福州市高中毕业班质量检测
2024年2月福州市高三质量检测(生物试题+答案)

2023~2024 学年福州市高三年级2月份质量检测生物试题(完卷时间75 分钟;满分100 分)友情提示:请将所有答案填写到答题卡上!请不要错位、越界答题!一、单项选择题(1-12题每题2分,13-16 每题4分,共40分。
仅有一项答案最符合题意)1. 生物膜的结构与功能联系密切,下列叙述错误的是A. 叶绿体的类囊体薄膜上分布光合作用所必需的色素B. 参与有氧呼吸第二阶段的酶大都在线粒体的内膜上C.某些物质的跨膜运输必须借助于细胞膜上转运蛋白D. 核膜上的核孔能实现核质之间物质交换和信息交流2. 科研人员将底物A的类似物作为抗原诱导动物体产生免疫应答,产生的抗体能与底物A 相互识别并催化底物A 发生化学反应,这种具有催化能力的免疫球蛋白质被称为抗体酶,下列相关说法正确的是A. 抗体酶不具有专一性B. 温度、pH 不影响抗体酶活性C. 抗体酶能降低化学反应活化能12D. 抗体酶与底物 A 有多个结合中心3.下列有关人体免疫系统的组成和功能叙述,错误的是A. 淋巴细胞包括B细胞和T细胞等,骨髓是T细胞分化、发育、成熟的场所B. 抗原呈递细胞能够摄取和加工处理抗原,并且将抗原信息暴露在细胞表面C. 抗体是一种免疫活性物质,每一种抗体只能与特定抗原发生特异性结合D. 人体的三道防线共同实现免疫防御、免疫自稳和免疫监视三大基本功能4. 黑麦为二倍体植物(染色体2n=14),以黑麦花药为材料,制作成装片后在高倍镜下观察。
下图是部分细胞分裂图像,相关说法正确的是A. 细胞1处于减数第一次分裂前期,可能发生基因重组B. 细胞2 处于减数第一次分裂后期,细胞没有同源染色体C. 细胞3处于减数第二次分裂后期,两极的染色体和基因组成都相同D. 细胞4 处于减数第二次分裂末期,每一个子细胞核含有14 条染色体5. 十八世纪末,西太平洋某岛在一场台风后,只留下了大约20名幸存者,该岛居民几乎与世隔绝。
一百多年后,该岛上约10%的人口患有一种在外界区域极为罕见的全色盲症,下列有关岛上居民全色盲症的推测,最合理的是A. 全色盲症是人与海岛环境协同进化的结果B. 全色盲症可能使当地人更能适应该岛环境C. 幸存者含有全色盲基因且能不断传递后代D. 与外界通婚也不会改变全色盲症基因频率6. RNA干扰技术的原理是:将外源性基因整合到宿主细胞基因组内,外源基因转录出的小片段RNA 可以与宿主细胞内某些mRNA 结合,进而诱发它们降解。
(文字)福建省部分地市高中毕业班第一次质检英语官答和听力原文

保密★启用前试卷类型:A 福建省部分地市2024届高中毕业班第一次质量检测英语参考答案听力(20×1.5=30):1. C2. A3. C4. A5. B6. B7. A8. C9. C 10. B11. C 12.C 13. A 14. A 15. B 16. C 17. A 18. B 19. A 20. B阅读(20×2.5=50):21. A 22. B 23. D 24. C 25. D 26. C 27. B 28. B 29. C 30. D31. D 32. C 33. A 34. A 35. B 36. G 37. C 38. A 39. F 40. D完形填空(15×1=15):41. D 42. A 43. B 44. C 45. A 46. B 47. A 48. C 49. D 50. B51. D 52. C 53. A 54. B 55. C语法填空(10×1.5=15):56.located 57. was built 58.parts 59. to flow 60.to 61.and 62.making 63. practical 64.where 65.significance写作(15+25=40分):参考例文:第一节A Survey on Weekly Exercise TimeA recent survey conducted by our school newspaper has revealed some interesting findings re-garding the weekly exercise habits of high school students.According to the data, 21% of the students exercise for less than one hour per week, 59%exercise between one and three hours, 16% exercise between three and five hours, and a small percentage of 4% exercise for more than five hours each week.These findings suggest that the majority of students are aware of the importance of regular ex-ercise and are making efforts to incorporate it into their weekly routine. However, there is still a significant proportion of students who are not exercising enough, highlighting the need for more awareness and encouragement towards a healthy lifestyle.第二节Donald took charge of the situation, directing Richie to get paintbrushes and white paper. As an insect lover, Donald knew exactly how to handle the tiny creatures. Slowly, he brushed the baby mantis onto the white paper, rolled the paper round and tapped them gently into the container. Mrs. Beecher and her class were staring at the process, eyes widened, mouths open, amazed at how expert Donald was. One by one, all the praying mantises were settled into their home! Then, Richie put the lid on, breathing a sigh of relief. "Phew, what a rescue! Thanks! Donald" Richie murmured.After the successful rescue. Mrs. Beecher asked the class to write about this special experience. Having had such a close look at the mantises, everyone seemed to have turned into a great writer. The class went silent, with only pens tracing on the paper. "Donnie the Dung Beetle, no, actually it was Donald the Mantis Master who saved the day!" wrote Richie, glancing at Donald with a smile. Donald lifted his head, giving him a knowing wink. Since then, the class pets became a connection for everybody to bond over and Donald had a new nickname Donald the Mantis Master.(注:“一个故事,多种结尾”,此文仅供参考。
【试卷】福建省福州市普通高中2023届高三毕业班质量检测(二检)数学试题(4页版)

