聚类分析

合集下载

聚类分析

聚类分析

聚类分析聚类分析又称群分析,它是研究(样品或指标)分类问题的一种多元统计方法,所谓类,通俗地说,就是指相似元素的集合。

聚类分析内容非常丰富,按照分类对象的不同可分为样品分类(Q-型聚类分析)和指标或变量分类(R-型聚类分析);按照分类方法可分为系统聚类法和快速聚类法。

1. 系统聚类分析先将n 个样品各自看成一类,然后规定样品之间的“距离”和类与类之间的距离。

选择距离最近的两类合并成一个新类,计算新类和其它类(各当前类)的距离,再将距离最近的两类合并。

这样,每次合并减少一类,直至所有的样品都归成一类为止。

系统聚类法直观易懂。

1.1系统聚类法的基本步骤:第一,计算n 个样品两两间的距离 ,记作D= 。

第二,构造n 个类,每个类只包含一个样品。

第三,合并距离最近的两类为一新类。

第四,计算新类与各当前类的距离。

第五,重复步骤3、4,合并距离最近的两类为新类,直到所有的类并为一类为止。

第六,画聚类谱系图。

第七,确定类的个数和类。

1.2 系统聚类方法:1.2.1最短距离法1.2.2最长距离法1.2.3中间距离法1.2.4重心法1.2.5类平均法1.2.6离差平方和法(Ward 法)上述6种方法归类的基本步骤一致,只是类与类之间的距离有不同的定义。

最常用的就是最短距离法。

1.3 最短距离法以下用ij d 表示样品i X 与j X 之间距离,用ij D 表示类i G 与j G 之间的距离。

定义类i G 与j G 之间的距离为两类最近样品的距离,即ij G G G G ij d D j J i i ∈∈=,min设类p G 与q G 合并成一个新类记为r G ,则任一类k G 与r G 的距离是:ij G X G X kr d D j j i i ∈∈=,min ⎭⎬⎫⎩⎨⎧=∈∈∈∈ij G X G X ij G X G X d d q j k i p j k i ,,min ,min min {}kq kp D D ,min = 最短距离法聚类的步骤如下:ij d {}ij d(1)定义样品之间距离,计算样品两两距离,得一距离阵记为)0(D ,开始每个样品自成一类,显然这时ij ij d D =。

聚类分析的类型与选择

聚类分析的类型与选择

聚类分析的类型与选择聚类分析是一种常用的数据挖掘技术,可以将数据按照某种相似性进行分组。

通过聚类分析,我们可以发现数据中的潜在规律和结构,帮助我们更好地理解数据,并做出相应的决策。

本文将介绍聚类分析的常见类型,并讨论如何选择适合的聚类方法。

1.聚类分析的类型聚类分析有多种类型,常见的包括层次聚类分析和k均值聚类分析。

下面将分别介绍这两种聚类方法。

1.1层次聚类分析层次聚类分析是一种自下而上的聚类方法,它通过计算数据之间的相似度或距离,将相似的数据逐步合并成簇。

这种方法对数据的层次结构有较好的表示,能够发现不同层次的聚类结构。

层次聚类分析的优点之一是不需要预先指定聚类的个数,但计算复杂度较高,对大规模数据处理存在困难。

另外,它对异常值敏感,若存在异常值可能影响聚类结果。

1.2k均值聚类分析k均值聚类分析是一种基于划分的聚类方法,它将数据划分成k个互不重叠的簇,使得簇内的数据相似度较高,簇间的数据相似度较低。

该方法通过迭代计算簇的中心和重新分配数据来实现聚类。

k均值聚类分析的优点在于计算简单、效果较好,适用于大规模数据集。

但该方法对初始簇中心的选择较为敏感,容易收敛于局部最优解。

2.选择合适的聚类方法在选择聚类方法时,应根据数据的特点和目标进行判断。

下面列举几个常见的选择因素,供参考:2.1数据特点需要考虑数据的特点,如数据的维度、规模、密度等。

对于高维度数据,层次聚类分析可能更适用;而对于大规模数据,k均值聚类分析常常更为合适。

2.2聚类目标需要考虑聚类的目标。

如果希望发现层次结构、发现数据的内在关联性,层次聚类分析是一个不错的选择。

而如果目标是将数据划分成互不重叠的簇,并且希望聚类结果能较好地解释数据的差异性,k均值聚类分析更为合适。

2.3数据质量数据质量也是选择聚类方法的重要因素。

层次聚类分析对异常值比较敏感,如果数据中存在异常值,使用k均值聚类分析可能更好。

选择合适的聚类方法需要综合考虑数据特点、聚类目标和数据质量等因素。

聚类分析的基本

聚类分析的基本

聚类分析的基本1、聚类分析(cluster analysis):又被称为群集分析,是一种对多维数据进行分析和探索的统计技术,目的是将许多观测值分类至具有相同特征的聚类,这些观测值之间差别较大,但内部观测差别较小。

