水电站压力管道布置设计完整版

合集下载

水电站压力管道布置设计

水电站压力管道布置设计

水电站压力管课程设计学院:水利学院专业:水利水电工程科目:水电站课题:水电站压力管道课程设计姓名:学号: 313174云南农业大学水利学院2017年12月设计说明压力管道的设计步骤一般包括:(1)压力管功能布置;(2)压力管固定方法、设计;(3)压力管应力分析、计算;(4)压力管强度校核;(5)压力管抗外压稳定计算。

一、基本资料及参数1、最大发电流量;2、上游正常水位1000m;3、下游设计尾水水位850m;4、管轴线与水平线夹角;5、上游正常水位至伸缩节水位差7m;6、镇墩与地基摩擦系数;7、支墩与管身摩擦系数;8、伸缩节摩擦系数;9.水轮机调节时间。

二、压力管功能及布置功能:从水库、前池或调压室向水轮机输送水量。

布置:采用明钢管敷设。

布置时要尽可能选择短而直的线路,明钢管敷设在陡峭的山坡上;尽量选择良好的地质条件,明钢管敷设在坚固而稳定的山坡上,支墩和镇墩尽量设在坚固的岩基上,并清除表面覆盖层;尽量减少管道的起伏波折,避免出现反坡,利于管道排空,明钢管底部应高出地表至少0.6米,以便安装和检修;避开可能发生山崩或滑坡的区,明钢管尽量沿山脊布置,避免布置在山水集中的山谷中,若明钢管之上有坠石或可能崩塌的峭壁,要事先清除;首部设事故闸门,并考虑设置事故排水和防冲设施。

三、明钢管的固定、设计1.明钢管的敷设明钢管敷设在一系列支墩上,底部应高出地表0.65米。

明钢管宜做成分段式,在首尾设镇墩,两镇墩之间设伸缩节。

伸缩节布置在管段的上端,靠近上镇墩处。

敷设方式如图:2.明钢管的设计(1)管径的确定采用经验公式——彭德舒公式来初步确定压力钢管的经济直径:式中:为钢管的最大设计流量,;H为设计水头,m。

由基本资料得:所以压力钢管直径进制采用D=50mm为模,所以取D=2.05m。

(2)管长确定上游正常水位1000m,闸门进口水位为993m,上游正常水位至伸缩节水位差7m,下游设计为水位850m。

取进口直管段长5m,出口直管段长5m。

水电站压力管道工程施工方案

水电站压力管道工程施工方案

水电站压力管道工程施工方案一、施工平面总布置由于本工程分布较为集中,交叉作业多,相互干扰大。

根据工程项目分布特点,现做如下安排1、项目部设置项目部设置主要管理机构、主要管理人员生活住房、综合仓库等。

2、施工现场布置2.1在调压井处修建一个蓄水池。

2.2 在1#镇墩施工高程修建施工平台一个,设置搅拌站、材料仓库、砂石堆料场等生产设施。

2.3 在2#镇墩施工高程右边开挖运渣道路,在渣场旁边修建施工平台一个,设置搅拌站、材料仓库、砂石堆料场、施工人员住房等生产生活设施。

2.4 沿4#镇墩从厂房后面,修施工公路一条至厂房下游弃渣场,路面宽度5米。

在4号镇墩右边修建施工平台一个,设置搅拌站、材料仓库、砂石堆料场等生产生活设施。

2.5 在厂房附近修建材料仓库及施工人员住房,钢筋、模板制作加工厂、机械设备停置场等生产生活设施。

3、施工道路工程项目区交通较为便利,距新塘乡双河镇(恩鹤省级公路经过)约29 km。

已改建的村级公路至厂房厂址处公路较为完善,工程所需机械设备、主要材料可运抵厂房厂址处。

4、水电施工用水从工区下游深山沟中采用φ20水管引水1km至调压井,修建蓄水池,以满足施工及生活用水。

施工用电接业主安装在施工现场200m处变压器电源。

5、通讯施工队办公室配一部固定电话,主要负责人各配备1部手机,以利各工区之间联络。

6、施工临时用地计划表施工临时用地计划表注:施工平台根据现场条件确定二、施工进度计划1、施工总进度计划根据招标文件要求,结合工程特点,考虑天气影响,2024年9月30日前完成斜洞开挖、管道开挖、灌注桩、3# 4#镇墩、支墩一期砼,2024年11月30日前完成镇墩二期砼,2024年12月30日前完成工程施工任务。