2023年福州市普通高中毕业班质量检测数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}12A x x =-≤,{|2x B x =,则A B =( )A .112x x ⎧⎫-⎨⎬⎩⎭≤≤B .{|1x x -≤C .12x x ⎧⎫⎨⎬⎩⎭≤ D .{|3}x x ≤2.已知(1i)24i z +=-,则z = ( )A .2BC .4D .103.若二项式2213nx x ⎛⎫+ ⎪⎝⎭展开式中存在常数项,则正整数n 可以是 ( )A .3B .5C .6D .74.为培养学生“爱读书、读好书、普读书”的良好习惯,某校创建了人文社科类、文学类、自然科学类三个读书社团.甲、乙两位同学各自参加其中一个社团,每位同学参加各个社团的可能性相同,则这两位同学恰好参加同一个社团的概率为 ( ) A .13B .12C .23D .345.已知2b a = ,若a 与b 的夹角为120︒,则2a b - 在b 上的投影向量为 ( )A .3b -B .32b -C .12b - D .3b6.已知221:(2)(3)4O x y -+-= ,1O 关于直线210ax y ++=对称的圆记为2O ,点E ,F 分别为1O ,2O 上的动点,EF 长度的最小值为4,则=a ( )A .32-或56B .56-或32C .32-或56- D .56或327.已知三棱锥-P ABC 的四个顶点都在球O 的球面上,PA PB PC AB ====2π3ACB ∠=,则球O 的体积为( ) A .3πB .27π8C .9π2D .9π8.已知函数()f x ,()g x 的定义域均为R ,(1)f x +是奇函数,且(1)()2f x g x -+=,()(3)2f x g x +-=,则( )A .()f x 为奇函数B .()g x 为奇函数C .201()40k f k ==∑D .201()40k g k ==∑二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.已知函数π()2sin 23f x x ⎛⎫=+ ⎪⎝⎭,则 ( )A .()f x 在区间π,02⎡⎤-⎢⎥⎣⎦单调递增 B .()f x 在区间[0,π]有两个零点C .直线π12x =是曲线()y f x =的对称轴 D .直线2π43y x =+是曲线()y f x =的切线10.已知曲线222:1424x y C m +=-,则 ( )A .若m >,则C 是椭圆B .若m <<C 是双曲线 C .当C 是椭圆时,若m 越大,则C 越接近于圆D .当C 是双曲线时,若m 越小,则C 的张口越大11.在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为棱BC ,1CC 的中点,P 为线段EF 上的动点,则 ( ) A .线段DP 长度的最小值为2 B .三棱锥1D A AP -的体积为定值 C .平面AEF 截正方体所得截面为梯形 D .直线DP 与1AA 所成角的大小可能为π312.若x ,y 满足223x xy y ++=,则( )A .2x y +≤B .21x y +-≥C .228x y xy +-≤D .221x y xy +-≥三、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上. 13.若3cos 5α=-,α是第三象限角,则tan 2α=___________.14.利率变化是影响某金融产品价格的重要因素经分析师分析,最近利率下调的概率为60%,利率不变的概率为40%.根据经验,在利率下调的情况下该金融产品价格上涨的概率为80%,在利率不变的情况下该金融产品价格上涨的概率为40%.则该金融产品价格上涨的概率为__________.15.已知曲线32()362f x x x x =-++在点P 处的切线与在点Q 处的切线平行,若点P 的纵坐标为1,则点Q 的纵坐标为__________.16.已知椭圆22:1126x y C +=,直线l 与C 在第二象限交于A ,B 两点(A 在B 的左下方),与x 轴,y 轴分别交于点M ,N ,且::1:2:3MA AB BN =,则l 的方程为____________________.1 2 3 4 5 6 7 8 得分9 10 11 12 得分13. 14. 得分15. 16.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.记ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知2222b a c -=.(1)求tan tan BA的值: (2)求C 的最大值.18.如图,在四棱锥P ABCD -中,底面ABCD 是梯形,//AB CD ,AD CD ⊥,24CD AB ==,PAD △ 是正三角形,E 是棱PC 的中点. (1)证明://BE 平面PAD ;(2)若AD =,平面PAD ⊥平面ABCD ,求直线AB 与平面PBC 所成角的正弦值.19.欧拉函数*()()n n ϕ∈N 的函数值等于所有不超过正整数n ,且与n 互质的正整数的个数,例如:(1)1ϕ=,(4)1ϕ=. (1)求2(3)ϕ,3(3)ϕ;(2)令1(3)2nn a ϕ=,求数列3log n n a a ⎧⎫⎨⎬⎩⎭的前n 项和.20.脂肪含量(单位:%)指的是脂肪重量占人体总重量的比例.某运动生理学家在对某项健身活动参与人群的脂肪含量调查中,采用样本量比例分配的分层随机抽样,如果不知道样本数据,只知道抽取了男性120位,其平均数和方差分别为14和6,抽取了女性90位,其平均数和方差分别为21和17.(1)试由这些数据计算出总样本的均值与方差,并对该项健身活动的全体参与者的脂肪含量的均值与方差作出估计.(结果保留整数) (2)假设全体参与者的脂肪含量为随机变量X ,且2(17,)X N σ~,其中2σ近似为(1)中计算的总样本方差.现从全体参与者中随机抽取3位,求3位参与者的脂肪含量均小于12.2%的概率. 附:若随机变量X 服从正态分布2(,)N μσ,则()0.6827P X μσμσ-+≈≤≤,(22)0.9545P X μσμσ-+≈≤≤4.7≈ 4.8≈,30.158650.004≈.21.已知抛物线2:2(0)E y px p =>,过点(2,0)-的两条直线1l ,2l 分别交E 于A 、B 两点和C 、D 两点.当1l 的斜率为23时,AB =. (1)求E 的标准方程:(2)设G 为直线AD 与BC 的交点,证明:点G 必在定直线上.22.已知函数()(1)ln f x x x ax a =+-+.(1)若2a =,试判断()f x 的单调性,并证明你的结论; (2)若1x >,()0f x >恒成立. (i )求a 的取值范围:(ii )设11111232n a n n n n=+++++++ ,[]x 表示不超过x 的最大整数.求[10]n a . (参考数据:ln 20.69≈)。
福建省福州市2024届高三第一次质量检测语文试题及参考答案

福建省福州市2024届高三第一次质量检测语文试题及参考答案一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,19分)阅读下面的文字,完成1~5题。
材料一:文化是一种社会符号,互联网背景下的媒介融合使得文化符号横跨多媒体平台的传播流动不可避免,形成一种跨媒介叙事。
跨媒介叙事的概念由英国著名传播学者亨利·詹金斯首次提出并作出详细阐释:“一个跨媒介故事横跨多种媒介平台展现出来,其中每一个新文本都对整个故事做出了独特而有价值的贡献。
”跨媒介叙事的内涵包括两方面:一方面指图像、声音、文字等多种媒介联合完成对事件的叙述,进而生成不同的艺术变种;另一方面指再媒介转译后的衍生产品形成媒介增生的集群效应,在跨媒介叙事中,内容从一种媒介到另一种媒介进行再现,从而形成一种以内容为中心的网状结构,进而形成跨媒介文化IP。
IP一词本意是知识产权,泛指文化产业领域的内容版权。
文化资源自身并不能自然地成为文化产品或文化商品,只有经过再创造,成为商品符号,才能进入产业循环链而成为文化商品,并在反复使用和符号生产中实现增值。
2016年初,中国中央电视台出品的《我在故宫修文物》意外走红过程,成为跨媒介叙事的典范。
纪录片以影像叙事的方式将故宫文化资源转化为视觉符号呈现在大众眼前,从普通文物工作者的平常生活视角来呈现出人文气息,这种平民化、具有可塑性和延展性的叙事模式,为大众留出大量进行文本再创作的裂隙与创作空间。
第一次近距离地展现了文物修复专家的内心世界和日常生活,节奏轻快、视角新颖,让这一大片红墙金瓦的建筑群里,透出不同寻常的意味”,用日常“撑起宏大和厚重。
另一方面,互联网弹幕网站为文本的解读与再生产提供了直接的平台,在互联网上通过弹幕讨论、剪辑、解说的形式不断增加原文本的理解维度,产生新的叙事文本。
B站观众对《我在故宫修文物》的文本以弹装再生产”与视频再生产”两种方式实现了文本的再生产。
纪录片走红以后,制作方随之推出同名电影、书籍,形成一个IP化的跨媒介叙事单元。
福建省福州市2024-2025学年高三上学期8月第一次质量检测试题 英语含答案

(在此卷上答题无效)2024-2025学年高三年级第一次质量检测英语试题(答案在最后)(本试题卷共12页。
全卷满分150分。
考试用时120分钟。
)注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上。
2.回答选择题时,选出每小题答案后用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
例:How much is the shirt?A.£19.15.B.£9.18.C.£9.15.答案是C。
