当物体位于焦点之外,成倒立、缩小的实像。
- 凹透镜成像:- 成正立、缩小的虚像。
3. 透镜的光学参数- 焦距:透镜中心到焦点的距离。
- 视距:透镜中心到成像位置的距离。
- 放大倍数:成像与物体大小的比值。
三、光的干涉和衍射1. 光的干涉- 干涉现象:两束或多束相干光波相遇时,光强增强或减弱的现象。
- 干涉条件:两束光波的频率相同,相位差恒定。
2. 光的衍射- 衍射现象:光波遇到障碍物或通过狭缝时,传播方向发生偏离直线的现象。
- 单缝衍射:光波通过一个狭缝时产生的衍射图样。
四、光的偏振1. 偏振光- 偏振光是振动方向受到限制的光波。
- 通过偏振片可以获得只在一个方向上振动的线偏振光。
物理光学知识点

物理光学知识点第一章1. 可见光波长范围(380nm~760nm)。
2.折射率n =c = v3. 能流密度的坡印廷矢量s 的物理意义:表示单位时间内,通过垂直于传播方向上的单位面积的能量;光强I =S =1n 2E 0 2μ0c4. 已知E =eE 0cos ⎢2π ⎡⎣⎛t z ⎫⎤ -⎪⎥或E =E 0e -i (ωt -kz ),求光的相关参量,参见作业1-1,1-2;⎝T λ⎭⎦5. 简谐球面波E =E 0-i (ωt -kz )E e 或E =0cos (ωt -kz ),求光的相关参量。
r r1。
T 6. 无限长时间等幅震荡光场对应的频谱只含有一个频率成分,称为理想单色振动,持续有限长时间等幅震荡的光场对应的频谱宽度∆ν=7. 等相位面的传播速度称为相速度,平面单色波的相速度v p =ωk =c ,等振幅面的传播n (k )速度称为群速度,复色波的相速度v p =(公式来源t -kz =常数,然后求导),复色波的群速度v g =d ω⎛λdn ⎫结合第六章讨论在正常/反常色散中相速度和群速度哪=v p 1+⎪,dk n d λ⎝⎭个大?8. 理解线偏振光、圆偏振光和椭圆偏振光的概念及相互转化的条件,结合第四章波片讨论。
9. 讨论光波在界面上的反射和折射,如s 分量和p 分量的概念,菲涅尔公式的理解,图1-21的理解与应用,熟悉公式R s +T s =1,R p +T p =1,R n =射时R s =R p = 1R s +R p ),在正入射和掠入(2⎛n 2-n 1⎫n 2n 2,布儒斯特角的计算,全反射角,半波tan θ=sin θ=B C ⎪n n n +n 11⎝21⎭损失产生的两种情形:光从光疏介质入射到光密介质时,在正入射和掠入射时反射光相对入射光将产生“半波损失”;图1-29薄膜上下表面的反射的四种情形的作图法;偏振度的计算(1.2-39,1.2-42,43),注意p35偏振度计算的例子和p49例题1-5,利用片堆产生线偏振光的原理(反s 不反p ,输出p )和作业1-10,外腔式激光器的布儒斯特窗口的原理(反s 不反p ,输出s ),衰逝波的概念。