2、施工进度安排:由于本工程工期紧,工程量较大,拟安排多个施工班组同时进场分散施工,流水作业。

斜洞开挖: 8月10日----9月30日管道开挖(镇墩基础): 8月13日----9月20日灌注桩: 8月15日----9月30日3# 4# 镇墩、支墩一期砼: 8月25日----9月30日镇墩二期砼: 10月15日---11月30日管道槽护砌: 10月30日---12月30日钢管外包砼: 11月15日---12月30日调压井及下部砼: 10月1日----12月30日竣工验收: 1月1日-----1月10日施工进度计划横道图(附后)83、保证进度的措施为保证工程按期完成,建立完善的进度保证体系,合理安排好人员、设备及材料供应。

水电站压力管道施工组织设计.doc

水电站压力管道施工组织设计.doc

施工组织设计水电站管道及调压井工程施工组织设计承包人:(全称及盖章)施工队长:(签名)日期:年月日目录一、工程概况二、施工平面总布置三、施工进度计划四、主要工程施工方案五、施工组织机构与管理六、施工人员、机械及材料计划七、质量保证措施八、安全生产保证体系及措施九、文明施工与环境保护措施湖北省恩施市仙女湖水电站压力管道以及调压井土建工程一、工程概况XXXXX水电站位于湖北省恩施市东南部新唐乡横栏村境内马尾沟河段,为马尾沟流域梯级开发的第一个梯级。

电站由混凝土挡水闸坝、右岸发电引水系统、岸边式地面厂房等建筑物组成。

挡水建筑物正常蓄水未为971.0 m ,总库容为8.06 m3,电站装机容量10MW。

混凝土闸坝顶高程972.5,建筑面积高程950.5 m ,最大坝高22 m;泄洪闸3孔,堰顶溢流泄洪,堰顶高程962.0 m,采用底流式消能。

发电引水系统布置在右案,引水线路全长约为3100 m,设置有调压井,引水隧洞开挖洞径为3.0 m,井后压力管道采用部分明敷和部分埋管结合形式,钢管主管内径1.6 m,支管内径0.8 m。

电站厂房位于下游右岸开阔地带,距坝址约3.5 km。

厂房由机组段、安装场、副厂房和尾水平台组成,主厂房长52.9 m,宽13.6 m,机组安装高程743.51 m。

升压站布置于厂房后侧台地上。

1.主要建设内容本合同工程建设范围为仙女湖水电站压力管道及调压井(不包括调压井开挖)土建工程。

2.工程施工条件(1)水文气象与工程地质马尾沟流域属亚热带湿润性季风气候区,东无严寒、夏无酷暑、雾多湿重,雨量丰沛,植被良好。

流域内暴雨最早出现在4月,大多于10月结束,6-9月为暴雨集中的时期。

流域发生的暴雨多属涡切变型暴雨。

洪水由暴雨形成,洪水发生的时间与暴雨一致,4-10月为汛期,大洪水多发生在6-9月,其中7月份居多。

马尾沟流域属山溪性河流,山高坡陡,谷深河窄,洪水具有暴涨暴落、峰高量小等山溪性河流特点。

最新第十三章水电站的压力管道5

最新第十三章水电站的压力管道5

第十三章水电站的压力管道第五节明钢管的敷设方式、镇墩、支墩和附属设备一、钢管的敷设方式明钢管一般敷设在一系列的支墩上,底面高出地表不小于0.6m,这样使管道受力明确,管身离开地面也易于维护和检修。