聚类分析是一种目的性数据分析,它能够将没有标签分类(unsupervised classification)的不等来源的数据,分组至具有相似性特征的群体中,即对对象或事情按共有特征(feature)将他们分成几个类。

以此弥补“同属一个类别,但又个别有异的”的不足。

2、聚类分析的用途:(1)聚类分析用于数据挖掘,帮助系统提取未知信息,比如通过分析客户购买组合,把客户分成相关性很大的群体,以此帮助商业内容的定位;(2)帮助系统估算和识别多变量的变化趋势;(3)帮助用户从数据大海中获取价值信息,快速实现有效的数据查询;(4)帮助提升机器学习的精度,以及数据挖掘的价值,以此改善系统的性能;(5)可用于新闻分类,通常将同类型或相关性较大的新闻放在一起,进行分类。

3、聚类分析的原理:(1)根据定义与要求来制定聚类算法;(2)构造数据库,合理编码解决聚类分析问题;(3)根据构造好的数据库,提取其中的特征并进行度量,确定分类间的相似程度;(4)建立类内类间的关系,使用hierarchical clustering方法;(5)根据设定的特征度量准则,确定聚类分析后的结果;(6)对结果进行评定,检验聚类的正确性、有效性。

4、聚类分析的类型:(1)层次聚类:hierarchical clustering;(2)partitioning-clustering:将聚类中的各个群体将看作划分问题进行处理;(3)基于密度的聚类:density-based clustering;(4)基于模型的聚类:model-based clustering。

聚类分析也有许多优点,例如:(1)可以将相似的数据聚类在一起,细节化的数据可以表达地更清楚;(2)可以减少错误判断甚至盲目判断的几率,从而提高把握性;(3)可以改进数据查询速度;(4)可以识别数据之间的关联,从而实现对数据的有效分析利用。

聚类分析的基本概念与方法

聚类分析的基本概念与方法

聚类分析的基本概念与方法聚类分析(Cluster Analysis)是一种将数据分组或分类的统计学方法,通过将相似的对象归为同一组,使得组内的对象之间更加相似,而不同组之间的对象则差异较大。