1.What does the woman agree to do after work today?A.Exercise.B.Cook at home.C.Watch a movie.2.Why does the man want to sleep in a hotel?A.It’s cooler.B.It’s quieter.C.It’s safer.3.What does the woman suggest the man do?A.Go to a tailor’s shop.B.Buy a uniform online.C.Go to Sunshine Uniforms.4.Where is the sound coming from?A.The television.B.A mobile phone.C.Birds from outside.5.What are the speakers mainly talking about?A.The weather forecast.B.Exam preparation.C.Health condition.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
2024届福建省福州市高三下学期4月末质量检测语文试题(解析版)

2023-2024学年福州市高三年级4月末质量检测语文试题(完卷时间150分钟;满分150分)注意事项:1、答卷前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,18分)阅读下面的文字,完成下面小题。
材料一:“生态位”是近年来开始流行的一个生态学术语,其意是指一个种群在自然生态系统空间上的位置以及这个种群与自然及其他种群之间的功能和价值关系。
作为生态系统中的一员,人类显然有属于自己的生态位,但人类的生态位不是人类在生态系统中的某一固定区域,而是指人类的活动有其特定的边界并受特定规则的约束。
人类的生态位责任包括补偿性责任与前瞻性责任。
德国学者约纳斯将责任区分为追溯性责任与前瞻性责任。
这为人类履行生态位责任提供了有益启迪。
追溯性责任也就是补偿性责任,它要求人类必须对人类活动已经破坏的自然生态环境负责,竭尽全力进行环境治理和生态修复;而前瞻性责任则是指人类必须对自己的经济政治决策、科学技术创新、生产方式和生活方式等对生态环境可能造成的负面影响进行科学评估与预测,从而择优弃劣而行。
无论是履行补偿性责任还是前瞻性责任,都要求人类通过生态环境立法、政府的制度设计、公民的生态道德践行乃至国际社会的协同合作,一方面弥补、修复我们已造成的自然生态环境破坏,另一方面有效预防人类对生命共同体造成更进一步的伤害。
人类履行生态位责任的根本途径是推进绿色发展,建设生态文明。
因为这是既符合自然规律、也符合人类需要的社会实践。
推进绿色发展,建设生态文明,不是人类既可以享有、又可以放弃的权利,而是人类不可推卸的责任。
履行这一责任包含着“肯定性”与“否定性”两方面的现实要求。
就肯定性要求而言,就是人类要将符合绿色发展与生态文明要求的理念、技术、政策、法律、方案等运用于绿色发展与生态文明建设实践之中;从否定性要求看,就是决不以牺牲生态环境和其他物种的生命来换取人类的利益和发展,彻底摒弃那些非绿色、非生态与反绿色、反生态的理念、技术、政策、法律、方案,实现生产方式、生活方式、科技创新方式的绿色化变革,从源头上防范生态环境危机的再次发生,以造福生命共同体。
2023届福建省福州市普通高中毕业班质量检测(二模)语文含答案
2023年2月福州市普通高中毕业班质量检测语文试题注意事项:(完卷时间150分钟;满分150分)1.答卷前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,17分)阅读下面的文字,完成1~5题。
材料一:习近平总书记在党的二十大报告中提出,推进文化自信自强,铸就社会主义文化新辉煌。
实现中华民族伟大复兴中国梦,全面建设社会主义现代化国家,文化强国是其中应有之义。
建设社会主义文化强国,需要我们坚持中国特色社会主义文化发展道路。
我们必须走属于自己的文化发展之路,这就是说,不能跟在其他国家后边亦步亦趋,而是应该自信自强地举起新时代中国特色社会主义文化旗帜,为全面建设社会主义现代化国家凝心聚力,以富有活力的现代文化展示当代中国形象;同时,也不能故步自封,而是应该推动马克思主义基本原理同中华优秀传统文化相结合。
无论是过去、现在还是将来,都要坚持发展面向现代化、面向世界、面向未来的,民族的科学的大众的社会主义文化。
只有这样,才能反映中国式现代化的本质要求,激发我国文化创新创造活力。
建设社会主义文化强国;需要建设具有强大凝聚力和引领力的社会主义意识形态。
这就要求我们坚持以马克思主义中国化时代化的最新成果引领文化发展的方向,以社会主义核心价值观为文化发展的导向,不断推动中华优秀传统文化创造性转化、创新性发展,在传承中华优秀传统文化、弘扬革命文化基础上,大力发展社会主义先进文化,不断丰富人民群众的文化生活,满足人民日益增长的精神文化需求。
建设社会主义文化强国,需要巩固壮大新时代的主流思想舆论。
通过弘扬以伟大建党精神为源头的中国共产党人精神谱系,进行持续深入的社会主义核心价值观教育,让爱国主义、集体主义、社会主义教育深入人心。
2023届福建省福州市高三普通高中毕业班质量检测(二检)政治试卷
(在此卷上答题无效)2023年2月福州市普通高中毕业班质量检测思想政治试题(完卷时间75分钟;满分100分)友情提示:请将所有答案填写到答题卡上!请不要错位、越界答题!一、单项选择题(每小题3分,共16题,共48分)1.放眼中华文明5000多年的历史,没有哪一种政治力量能像中国共产党这样深刻地、历史性地推动中华民族发展进程。
在党的领导下,我们的国家从四分五裂走向高度统一,从积贫积弱走向全面小康,从被动挨打走向独立自主,仅用几十年时间就走完发达国家几百年的工业化进程。
这一史实说明中国共产党①没有辜负历史和人民的选择②为新型工业化提出中国方案③成功开辟民族复兴的正确道路④始终具有长期执政的历史自信A.①②B.①③C.②④D.③④2.福州作为“中国鱼丸之都”,全市共有鱼丸生产企业50多家,带动约10万人就业。
2022年,《福州鱼丸全产业链发展三年行动计划》启动编写,相关政府部门积极投放福州鱼丸宣传广告,引导鱼九加工企业申报区域知名农产品公用品牌,并促进鱼丸产业朝标准化、规范化方向健康发展。
上述举措直接①推动非公有制经济的发展②打造福州鱼丸的区域品牌③塑造民营企业的良好信誉④延长鱼丸的产业链供应链A.①②B.①④C.②③D.③④2022年10月28日,国务院提请十三届全国人大常委会第三十七次会议审议“失于数字经济发展情况”的报告。
报告明确提出,要牢牢抓住数字技术发展主动权,把握新一轮科技革命和产业变革发展先机,大力发展数字经济。
据此,回答第3-4题。
3.为牢牢抓住数字技术发展主动权,可行的措施是①发挥新型举国体制优势,加强关键核心技术攻关②实施创新驱动发展战略,保护数字技术知识产权③立足超大规模市场优势,限制数字经济产品进口④增强公有制经济控制力、促进新型基础设施建设A.①②B.①③C.②④D.③④高三思想政治-1-(共6页4.十三届全国人大常委会第三十七次会议审议“关于数字经济发展情况”的报告,体现了A.全国人大对国务院工作具有决定权B.全国人大常委会行使表决权和监督权全国人大常委会是全国人大的执行机关D.民主集中制是人民代表大会制度的活动原则5.2022年12月,由全国、省、市三级政协参与主办的“走进政协·台湾青年说”活动在福州举行。
2025届福州高三8月市质检化学试题+答案
(完卷时间75分钟;满分100分福州2024~2025学年高三年级第一次质量检测化学试题)可能用到的相对原子质量:H 1− C 12− O 16− Zn 65−一、选择题:本题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.福建舰拥有世界上最先进的雷达系统,其雷达射频微波器件所用的碳化硅材料能实现电信号的可控改变。
下列关于碳化硅的说法错误的是( )。
A .C 原子的杂化类型为3sp B .属于高分子化合物 C .熔点高、硬度大D .属于半导体材料2.“扑热息痛”是重要的解热镇痛药,其结构如下。
下列有关该物质的说法正确的是( )。
A .分子式为872C H NOB .含有2种官能团C .所有原子可能处于同一平面D .能与溴水发生加成反应3.寿山石的主要成分为()44108Z W Y YX ,X 、Y 、Z 、W 为四种原子序数递增的短周期不同族元素,X 是周期表中半径最小的原子,基态Y 原子有2个未成对电子,W 的L 层电子数是M 层的2倍。
下列说法正确的是( )。
A .原子半径Z <W B .简单氢化物的稳定性Y <W C .电负性Z >XD .Z 最高价氧化物的水化物呈两性4.乙烯在Ag 的催化作用下可发生反应:Ag2222CH CH O 2=+ →,下列说法错误的是( )。
A .2211.2L CH CH =所含的原子数目为A 3NB .221.4g CH CH =中所含的电子数目为A 0.8NC .1mol 环氧乙烷中含有σ键的数目为A 7ND .常温常压下,216g O 发生反应时,转移电子的数目为A 2N5.利用绿矾()42FeSO 7H O ⋅制备电极材料4LiFePO 的前驱体4FePO 的流程如下:下列说法正确的是( )。
A .溶解过程中34H PO 可抑制2Fe +的水解 B .可以用KSCN 溶液判断反应是否完全C .过滤需要的玻璃仪器有烧杯、玻璃棒、分液漏斗D .反应中氧化剂与还原剂的物质的量之比为2:16.我国科研团队研究发现GaZrO x 双金属氧化物可形成氧空位,具有催化性能,实现2CO 加氢制甲醇,其反应机理如图所示。