在自重和水重的作用下,支墩上的管道相当于一个多跨连续梁。

在管道的转弯处设镇墩,将管道固定,不使有任何位移,相当于梁的固定端。

明钢管宜做成分段式,在两镇墩之间设伸缩节,如图13-3所示。

由于伸缩节的存在,在温度变化时,管身在轴向可以自由伸缩,由温度变化引起的轴向力仅为管壁和支墩间的摩擦力和伸缩节的摩擦力。

为了减小伸缩节的内水压力和便于安装钢管,伸缩节一般布置在管段的上端,靠近上镇墩处。

这样布置也常常有利于镇墩的稳定。

伸缩节的位置可以根据具体情况进行调整。

若直管段的长度超过150m,可在其间加设镇墩;若其坡度较缓,也可不加镇墩,而将伸缩节置于该管段的中部。

图13-3 明钢管的敷设方式二、明钢管的支墩和镇墩(一)支墩支墩的作用是承受水重和管道自重在法向的分力,相当于梁的滚动支承,允许管道在轴向自由移动。

减小支墩间距可以减小管道的弯矩和剪力,但支墩数增加,故支墩的间距应通过结构分析和经济比较确定,一般在6~12m之间。

大直径的钢管可采用较小的支墩间距。

按管身与墩座间相对位移的特征,可将支墩分成滑动式、滚动式和摆动式三种。

1.滑动式支墩滑动式支墩的特征是管道伸缩时沿支墩顶部滑动,可分为鞍式和支承环式两种.鞍式支墩如图13-4(a)所示。

钢管直接安放在一个鞍形的混凝土支座上,鞍座的包角在120°左右。

为了减小管壁与鞍座间的摩擦力,在鞍座上常设有金属支承面,并敷以润滑剂。

鞍式支墩的优点是结构简单,造价较低,缺点是摩阻力大,支承部分管身受力不钧匀,适用于直径在1OOcm 以下的管道。

支承环式滑动支墩是在支墩处的管身外围加刚性的支承环,用两点支承在支墩上,这样可改善支座处的管壁应力状态,减小滑动摩阻,并可防止滑动时摩损管壁,如图13-4(b)所示。