它是数据挖掘和机器学习领域中常用的技术之一,被广泛应用于市场分析、生物信息学、图像处理等领域。

一、聚类分析的基本概念聚类分析基于相似性的概念,即认为具有相似特征的对象更有可能属于同一类别。

在聚类分析中,每个对象都被视为一个数据点,而聚类则是将这些数据点分组。

基本概念包括以下几点:1. 数据点:数据集中的每个样本或对象都被看作是一个数据点,它具有多个特征或属性。

2. 相似性度量:聚类分析的关键是如何计算数据点之间的相似性或距离。

常用的相似性度量包括欧氏距离、曼哈顿距离、闵可夫斯基距离等。

3. 簇/类别:将相似的数据点归为一组,这个组被称为簇或类别。

簇内的数据点相似度较高,而不同簇之间的数据点相似度较低。

4. 聚类算法:聚类分析依赖于具体的算法来实现数据点的分组。

常见的聚类算法有K均值聚类、层次聚类、密度聚类等。

二、聚类分析的方法1. K均值聚类(K-means Clustering):K均值聚类是一种迭代的聚类方法,它将数据点分成K个簇,每个簇代表一个样本集。

算法的基本思想是通过最小化簇内数据点与簇中心之间的平方误差来确定最优的簇中心位置。

2. 层次聚类(Hierarchical Clustering):层次聚类是一种基于树状结构的聚类算法,它根据数据点之间的相似性逐步合并或分割簇。

层次聚类分为凝聚型和分裂型两种方法,其中凝聚型方法从单个数据点开始,逐步合并最相似的簇;分裂型方法从所有数据点开始,逐步分割最不相似的簇。

3. 密度聚类(Density-Based Clustering):密度聚类基于密度可达的概念,将具有足够高密度的数据点归为一簇。

核心思想是在数据空间中通过密度连通性来确定簇的边界,相对于K均值聚类和层次聚类,密度聚类能够有效处理不规则形状和噪声数据。

聚类分析

聚类分析

实验报告2:聚类分析一、简要给出聚类分析的数学模型(1) 聚类分析的基本思想聚类分析是根据研究对象的特征,对研究对象进行分类的多元分析技术的总称。

聚类分析的基本思想是:采用定量统计分析方法,对所研究的样品或变量,找出一些能够度量样品(或变量)之间亲疏程度的统计量,以这些统计量为划分类型的依据,把一些相似程度较大的样品(或变量)聚合为一类,把另外一些彼此之间相似程度较大的样品(或变量)又聚合为另一类,关系密切的聚合到一个小的分类单位,关系疏远的聚合到一个大的分类单位。

因而,聚类分析的基本工作有两大项:一时解决相近或相似的变量问题即分类的统计量;二是选用某种方式作为规则来归类的问题,即聚类方式。

(2) 系统聚类法的基本思想系统聚类方法的基本思想是首先定义样品间的距离(或相似系数)和类与类之间的距离。

初始将n 个样品看成n 类(每一类包含一个样品),这是类间的距离与样品间的距离是等价的,然后将距离最近的两类合并成为新类,并计算新类与其他类的类间距离,再按最小距离准则并类。

这样每侧缩小一类,直到所有的样品都并成一类为止。

常用的类间距离定义及递推公式:①最短距离法A. 类与类之间的距离定义为两类中相距最近的样品之间的距离,即列为p G 和q G 之间的距离pq D 定义为pq D =ijd Q P G j G i min ,∈∈B. 当某步骤类p G 和类q G 合并为和r G 后,按最短距离法计算新类r G 与其他类k G 的类间距离,其递推公式为:{}()q p k D D D qk pk rk ,,,min ≠= ②最长距离法A . 类与类之间的距离定义为两类中相距最远的样品之间的距离,即列为p G 和q G 之间的距离pq D 定义为pq D =ijd Q P G j G i max ,∈∈B . 当某步骤类p G 和类q G 合并为和r G 后,按最长距离法计算新类r G 与其他类k G 的类间距离,其递推公式为:{}()q p k D D D qk pk rk ,,,max ≠= ③中间距离法A. 如果类与类之间的距离既不采用两同类之间的最近距离,也不采用最远的距离,而是采用介于这两者间的距离,这种方法称为中间距离法。

什么是聚类分析,它有哪些应用?

什么是聚类分析,它有哪些应用?

什么是聚类分析,它有哪些应用?
一、聚类分析的实现方式
聚类分析的实现方式有很多种,如下面几种:
1. 基于距离的聚类:
这种方法将数据点之间的距离作为相似性的度量,然后将距离最近的数据点聚在一起,并逐渐地将距离较远的数据点加入到不同的簇中。

2. 基于密度的聚类:
这种方法通过计算数据点的密度来确定簇边界,而不是使用距离来度量相似性。

将密度较高的数据点聚集在一起,而将密度较低的数据点单独作为一个簇。

3. 基于层次的聚类:
这种方法将数据点逐层进行聚合,每一层都是由多个子层组成的。

聚类过程一直持续到所有数据点都被分配到一个簇中,或者簇的数量达到预设的值。

二、聚类分析的应用领域
聚类分析作为一种重要的数据挖掘技术,在多个领域中都有着广泛的应用,下面介绍一些主要应用领域:
1. 市场细分:
聚类分析可以帮助企业将市场分割成不同的细分市场,然后根据每个细分市场的特点定制相应的市场策略。