福建省福州市2023-2024学年高三下学期4月末质量检测数学试卷(解析版)
2023—2024学年福州市高三年级4月末质量检测数学试题(完卷时间120分钟;满分150分)友情提示:请将所有答案填写到答题卡上!请不要错位、越界答题!一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合101M x x ⎧⎫=≤⎨⎬+⎩⎭,则R M =ð()A.{}1x x <- B.{}1x x ≤- C.{}1x x >- D.{}1x x ≥-【答案】D 【解析】【分析】先解不等式再利用补集运算即可求解.【详解】由101x ≤+得10x +<,即1x <-,所以{}1M x x =<-,于是{}R 1M x x =≥-ð.故选:D.2.设a ,b ∈R ,则“0ab <”是“0a ba b+=”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C 【解析】【分析】根据充要条件的概念即可求解.【详解】当0ab <时,00a b >⎧⎨<⎩或0a b <⎧⎨>⎩,则0a b a b +=,即充分性成立;当0a b a b +=时,0b ba a =->,则0ab <,即必要性成立;综上可知,“0ab <”是“0a ba b+=”的充要条件.故选:C.3.等轴双曲线经过点()3,1-,则其焦点到渐近线的距离为()A. B.2C.4D.【答案】A 【解析】【分析】由题意,先求出等轴双曲线的方程,得到焦点坐标和渐近线方程,再利用点到直线的距离公式进行求解即可.【详解】因为该曲线为等轴双曲线,不妨设该双曲线的方程为22221(0)x y a a a-=>,因为等轴双曲线经过点(3,1)-,所以22911a a-=,解得28a =,则22216c a a =+=,所以该双曲线的一个焦点坐标为(4,0)F ,易知该双曲线的一条渐近线方程为y x =,则点(4,0)F 到直线y x =的距离d ==.故选:A .4.已知1sin 44πα⎛⎫+=⎪⎝⎭,则sin 2α的值为() A.78B.158C.158-D.78-【答案】D【解析】【分析】先利用和角公式展开1sin 44πα⎛⎫+= ⎪⎝⎭,平方可求sin 2α.【详解】1sin cos 4224πααα⎛⎫+=+=⎪⎝⎭平方可得11(1sin 2)216α+=,所以7sin 28α=-,故选D.【点睛】本题主要考查倍角公式,熟记公式是求解关键,题目较为简单,侧重考查数学运算的核心素养.5.已知非零复数z 满足1i z z -=-,则zz=()A.1 B.1- C.iD.i-【答案】D 【解析】【分析】设()i ,z a b a b =+∈R ,利用条件证明a b =,再代入zz化简即可.【详解】设()i ,z a b a b =+∈R ,则由1i z z -=-知()1i 1i a b a b -+=+-.从而()()222211a b a b -+=+-,展开即得a b =.由z 非零,知0a b =≠,故()()()2i 1i i 1i 2i i i 1i 1i 1i 2i a z a b b a z a b b-----======-+++-+.故选:D.6.()()54112x x -+的展开式中2x 的系数为()A.14- B.6- C.34D.74【答案】B 【解析】【分析】直接利用二项式的展开式以及组合数的应用求出结果.【详解】5(1)x -的展开式为15C (1)(0rrrr T x r +=⋅-⋅=,1,2,3,4,5),4(12)x +的展开式14C 2(0k k k k T x k +=⋅⋅=,1,2,3,4),当0r =,2k =时,2x 的系数为224C 224⋅=;当1r =,1k =时,2x 的系数为54240-⨯⨯=-;当2r =,0k =时,2x 的系数为25C 10=,故2x 的系数为2410406+-=-.故选:B .7.数列{}n a 共有5项,前三项成等差数列,且公差为d ,后三项成等比数列,且公比为q .若第2项等于2,第1项与第4项的和等于10,第3项与第5项的和等于30,则d q -=()A.1 B.2 C.3D.4【答案】B 【解析】【分析】结合等差、等比数列的概念利用第二项写出剩下四个项,进而列方程组即可求解.【详解】由根据题意得,该数列的项为()()22,2,2,2,2d d d q d q -+++,又()()222102230d d q d d q ⎧-++=⎪⎨+++=⎪⎩,即26213021d q d q ⎧+=⎪-⎪⎨⎪+=⎪+⎩,解得24q d =⎧⎨=⎩或31q d =⎧⎨=⎩.于是2d q -=.故选:B.8.四棱锥E ABCD -的顶点均在球O 的球面上,底面ABCD 为矩形,平面BEC ⊥平面ABCD,BC =,1CD CE ==,2BE =,则O 到平面ADE 的距离为()A.13B.14C.24D.58【答案】A 【解析】【分析】根据线面关系可证得AB ⊥平面BEC ,BE CE ⊥,将四棱锥E ABCD -补成长方体111AD DA BECB -,确定球心的位置,再建立空间直角坐标系,求解平面ADE 的法向量,利用空间向量的坐标运算计算O 到平面ADE 的距离即可.【详解】因为平面BEC ⊥平面ABCD ,交线为BC ,又底面ABCD 为矩形,则AB BC ⊥,因为AB ⊂平面ABCD ,所以AB ⊥平面BEC ,则,AB CE AB EB ⊥⊥,又BC =,1CD CE ==,2BE =,所以222BE CE BC +=,则BE CE ⊥,如图,将四棱锥E ABCD -补成长方体111AD DA BECB -,若四棱锥E ABCD -的顶点均在球O 的球面上,则长方体111AD DA BECB -的顶点均在球O 的球面上,O 为体对角线11D B 中点,如图,以E 为原点,1,,EC EB ED 所在直线为,,x y z轴建立空间直角坐标系,则()()()()()110,2,1,1,0,1,0,0,0,0,0,1,1,2,0A D E D B ,故11,1,22O ⎛⎫⎪⎝⎭,设平面ADE 的法向量为(),,n x y z =,又()()0,2,1,1,0,1EA ED == ,12020n EA y z y z n ED x z x z⎧⎧⋅=+==-⎪⎪⇒⎨⎨⋅=+=⎪⎪⎩=-⎩ ,令2z =,所以()2,1,2n =-- ,又11,1,22EO ⎛⎫= ⎪⎝⎭ ,则O 到平面ADE的距离为13EO n n ⋅==.故选:A.【点睛】方法点睛:解决与球相关的切、接问题,其通法是作出截面,将空间几何问题转化为平面几何问题求解,其解题思维流程如下:(1)定球心:如果是内切球,球心到切点的距离相等且为球的半径;如果是外接球,球心到接点的距离相等且为半径;(2)作截面:选准最佳角度做出截面(要使这个截面尽可能多的包含球、几何体的各种元素以及体现这些元素的关系),达到空间问题平面化的目的;(3)求半径下结论:根据作出截面中的几何元素,建立关于球的半径的方程,并求解.或者采用补形法,利用规则图形的外接球位置确定所求外接球球心的位置.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.在一次射击比赛中,甲、乙两名选手的射击环数如下表,则下列说法正确的是()甲乙87909691869086928795A.甲选手射击环数的极差大于乙选手射击环数的极差B.甲选手射击环数的平均数等于乙选手射击环数的平均数C.甲选手射击环数的方差大于乙选手射击环数的方差D.甲选手射击环数的第75百分位数大于乙选手射击环数的第75百分位数【答案】ABC 【解析】【分析】通过极差、平均数、方差、第75百分位数的计算即可求解.【详解】甲选手射击环数从小到大排列:86,87,90,91,96,则甲选手射击环数的:极差等于968610-=;平均数等于()18687909196905⨯++++=;方差等于()()()()()2222218690879090909190969012.45⎡⎤⨯-+-+-+-+-=⎣⎦;第75百分位数等于91.乙选手射击环数从小到大排列:86,87,90,92,95,则乙选手射击环数的:极差等于95869-=;平均数等于()18687909295905⨯++++=;方差等于()()()()()2222218690879090909290959010.85⎡⎤⨯-+-+-+-+-=⎣⎦;第75百分位数等于92.综上可知,ABC 选项正确,D 选项错误.故选:ABC.10.已知函数()()sin 2f x x ϕ=+满足()()33ππ+=-f x f x,且()ππ2f f ⎛⎫> ⎪⎝⎭,则()A.1sin 2ϕ=B.1sin 2ϕ=-C.()y f x =的图象关于点13π,012⎛⎫⎪⎝⎭对称 D.()f x 在区间π,π2⎛⎫⎪⎝⎭单调递减【答案】BC 【解析】【分析】由已知结合正弦函数的对称性可先求出ϕ,即可判断A ,B ;然后结合正弦函数的对称性及单调性检验选项C ,D 即可判断.