水电站压力管设计标准

水电站压力管设计标准

水电站压力管道设计标准是指在设计和建造水电站压力管道时,需要遵循的一系列规范和要求。

这些标准主要包括以下几个方面:
1. 材料选择:压力管道的材料应该具有足够的强度、韧性和耐腐蚀性,能够承受高压水流的冲击和腐蚀作用。

常用的材料包括碳钢、不锈钢、合金钢等。

2. 结构设计:压力管道的结构应该合理、稳定,能够承受水流的压力和振动。

常见的结构形式包括直管、弯头、三通、四通等。

3. 尺寸计算:压力管道的尺寸应该根据水流的流量、速度和压力等因素进行计算,确保管道能够正常工作并避免出现堵塞或破裂等问题。

4. 安装要求:压力管道的安装应该符合相关的规范和要求,包括管道的连接方式、支架的设置、管道的固定等。

同时,还需要进行严格的质量检查和测试,确保管道的安全性和可靠性。

5. 维护管理:压力管道的维护管理应该定期进行,包括清洗、检修、更换等工作。

同时,还需要建立完善的档案管理制度,记录管道的使用情况和维护记录等信息。

总之,水电站压力管道设计标准是保证水电站安全运行的重要保障。

只有严格按照相关标准进行设计和建造,并进行有效的维护管理,才能确保水电站的长期稳定运行。

水电站压力管道—压力管道的路线和布置形式

水电站压力管道—压力管道的路线和布置形式
项目9 压力管道
1
压力管道的功用与类型
2
压力管道的线路选择和布置方式
3
明钢管的构造、附件及敷设方式
4
钢岔管
3
钢筋混凝土管
4
地下埋管
项目9 压力管道
9.2 压力管道的线路选择和布置方式
1
压力管道线路选择
2ቤተ መጻሕፍቲ ባይዱ
压力管道的供水方式
3
压力管道的引近方式
9.2.1 压力管道线路选择
➢ 压力管道线路选择应结合其它建筑物(前池、调压室)和水电站 厂房布置统一考虑。
1. 路线尽可能短、直。(经济,hf和ΔH小)。 2. 地质条件好。山体稳定、地下水位低、避开山崩、雪崩地区
以及山水集中的地区和沉降量很大的地段,可沿山脊布置。 3. 宜避开村镇居民区及交通道路等,若避不开应考虑环境影响。 4. 尽量减小起伏, 避免出现负压;转弯半径R≯3D。
9.2.2 压力管道的供水方式
1. 单元供水。每台机组均有一根压力管道供水,即单管单机供水。 结构简单(无需岔管),水流顺畅,水头损失小,运行灵活可靠
2. 联合供水。一根主管向电站全部机组供水,即单管多机供水。 节省管材,降低造价,但需设置结构复杂的分岔管,水头损失 也较大;每台机组前需设阀门。
3. 分组供水。两根或多根主管,每根主管向两台或两台以上机组 供水,即多管多机供水。优缺点介于上述两种方式之间。
(b)
(c)
(d)
(e)
(a)、(b)—正向引近;(c)、(d)—纵向引近;(e)—斜向引近
9.2.2 压力管道的供水方式
a. 单元供水。管道末端可不设 阀门。
b. 联合供水。管道末端必须设 置阀门。
c. 分组供水。管道末端必须设 置阀门。

水电站压力钢管-完整版

水电站压力钢管-完整版
一般A3、16Mn不需论证,可直接采用。
二、钢材性能的要求
2、加工性能 辊轧、冷弯、焊接、切割,要求焊接性能好,冷
加工的塑性变形小,加工后无残余应力,焊缝和 热影响区不产生裂纹。 3、化学成份 影响钢材的强度、ε、焊接性能,含碳不要过高 (脆),含硫量和含硅量也不能高。
三、容许应力
钢材的容许应力一般用屈服强度除以安全系数得到, 即 [σ]=σs/K
(a)、(b) 正向引进 (c)、(d) 纵向引进 (e) 斜向引进
压力水管引进厂房的方式
三、供水方式
1.单元供水:一管一机。不设下阀门。
优点:结构简单(无岔管)、工作可靠、灵活性好, 易于制作,无岔管
缺点:造价高 适用:(1) 单机流量大、长度短的地下埋管或明管;
(2) 混凝土坝内管道和明管道
一、压力管道的布置
压力管道线路选择应结合其它建筑物(前池、调压室)和 水电站厂房布置统一考虑。
➢ 路线尽可能短、直。(经济,hf和ΔH小)。
➢ 地质条件好。山体稳定、地下水位低、避开山崩、 雪崩地区。
➢尽量减小起伏, 避免出现负压; 转弯半径R≯3D。 ➢ 避开可能发生山崩或滑坡的地区以及山水集中的地
不同的荷载、不同的部位采用不同的容许应力,见 表8-2。
四、管身构造
1、无缝钢管:无纵缝,横缝用焊接、法兰连接成整体,强度
高,造价高,施工困难。 国内:D≤60cm;国外:D≤120cm。 适用高水头小流量电站。 2、焊接管:钢板按要求的曲率辊成弧形,焊接成管段。适用于 各种直径、水头,造成价低。 (1) 纵缝:焊缝交错排列,避开两个中心轴 (2) 相邻管壁厚度差≯2mm,内部光滑,外部成台阶状。
1、机械性能 屈服强度σs 、抗拉强度σb ;塑性指标:断裂时的延伸率ε、