【详解】因为函数()sin(2)f x x ϕ=+满足()()33ππ+=-f x f x,所以()f x 的图象关于π3x =对称,则2πππ32k ϕ+=+,Z k ∈,则6πkπϕ=-,Z k ∈,所以π()sin(2)6f x x =-或5π()sin(2)6f x x =+,因为π((π)2f f >,所以π2π6n ϕ=-,Z n ∈,1sin 2ϕ=-,A 错误,B 正确;则π()sin(2)6f x x =-,13π(sin 2π012f ==,即()f x 的图象关于点13(π,0)12对称,C 正确;当ππ2x <<时,5ππ11π2666x <-<,因为sin y t =在5π(6,11π6上不单调,D 错误.故选:BC .11.已知函数()()e eee xxxx f x ax --=+-+恰有三个零点1x ,2x ,3x ,且123x x x <<,则()A.1230x x x ++=B.实数a 的取值范围为(]0,1C.110ax +>D.31ax a +>【答案】ACD 【解析】【分析】利用()f x 的奇偶性可判断A 选项;将函数的零点问题转化为函数图像的交点问题,再利用导数和基本不等式确定切线斜率的取值范围,进而得实数a 的取值范围,即可判断B 选项;由112122e1e 1x xax +=+来可判断C 选项;由32321e 1x ax =-+得323121e 1x a x ⎛⎫=- ⎪+⎝⎭,进而31ax a +>等价于323e 210x x -->,令()()2=e210xh x x x -->,用导数证明()0h x >,即可判断D 选项.【详解】函数()()e eee xxxx f x ax --=+-+定义域为R ,()()()()()e e e e e e e e x x x x x x x xf x a x ax f x ----⎡⎤-=-+-+=-+-+=-⎣⎦,所以()f x 是奇函数,则()00f =,又因为()f x 有三个零点且123x x x <<,()()()1230f x f x f x ===,所以13x x =-,20x =,即1230x x x ++=,故A 选项正确;()()e eee0xxxxf x ax --=+-+=,得222e e e 121e e e 1e 1x x x x x x xax --=--==-+++,令()221e 1xg x =-+,则()()2224e 0e 1xxg x =>+',所以()f x 在R 上增函数,要使函数()f x 有3个零点,y ax =与()y g x =的图象有3个交点,如图:又()()()2222222224e 4e 411e 1e 2e 1e 2e xxx xx x x g x ===≤=+++++',当且仅当0x =时取等号,即()01g x <'≤,所以01a <<,故B 错误;111212222e 1110e 1e 1x x x ax ⎛⎫+=-+=> ⎪++⎝⎭,故C 选项正确;由32321e 1x ax =-+得323121e 1x a x ⎛⎫=- ⎪+⎝⎭,又30x >,要使333223212111e 1e 1x x ax a x ⎛⎫+=-+-> ⎪++⎝⎭成立,则323e 210x x -->成立,令()()2=e210xh x x x -->,()()()2=2e 100x h x x -'>>,所以()h x 在()0,∞+单调递增,则()()0=0h x h >,于是323e210x x -->,则31ax a +>,故D 正确.故选:ACD.【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.三、填空题:本题共3小题,每小题5分,共15分.12.若向量()3,4a =- 在向量()2,1b =- 上的投影向量为b λ,则λ等于______.【答案】2-【解析】【分析】根据投影向量的公式运算即可得答案.【详解】向量a 在向量b上的投影向量为2a b b b⋅ ,所以()()()223,42,164252,1a b b λ-⋅-⋅--====--.故答案为:2-.13.倾斜角为π3的直线经过抛物线C :212y x =的焦点F ,且与C 交于A ,B 两点,Q 为线段AB 的中点,P 为C 上一点,则PF PQ +的最小值为______.【答案】8【解析】【分析】由题意,根据给定条件,求出点Q 的横坐标,再借助抛物线的定义求解作答.【详解】易知抛物线2:12C y x =的焦点(3,0)F ,准线3x =-,直线AB的方程为3)y x =-,联立23)12y x y x⎧=-⎪⎨=⎪⎩,消去y 并整理得21090x x -+=,不妨设1(A x ,1)y ,2(B x ,2)y ,由韦达定理得1210x x +=,此时线段AB 的中点Q 的横坐标5Q x =,过P 作准线3x =-的垂线,垂足为D ',过Q 作准线3x =-的垂线,垂足为D ,由抛物线的定义可得5382Q pPF PQ PD PQ QD QD x +=+≥≥+='+'==||||PF PQ +取得的最小值为8.故答案为:8.14.如图,六面体111ABCDA C D 的一个面ABCD 是边长为2的正方形,1AA ,1CC ,1DD 均垂直于平面ABCD ,且11AA =,12CC =,则该六面体的体积等于________,表面积等于______.【答案】①.6②.22【解析】【分析】根据1AA ,1CC ,1DD 均垂直于平面ABCD ,所以111////AA CC DD ,在1DD 上取1DM AA =,连接1,A M MC ,从而根据线线平行可得故1ABA DCM -为三棱柱,111BCC A MD -为三棱柱,根据柱体体积公式即可得该六面体的体积,根据几何体外表面的线线关系结合勾股定理、余弦定理、三角形面积公式、梯形面积公式、正方形面积公式,即可得几何体的表面积.【详解】如图,在1DD 上取1DM AA =,连接1,A M MC ,因为1AA ,1CC ,1DD 均垂直于平面ABCD ,所以111////AA CC DD ,则11,AA AD AA DC ⊥⊥,因为正方形ABCD ,所以AD DC ⊥,又,,AD DC D AD DC =⊂ 平面11A ADD ,所以DC ⊥平面11A ADD ,由1DM AA =可得四边形1AA MD 为平行四边形,所以11//,AD A M AD A M =,因为面ABCD 为正方形,则//,AD BC AD BC =,所以11//,BC A M BC A M =,则四边形1A MCB 为平行四边形,所以11//,A B MC A B MC =,又1A B ⊄平面11DCC D ,MC ⊂平面11DCC D ,所以1//A B 平面11DCC D ,因为平面11DCC D 平面11111A BC D C D =,则111//A B C D ,所以四边形11MD C C 为平行四边形,所以112MD C C ==,故1ABA DCM -为三棱柱,111BCC A MD -为三棱柱,则该六面体的体积1111ABA CDM BCC A MD V V V --=+=1111212222622ABA BCC S BC S DC ⋅+⋅=⨯⨯⨯+⨯⨯⨯= ;如图,连接1,BD D B ,又1A B ===,11A D ===,BD ==所以1BD ==,则在四边形111A BC D中,由余弦定理得22211111111110cos 210A B A D BD D A B A B A D +-∠===-⋅,所以11sin 10D A B ∠==,则11111111sin 610A BC D S AB A D D A B =⋅⋅∠== ,该六面体的表面积111111111ABA BCC A BCD ABCDA ADD DCC D S S S S S S S =+++++ 四边形四边形()()11112122132232622222222=⨯⨯+⨯⨯+⨯+⨯+⨯+⨯++⨯=.故答案为:6;22.【点睛】关键点点睛:解决本题的关键是确定六面体的线线关系.关于求几何体的体积,要注意分割与补形.将不规则的几何体通过分割或补形将其转化为规则的几何体求解.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知数列{}n a 满足12a =,12n n a a n -=+(2n ≥).(1)求数列{}n a 的通项公式;(2)记数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,证明:1n S <.【答案】(1)2n a n n =+,*n ∈N ;(2)证明见解析.【解析】【分析】(1)根据给定条件,利用累加法,结合等差数列前n 项和公式求解即得.(2)利用裂项相消法求和即可得证.【小问1详解】数列{}n a 中,当2n ≥时,12n n a a n -=+,即12n n a a n --=,则12112312()()()()n n n n n a a a a a a a a a a ---=--⋅⋅⋅+--++++()()2222462222n n n a n n n n +=+++⋅⋅⋅+-+==+,而12a =满足上式,所以数列{}n a 的通项公式是2n a n n =+,*n ∈N .