水电站压力管道设计

水电站压力管道设计

图 4:分布电容充放电特性曲线 5.3.2 装置参数设置 该带分布电容测量绝缘监测装置是一个兼顾系统母线电压、正 负对地电压、正负对地电阻、系统分布电容等检测的多功能装置, 配置真彩 7 寸液晶屏,对各项参数设置进行检测均正常。
5.3.3 分布电容测量结果
通过多次测试后得出下表中最大的误差情况。
电容标称值(uF) 10 20
2016 年 12 期︱141︱
Power Technology
化平台。 5.2 运行情况测试
5.3 测试内容及结果 5.3.1 系统分布电容充放电特性参数 当检测桥启动时,由于检测桥的投入,打破了原来的电压平衡, 但电压的变化并不是瞬间达到稳定的,由于系统存在分布电容的原 因,电压变化会存在延时。记录电压平稳到变化再到平稳的过程所需 的时间,以及在该过程中采用 lOOHz 采样频率对电压进行采样并存储, 然后根据电压采样和记录的时间绘制电容的充放电曲线,如图 4 所示。
t= pr · 0 rd f
式中:t——钢管管壁计算厚度(mm),
p ——内水压力(N/mm2),含水锤压力, r ——钢管半径
γ0——结构重要性系数,γ0=1.0 ψ——设计状况系数,ψ=1.0 rd——结构系数,rd=1.6 f——钢 材强 度设 计值 (N/mm2 ),20R 为225N/mm2 ,16MnR 为 300N/mm2。
X 式中:ΣY—作用在镇墩上的垂直合力; ΣX—作用在镇墩上的水平合力; G—镇墩自重; f—镇墩与地基间的摩擦系数; K—稳定安全系数,K>1.5~2.0。 经计算:K>1.5即满足规范要求。 基底应力校核按下式:
Y W (1 6e)
BL
B
式中: σ——镇墩基底应力,(N/mm2);
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水电站压力管道布置设计HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】水电站压力管课程设计学院:水利学院专业:水利水电工程科目:水电站课题:水电站压力管道课程设计姓名:学2017年12月设计说明压力管道的设计步骤一般包括:(1)压力管功能布置;(2)压力管固定方法、设计;(3)压力管应力分析、计算;(4)压力管强度校核;(5)压力管抗外压稳定计算。

一、基本资料及参数1、最大发电流量Qmax=16m3/s;2、上游正常水位1000m;3、下游设计尾水水位850m;4、管轴线与水平线夹角35o;5、上游正常水位至伸缩节水位差7m;6、镇墩与地基摩擦系数f=0.5;7、支墩与管身摩擦系数f=0.3;8、伸缩节摩擦系数f=0.4;9.水轮机调节时间T s=5~6S。

二、压力管功能及布置功能:从水库、前池或调压室向水轮机输送水量。

布置:采用明钢管敷设。

布置时要尽可能选择短而直的线路,明钢管敷设在陡峭的山坡上;尽量选择良好的地质条件,明钢管敷设在坚固而稳定的山坡上,支墩和镇墩尽量设在坚固的岩基上,并清除表面覆盖层;尽量减少管道的起伏波折,避免出现反坡,利于管道排空,明钢管底部应高出地表至少米,以便安装和检修;避开可能发生山崩或滑坡的区,明钢管尽量沿山脊布置,避免布置在山水集中的山谷中,若明钢管之上有坠石或可能崩塌的峭壁,要事先清除;首部设事故闸门,并考虑设置事故排水和防冲设施。

三、明钢管的固定、设计1.明钢管的敷设明钢管敷设在一系列支墩上,底部应高出地表米。

明钢管宜做成分段式,在首尾设镇墩,两镇墩之间设伸缩节。

伸缩节布置在管段的上端,靠近上镇墩处。

敷设方式如图:2.明钢管的设计(1)管径的确定采用经验公式——彭德舒公式来初步确定压力钢管的经济直径:D=√5.2Q max3H7式中:Q max为钢管的最大设计流量,m3/s;H为设计水头,m。

由基本资料得:Q max=16m s/sH=1000m−850m=150m所以D=√5.2Q max3H7=√5.2×1631507=2.03m≈2.05m 压力钢管直径进制采用D=50mm为模,所以取D=。