【小问2详解】由(1)知()21n a n n n n =+=+,*n ∈N ,则()111111n a n n n n ==-++,因此()()1111122311n S n n n n =++⋅⋅⋅++⨯⨯-+1111111111223111n n n n n =-+-+⋅⋅⋅+-+-=--++,而1n ≥,则1111n -<+,所以1n S <.16.甲企业生产线上生产的零件尺寸的误差X 服从正态分布()20,0.2N ,规定()0.2,0.2X ∈-的零件为优等品,()0.6,0.6X ∈-的零件为合格品.(1)从该生产线上随机抽取100个零件,估计抽到合格品但非优等品的个数(精确到整数);(2)乙企业拟向甲企业购买这批零件,先对该批零件进行质量抽检,检测的方案是:从这批零件中任取2个作检测,若这2个零件都是优等品,则通过检测;若这2个零件中恰有1个为优等品,1个为合格品但非优等品,则再从这批零件中任取1个作检测,若为优等品,则通过检测;其余情况都不通过检测.求这批零件通过检测时,检测了2个零件的概率(精确到0.01).(附:若随机变量()2,N ξμσ,则()0.6827P μσξμσ-<<+=,()220.9545P μσξμσ-<<+=,()330.9973P μσξμσ-<<+=)【答案】(1)约31个(2)约为0.61【解析】【分析】(1)利用正态分布的对称性即可求解;(2)利用条件概率求解即可.【小问1详解】依题意得,0μ=,0.2σ=,所以零件为合格品的概率为()()0.60.6330.9973P X P X μσμσ-<<=-<<+=,零件为优等品的概率为()()0.20.20.6827P X P X μσμσ-<<=-<<+=,所以零件为合格品但非优等品的概率为0.99730.68270.3146P =-=,所以从该生产线上随机抽取100个零件,估计抽到合格品但非优等品的个数为1000.314631⨯≈.【小问2详解】设从这批零件中任取2个作检测,2个零件中有2个优等品为事件A ,恰有1个优等品,1个为合格品但非优等品为事件B ,从这批零件中任取1个检测是优等品为事件C ,这批产品通过检测为事件D ,则D A BC =+,且A 与BC 互斥,所以()()()()()()P D P A P BC P A P B P C B=+=+221222C 0.6827C 0.68270.31460.6827 1.62920.6827=⨯+⨯⨯⨯=⨯,所以这批零件通过检测时,检测了2个零件的概率为22()0.68271(|)0.61() 1.62920.6827 1.6292P AD P A D P D ===≈⨯.答:这批零件通过检测时,检测了2个零件的概率约为0.61.17.如图,以正方形ABCD 的边AB 所在直线为旋转轴,其余三边旋转120°形成的面围成一个几何体ADF BCE -.设P 是CE 上的一点,G ,H 分别为线段AP ,EF 的中点.(1)证明://GH 平面BCE ;(2)若BP AE ⊥,求平面BPD 与平面BPA 夹角的余弦值.【答案】(1)证明见解析(2【解析】【分析】(1)证法一:在正方形ABEF 中,连接AH 并延长,交BE 的延长线于点K ,连接PK ,通过证明Rt Rt AFH KEH ≌△△可得GH PK ∥,进而利用线面平行的判定定理即可证明;证法二:取BP 的中点Q ,连接GQ ,EQ ,通过证明四边形GQEH 是平行四边形可得GH QE ∥,进而利用线面平行的判定定理即可证明;证法三:取AB 的中点I ,连接G I ,HI ,利用面面平行的判定定理证明平面//GIH 平面BCE ,从而即可得证//GH 平面BCE .(2)首先通过线面垂直的判定定理证明BP ⊥平面ABEF 可得BP BE ⊥,然后建立空间直角坐标系,利用向量法可求平面BPD 与平面BPA 夹角的余弦值.【小问1详解】证法一:在正方形ABEF 中,连接AH 并延长,交BE 的延长线于点K ,连接PK .因为G ,H 分别为线段AP ,EF 中点,所以HF HE =,所以Rt Rt AFH KEH ≌△△,所以AH KH =,所以GH PK ∥.又因为GH ⊄平面BCE ,PK ⊂平面BCE ,所以//GH 平面BCE .证法二:取BP 的中点Q ,连接GQ ,EQ ,因为G ,H 分别为线段AP ,EF 的中点,所以//GQ AB ,12GQ AB =,又因为//AB EF ,AB EF =,所以GQ HE ∥,GQ HE =,所以四边形GQEH 是平行四边形,所以GH QE ∥,又因为GH ⊄平面BCE ,QE ⊂平面BCE ,所以//GH 平面BCE .证法三:取AB 的中点I ,连接G I ,HI .因为G ,H 分别为线段AP ,EF 的中点,所以GI BP ∥,HI EB ∥,又因为GI ⊄平面BCE ,BP ⊂平面BCE ,所以//GI 平面BCE .因为HI ⊄平面BCE ,BE ⊂平面BCE ,所以//HI 平面BCE .又因为GI HI I ⋂=,GI ⊂平面GIH ,HI ⊂平面GIH ,所以平面//GIH 平面BCE ,又因为GH Ì平面GIH ,所以//GH 平面BCE .【小问2详解】依题意得,AB ⊥平面BCE ,又因为BP ⊂平面BCE ,所以AB BP ⊥.又因为BP AE ⊥,AB AE A = ,AB ,AE ⊂平面ABEF ,所以BP ⊥平面ABEF ,又BE ⊂平面ABEF ,所以BP BE ⊥,所以BP ,BE ,BA 两两垂直.以B 为原点,BP ,BE ,BA 所在直线分别为x ,y ,z轴建立空间直角坐标系,如图所示.不妨设1AB =,30BCP ∠= ,则()1,0,0P ,31,,122D ⎛⎫- ⎪ ⎪⎝⎭,()1,0,0BP =,31,,122BD ⎛⎫=- ⎪ ⎪⎝⎭,设平面BPD 的法向量为(),,m x y z = ,则0,0,BP m BD m ⎧⋅=⎪⎨⋅=⎪⎩即031022x x y z =⎧-+=⎩,取2y =,得0x =,1z =,所以平面BPD 的一个法向量是()0,2,1m =,又平面BPA 的一个法向量为()0,1,0n =.设平面BPD 与平面BPA 的夹角为θ,则25cos cos ,5m n m n m n θ⋅====.所以平面DBP 与平面BPA.18.点P 是椭圆E :22221x y a b+=(0a b >>)上(左、右端点除外)的一个动点,()1,0F c -,()2,0F c 分别是E 的左、右焦点.(1)设点P 到直线l :2a x c =的距离为d ,证明2PF 为定值,并求出这个定值;(2)12PF F △的重心与内心(内切圆的圆心)分别为G ,I ,已知直线IG 垂直于x 轴.(ⅰ)求椭圆E 的离心率;(ⅱ)若椭圆E 的长轴长为6,求12PF F △被直线IG 分成两个部分的图形面积之比的取值范围.【答案】(1)证明见解析,定值为ca(2)(ⅰ)13;(ⅱ)45,54⎡⎤⎢⎥⎣⎦【解析】【分析】(1)由两点间距离公式(结合点P 在椭圆上)、点到直线距离公式表示出2,PF d ,两式相比即可得解;(2)(ⅰ)解法一:一方面由(1)得20cPF a x a =-,另一方面结合已知以及椭圆定义得023x PF a =-,对比两式即可得解;解法二:利用已知以及椭圆定义得12,PF PF 的一种表达式,另外结合两点间距离公式也可以分别表示12,PF PF ,从而平方后作差即可得解;解法三:表示出12,PF PF 方程,根据题意设出内心坐标,结合点到直线距离公式以及内切圆性质即可得解;(ⅱ)先求出椭圆方程,然后求得1FCD 的面积1S 与12PF F △的面积S 之比的表达式结合导数即可求出其范围,进一步即可得解.【小问1详解】依题意,222b c a +=.设()00,P x y ,则2200221x y a b+=,0a x a -<<,所以2PF =所以20c PF x a a==-,又a c >,所以0c a x a >,20ax c >,所以20c PF a x a =-,20a d x c=-所以0220ca x PF c a a d a x c-==-,即2PF 为定值,且这个定值为c a .【小问2详解】(ⅰ)解法一:依题意,00,33x y G ⎛⎫ ⎪⎝⎭,设直线IG 与x 轴交于点C ,因为IG x ⊥轴,所以0,03x C ⎛⎫⎪⎝⎭,所以001202333x x F C F C c c x ⎛⎫⎛⎫-=+--=⎪ ⎪⎝⎭⎝⎭,因为12PF F △的内切圆与x 轴切于点C ,所以1212023PF PF F C F C x -=-=,又因为122PF PF a +=,解得023x PF a =-由(1)得20cPF a x a =-,所以003x c a x a a -=-,所以椭圆E 的离心率13c e a ==.解法二:依题意,00,33x y G ⎛⎫⎪⎝⎭,设直线IG 与x 轴交于点C ,因为IG x ⊥轴,所以0,03x C ⎛⎫⎪⎝⎭,所以001202333x x F C F C c c x ⎛⎫⎛⎫-=+--=⎪ ⎪⎝⎭⎝⎭,因为12PF F △的内切圆与x 轴切于点C ,所以1212023PF PF F C F C x -=-=,又因为122PF PF a +=,得0102,3,3x PF a x PF a ⎧=+⎪⎪⎨⎪=-⎪⎩所以0,3,3x a x a =+=-两式平方后作差,得00443cx ax =对任意0x 成立,所以椭圆E 的离心率13c e a ==.