(2)管长确定上游正常水位1000m,闸门进口水位为993m,上游正常水位至伸缩节水位差7m,下游设计为水位850m。

取进口直管段长5m,出口直管段长5m。

斜管段垂直距离为993-850=143m,管轴线与水平线夹角35o。

所以斜管段长L=143sin35°=249.313m≈249.3m所以,压力管道总长为L总=249.3+5+5=259.3m四、压力管水击计算1.直接与间接水击的判断明钢管水锤波速可近似的取为1000m/s,已知水轮机调节时间T s=5~6S。

所以2L C =2×259.31000=0.52s水轮机开度的调节时间T s=5~6s>2LC=0.52s,故为间接水击。

2. 第一项水击与极限水击判断τo为起始开度,当电站满负荷运行时,τo=1;当电站以部分负荷运行时τo<1。

ρ为水锤常数。

当ρτo<1时发生第一相末水锤,为第一相水击,除第一相水击以外的各种水锤现象统统归入极限水击一类。

V max=Q maxA=16π(2.05/2)2=4.85m/sρ=CV max2gH0=1000×4.852×9.81×150=1.65当电站满负荷运行时ρτo>1,所以为极限水击。

3.水击公式选择阀门开度变化时管道中水流动量的相对变化率:σ=LV max gH0T s水锤的最大值:ξm=2σ2−σ所以σ=LV maxgH0T s=259.3×4.859.81×150×5=0.17kpaξm=2σ2−σ=2×0.172−0.17=0.186kpa4.水击常数的计算ρ=CV max2gH0=1000×4.852×9.81×143=1.655.动水头计算水头变化H令也称水锤压强,令ξ=H H0所以H=ξm H0=0.186×150=27.9mH p=H0+?H=150+27.9=177.9m即满负荷运行时,水电站压力管道的总水头为。

五、压力管应力分析及结构设计1.明钢管的荷载根据应用条件,明钢管的设计荷载有:(1)内水压力;(2)钢管自重;(3)温度变化引起的力;(4)镇墩和支墩不均匀沉陷引起的力;(5)风荷载和雪荷载;(6)施工荷载;(7)地震荷载;(8)管道放空时通气设备造成的负压。

2.管壁厚度计算管壁的厚度一般经结构分析确定。

管壁的结构厚度取为计算厚的加2mm的锈蚀裕度。

考虑制造工艺、安装、运输等要求,管壁的最小结构厚度不宜小于下式确定的数值,也不宜小于6mm。

δ≥D800+4初步确定管壁的计算厚度δ=δ0+2mm=γH p D2[σ]+2mm计算时,该式未计入一些次要应力,用以确定管壁厚度时容许应力应降低15%。

所以δ=γH p D2[σ]+2mm=0.001×177.9×2052×120(1−15%)+0.2=(0.18+0.2)cm=20mm满足要求。

计算时取δ0=18mm,2mm不能用于强度计算。

3.荷载组合选择(A1、2、5、7、8)(1)水管自重的轴向分力A1A1=g T L1sinφ查钢管的密度为785g/cm3:gT=ρs gπDδ0=785×9.81×3.14×2.05×0.18×10−3=8.92KN/m A1=g T L1sinφ=8.92×249.3×sin35°=1275.49KN(2)作用在阀门或堵头上的内水压力A2A2=π4D02γHA2=π4D02γH=3.144×2.052×9.8×177.9=5751.48KN(3)伸缩节变化处的内水压力A5A5=π4(D12−D22)γH取填料厚度为22mm,所以D1=2.05+2×(0.018+0.022)=2.13m,D2为。

H= 1000−990=10m所以A5=π4(D12−D22)γH=π4(2.132−2.052)×9.8×10=25.74KN(4)温度变化时伸缩节填料的摩擦力A7A7=πD1bf kγH取伸缩节可调节长度b=15cm,已知伸缩节摩擦系数f=。