解法三:依题意,00,33x y G ⎛⎫ ⎪⎝⎭,因为IG x ⊥轴,设点I 坐标为0,3x t ⎛⎫ ⎪⎝⎭,可求直线1PF 方程为()00y y x c x c=++,则点I 到直线1PFt =,即()()()2222000003x y c t x c t y x c ⎛⎫⎛⎫+-+=++ ⎪⎪⎝⎭⎝⎭,化简得()22000002033x x y t t c x c y c ⎛⎫⎛⎫+++-+= ⎪ ⎪⎝⎭⎝⎭,①同理,由点I 到直线2PF 的距离等于t ,可得()22000002033x x y t t c x c y c ⎛⎫⎛⎫+----= ⎪ ⎪⎝⎭⎝⎭,②将式①-②,得00084233t cx y cx ⋅=⋅,则04y t =.将04y t =代入式①,得()2200001016233y x x c x c c ⎛⎫⎛⎫+++-+= ⎪ ⎪⎝⎭⎝⎭,化简得220022198x y c c+=,得229c a =,所以椭圆E 的离心率13c e a ==.(ⅱ)由26a =,得3a =,又13c a =,所以1c =,2228b a c =-=,所以椭圆E的方程为221 98x y+=.根楛椭圆对称性,不妨设点P在第一象限或y轴正半轴上,即0003,0x y≤<<≤又()11,0F-,()21,0F,所以直线1PF的方程为()11yy xx=++,设直线IG与1PF交于点D,因为03Dxx=,所以()()00331Dy xyx+=+,1FCD的面积1S与12PF F△的面积S之比为()()()()00200131123313118122y xxx xSS xy+⎛⎫+⨯⎪++⎝⎭==+⨯⨯,令()()()23181xf xx+=+(03x≤<),则()()()()231181x xf xx+-+'=,当[)0,1x∈,()0f x'<,当()1,3x∈,()0f x'>,所以函数()f x在[)0,1单调递减,在()1,3单调递增.又因为()12f=,()419f=,()132f=,所以()f x的值域是41,92⎡⎤⎢⎥⎣⎦,所以14192SS≤≤,所以11415SS S≤≤-,根据对称性,12PF F△被直线IG分成两个部分的图形面积之比的取值范围是45,54⎡⎤⎢⎥⎣⎦.【点睛】关键点点睛:第二问(ⅱ)的关键在于求得1FCD 的面积1S 与12PF F △的面积S 之比的表达式,由此即可顺利得解.19.记集合()()()()()()(){}000,R ,,,f x x D L l x kx b x x D f x l x x D f x l x ∈==+∈∀∈≤∃∈=且,集合()()()()()()(){}000,R ,,,f x x D T l x kx b x x D f x l x x D f x l x ∈==+∈∀∈≥∃∈=且,若()(),f x x D l x L ∈∈,则称直线()y l x =为函数()f x 在D 上的“最佳上界线”;若()(),f x x D l x T ∈∈,则称直线()y l x =为函数()f x 在D 上的“最佳下界线”.(1)已知函数()2f x x x =-+,()01l x kx =+.若()()0,R f x x l x L ∈∈,求k 的值;(2)已知()e 1xg x =+.(ⅰ)证明:直线()y l x =是曲线()y g x =的一条切线的充要条件是直线()y l x =是函数()g x 在R 上的“最佳下界线”;(ⅱ)若()()ln 1h x x =-,直接写出集合()()(),1,,R h x x g x x L T ∞∈+∈⋂中元素的个数(无需证明).【答案】(1)3k =或1-(2)(ⅰ)证明见解析;(ⅱ)2个【解析】【分析】(1)由题意可得R x ∀∈,21x x kx -+≤+,且0R x ∃∈,20001x x kx -+=+,再由△0=求解即可;(2)(ⅰ)结合“最佳下界线”及充要条件的定义证明即可;(ⅱ)由定义直接写出结果即可.【小问1详解】依题意,()()0,R f x x l x L ∈∈ ,R x ∴∀∈,21x x kx -+≤+,且0R x ∃∈,20001x x kx -+=+,令2()(1)1x x k x ϕ=-+--,2Δ(1)4k =--,则()0x ϕ≤,且0()0x ϕ=,∴Δ0,Δ0,≤⎧⎨≥⎩,∴Δ0=,即2(1)40k --=,12k -=或12k -=-,解得3k =或1-;【小问2详解】(ⅰ)先证必要性.若直线()y l x =是曲线()y g x =的切线,设切点为()00,e 1x x +,因为()e x g x '=,所以切线方程为()()000e 1e x x y x x -+=-,即()()000e 1e 1x xl x x x =+-+(*)一方面,()()00g x l x =,所以0x ∃∈R ,()()00g x l x =,另一方面,令()()()()000e e 1e x xx G x g x l x x x =-=---,则()00G x =,因为()0e e xx G x '=-,所以当0x x <时,()0G x '<,()G x 在()0,x ∞-单调递减,当0x x >时,()0G x '>,()G x 在()0,x ∞+单调递增,所以()()00G x G x ≥=,所以()()g x l x ≥.即x ∀∈R ,()()g x l x ≥,所以()(),R g x x l x T ∈∈,即()l x 是函数()g x 在R 上的“最佳下界线”.再证充分性.若()l x 是函数()g x 在R 上的“最佳下界线”,不妨设()l x kx b =+,由“最佳下界线”的定义,x ∀∈R ,()()g x l x ≥,且0x ∃∈R ,()()00g x l x =,令()()()e 1xH x g x l x kx b =-=+--,则()0H x ≥且()00H x =,所以()min 0H x =.因为()e xH x k '=-,①若0k ≤,则()0H x '≥,所以()H x 在R 上单调递增,所以10x x ∃<,使得()()100H x H x <=,故0k ≤不符合题意.②若0k >,令()0H x '=,得ln x k =,当(),ln x k ∞∈-时,()0H x '<,得()H x 在(),ln k ∞-单调递减,当()ln ,x k ∞∈+时,()0H x >,得()H x 在()ln ,k ∞+单调递增,所以,当且仅当ln x k =时,()H x 取得最小值()ln H k .又由()H x 在0x 处取得最小值,()min 0H x =,所以()0,ln 0,x lnk H k =⎧⎨=⎩即000e ,e 10,x x k kx b ⎧=⎪⎨+--=⎪⎩解得0e x k =,()001e 1x b x =-+,所以()()000e 1e 1x xl x x x =+-+,由(*)式知直线()y l x =是曲线()y g x =在点()00,e 1x x +处的切线.综上所述,直线()y l x =是曲线()y g x =的一条切线的充要条件是直线()y l x =是函数()g x 在R 上的“最佳下界线”.(ⅱ)集合()()(),1,,R h x x g x x L T ∞∈+∈⋂元素个数为2个.【点睛】方法点睛:新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的:遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
福州市高中毕业班质量检测英语试题说明:本试卷分第一卷(选择题)和第二卷(非选择题)两部分,共150分。
考试时间120分钟。
第一卷(三部分,共115分)第一部分:听力(共两节,满分20分)第一节(共5小题;每小题1分,满分5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1.Where did the man ask the woman to go?A.To a play.B.To a cinema.C.To a lecture.2.How many times has the student been late in all?A.Once.B.Twice.C.Three times.3.What does the woman mean?A.Mary doesn’t know them well.B.He’s the right one to phone Mary.C.She will phone Mary if he doesn't.4.Why didn’t they go to New York?A.Because they hadn’t enough money.B.Becuase they were too tired.C.Because they preferred Paris.5.When are they going to leave?A.At half past seven.B.At a quarter past seven.C.At six forty-five.第二节(共15小题;每小题1分,满分15分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅读各小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