所以A7=πD1bf kγH=3.14×2.13×0.15×0.4×9.8×10=39.33KN (5)温度变化时水管与支墩的摩擦力A8A8=∑f(Q p+Q w)cosφ支墩与管身摩擦系数f=0.3;Q p=g T=8.92KN/m;每米水重:Q w=ρw g π4D2=1×9.8×3.144×2.052=32.33KNA8=∑f(Q p+Q w)cosφ=0.3×41.25×249.3×cos35°=2527.16KN (6)总应力∑A=A1+A2+A5+A7+A8∑A=1275.49+5751.48+25.74+39.33+2527.16=9619.2KN 4.计算断面(跨中断面1-1断面)(1)切向(环向)应力的σσ管壁的切向应力主要由内水压力引起。

对于倾斜的管道:σθ=γH p D2δ−γD24δcosθcosφ对于水电站压力管道,等号右端的第二项是次要的,只有当D2cosθcosφ> 0.05H p时才有计入的必要(低水头大流量才有用,高水头的不考虑)。

所以计算时不考虑第二项。

σθ=γH p D2δ=0.001×17790×2052×18=101.3Mpa(2)径向应力σσ管壁内表面的径向应力σr等于该处的内水压强,即:σr=−γH p“-”表示压应力,“+”表示拉应力。

管壁外表面径向应力为0,径向应力较小。

σr=−γH p=−0.001×17790=−17.79Mpa(3)轴向应力σσ跨中断面的轴向应力σx 由两部分组成,即有水重和管重引起的轴向弯曲应力σx1及各轴向力引起的应力σx3。

对于支承在一系列支墩上的管道,其跨中弯矩M 可按多跨连续梁求出。

q =g T +Q w =8.92+32.33=41.25KNM =110qL 2cos α=110×41.25×102×cos 35°=337.9KN .m 轴向弯曲应力σx1=−M y J =−4M πD δcos θ 式中:J =πD 3δ/8,y =(D cos θ)/2,在管顶和管底,θ=0°和180°,y =?D /2, σx1最大σx1=?4MπD 2δ=4×337.9×1033.14×2.052×0.018=5.69×106pa =5.69Mpa管道各轴向力其合力为∑A,由此引起的轴向力为σx3=∑A πDδ σx3=∑A πDδ=9619.2×1033.14×2.05×18×10−3=83.02×106pa =83.02Mpa 跨中断面剪应力为0。

所以,轴向应力σx =σx1+σx3=5.69+83.02=88.71Mpa六、压力管强度校核钢管的工作处于三维应力状态,强度校核的方法是求出计算应力并与容许应力作比较,而不是直接采用某一方向的应力与容许应力作比较。

钢管的强度校核目前多采用第四强度理论,其强度条件为σ=√12[(σx −σr )2+(σr −σθ)2+(σxθ−σx )2]+3(τxr 2+τrθ2+τθx 2)≤?[σ]式中:为焊缝系数,取~。

由于σr 、τxr 、τrθ一般较小,故可以简化为第三强度理论 σ=√σx 2+σθ2−σx σθ+3τθx 2≤?[σ]取=0.90,所以σ=√88.712+101.32−88.71×101.3=95.63≤?[σ]=0.90×120=108该压力钢管在正常运行时充满水的情况,强度校核满足第三强度理论条件。

七、压力管抗外压稳定计算钢管是一种薄壳结构。

能承受较大的内水压力,但抵抗外压能力较低。

在外压的作用下,管壁易于失去稳定,屈曲成波形,过早的失去承载力。

因此,在按强度和构造初步确定管壁厚度之后,尚需进行外压稳定校核。

在不同的外压作用下,有多种管壁稳定问题。

明钢管在均匀径向外压作用下的稳定:对于沿轴线可以自由伸缩的无加劲环的明钢管,管壁的临界外压P cr =2E (δD )3>0.2σσσ 钢的弹性模量E =2.0×105MpaP cr =2E (δD )3=2×2×105×(182050)3=0.271Mpa >0.2σσσ 满足抗外压稳定要求。

相关文档
最新文档