每段对话或独白读两遍。
听第6段对话,回答第6~8题。
6.Where will the woman go?A.To the post office.B.To a meeting.C.Not known.7.Whose message will it be?A.Mrs White’s.B.Mr Brown’s.C.Mr White’s.8.What will happen in a couple of hours?A.Mr Brown will call.B.Mrs White will come back.C.The post cards will go out.听第7段对话,回答第9~11题。
9.The conversation probably takes place _______.A.in a library B.in a bookstore C.in a classroom 10.The two speakers are perhaps _______.A.a student and a librarianB.a teacher and a studentC.two students11.How many books can be borrowed each time?A.Only one book.B.No more than two books.C.Only three books.听第8段对话,回答第12~14题。
12.Who is interested in collecting stamps?A.The man.B.The woman.C.Both.13.How can people build a good stamp collection?A.To spend a long time on it.B.To spend a little time on it.C.To build it easily.14.What are they going to do this weekend?A.To build a good stamp collection.B.To see a tennis match.C.To play tennis themselves.听第9段对话,回答第15~17题。
15.What does Mary write this letter for?A.To ask for a job.B.To get Jack's advice.C.To do some practice.16.How many parts does Jack advise Mary to make changes in? A.Only the beginning.B.The second part.C.Three parts from the beginning to the end.17.According to the dialogue,what kind of person do you think Jack is? A.He is very helpful to his friend.B.He is very selfish.C.He is a man of few words.听第10段独白,回答第18~20题。
18.What caused the accident?A.The problems in left and right engines.B.The problems in the plane's landing wheels.C.The problems in both left engines and the plane’s landing wheels.19.When did the accident happen?A.When the plane was taking off.B.When the plane was landing.C.When the plane was in flight.20.How many people were killed in the accident? A.109.B.4.C.113.第二部分:英语知识运用(共两节,满分45分)第一节:单项填空(共15小题;每小题1分,满分15分)从A、B、C、D四个选项中,选出可以填入空白处的最佳选项。
21.—How long do you suppose it is _______ he arrived here?—No more than half a week.A.when B.before C.after D.since22.—Did he decide to take part in the competition?—Yes,of course.He _______ to.A.has been encouraging B.had been encouragedC.has been encouraged D.was to be encouraged23.—_______ three more days enough for the work to be finished?—I don't think it’s enough and only after _______ go on with it.A.Is;does the rain stop we can B.Are;the rain stops can weC.Are;the rain stops we can D.Is;the rain stops can we24.—Have another cup of tea, OK?—_______.A.With my pleasure B.You are welcomeC.I can manage it D.It is very kind of you25.Where have you been? We _______ you back much earlier.A.were expecting B.are expectingC.have expected D.expect26.The seller would sell the coat for five dollars, but the customer _______ four dollars.A.asked B.offered C.charged D.sold27.It was playing computer games that _______ the boy plenty of time that he _______ doing his lessons.A.spent;must have been B.cost; ought to have spentC.wasted;wouldn’t have been D.took;can’t have spent28.This dance is known _______ country music.A.performed by B.performing withC.to be performed to D.being performed in29.We believe _______ you have devoted yourself _______ sure to come true.A.that; is B.all that; to beC.that all; are D.what; to is30._______ of the washing-machines works.We must have _______ repair the two of them.A.None; any B.None; someoneC.Either; someboby D.Neither; someone31.If you let me make a choice between Jane and Anne,I would say Jane is _______ one to be my assistant.A.a good B.a better C.the better D.the best32.Please stand _______ for a moment while I am taking your photograph.A.calm B.still C.silent D.quiet33._______ for two miles,the car broke down.A.To have run B.Having run C.To have driven D.Having driven34.Delia’s going to join us,_______ was agreed on the day before yesterday.A.it B.that C.what D.as35.—What is _______ population of your home town?—I think it has _______ population of at least 2 000 000.A.a; the B.the; a C.the;/ D./;the第二节:完形填空(共20小题;每小题1.5分,满分30分)阅读下面短文,掌握其大意,然后从36~55各题所给的四个选项(A、B、C和D)中,选出最佳选项。