2. 生物分类:
聚类分析在生物学领域中应用非常广泛,例如,可以用于分类分子或组分、成本分析以及微生物学等方面。

3. 网络流量分析:
聚类分析可以帮助网络管理员对网络流量进行分类,以便更好地了解网络中流动的数据类型,从而更好地优化网络性能。

4. 风险评估:
聚类分析可以用于对风险进行分类和评估,例如,可以将客户分类成高风险、中风险和低风险客户,以快速响应某些意外事件。

结论
聚类分析是一种非常有用的技术,可以用于许多不同的领域。

以上只是聚类分析的一些基本理解和应用,随着技术的不断发展,聚类分析在未来也将有着更广泛的应用。

聚类分析

聚类分析

聚类分析也是一种分类技术。

与多元分析的其他方法相比,该方法较为粗糙,理论上还不完善,但应用方面取得了很大成功。

与回归分析、判别分析一起被称为多元分析的三大方法。

聚类的目的。

根据已知数据,计算各观察个体或变量之间亲疏关系的统计量(距离或相关系数)。

根据某种准则(最短距离法、最长距离法、中间距离法、重心法),使同一类内的差别较小,而类与类之间的差别较大,最终将观察个体或变量分为若干类。

聚类分析又叫群分析、点群分析或者簇分析,是直接比较各事物之间的性质,将性质相近的归为一类,将性质差别较大的归入不同的类。

1、聚类分析聚类分析也称群分析、点群分析。

例如,我们可以根据各个银行网点的储蓄量、人力资源状况、营业面积、特色功能、网点级别、所处功能区域等因素情况,将网点分为几个等级,再比较各银行之间不同等级网点数量对比状况。

1、基本思想:我们所研究的样品(网点)或指标(变量)之间存在程度不同的相似性(亲疏关系——以样品间距离衡量)。

于是根据一批样品的多个观测指标,具体找出一些能够度量样品或指标之间相似程度的统计量,以这些统计量为划分类型的依据。

把一些相似程度较大的样品(或指标)聚合为一类,把另外一些彼此之间相似程度较大的样品(或指标)又聚合为另一类,直到把所有的样品(或指标)聚合完毕,这就是分类的基本思想。

在聚类分析中,通常我们将根据分类对象的不同分为Q型聚类分析和R型聚类分析两大类。

R型聚类分析是对变量进行分类处理,Q型聚类分析是对样本进行分类处理。

R型聚类分析的主要作用是:1、不但可以了解个别变量之间的关系的亲疏程度,而且可以了解各个变量组合之间的亲疏程度。

2、根据变量的分类结果以及它们之间的关系,可以选择主要变量进行回归分析或Q型聚类分析。

Q型聚类分析的优点是:1、可以综合利用多个变量的信息对样本进行分类;2、分类结果是直观的,聚类谱系图非常清楚地表现其数值分类结果;3、聚类分析所得到的结果比传统分类方法更细致、全面、合理。

聚类分析原理及步骤

聚类分析原理及步骤

聚类分析原理及步骤
一,聚类分析概述
聚类分析是一种常用的数据挖掘方法,它将具有相似特征的样本归为
一类,根据彼此间的相似性(相似度)将样本准确地分组为多个类簇,其中
每个类簇都具有一定的相似性。

聚类分析是半监督学习(semi-supervised learning)的一种,半监督学习的核心思想是使用未标记的数据,即在训
练样本中搜集的数据,以及有限的标记数据,来学习模型。

聚类分析是实际应用中最为常用的数据挖掘算法之一,因为它可以根
据历史或当前的数据状况,帮助组织做出决策,如商业分析,市场分析,
决策支持,客户分类,医学诊断,质量控制等等,都可以使用它。

二,聚类分析原理
聚类分析的本质是用其中一种相似性度量方法将客户的属性连接起来,从而将客户分组,划分出几个客户类型,这样就可以进行客户分类、客户
细分、客户关系管理等,更好地实现客户管理。

聚类分析的原理是建立在相似性和距离等度量概念之上:通过对比一
组数据中不同对象之间的距离或相似性,从而将它们分成不同的类簇,类
簇之间的距离越近,则它们之间的相似性越大;类簇之间的距离越远,则
它们之间的相似性越小。

聚类分析的原理分为两类,一类是基于距离的聚类。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

聚类分析§3.4 系统聚类分析方法聚类分析是研究多要素事物分类问题的数量方法。

基本原理是根据样本自身的属性,用数学方法按照某种相似性或差异性指标,定量地确定样本之间的亲疏关系,并按这种亲疏关系程度对样本进行聚类。

常见的聚类分析方法有系统聚类法、动态聚类法和模糊聚类法等。

1. 聚类要素的数据处理假设有m 个聚类的对象,每一个聚类对象都有个要素构成。

它们所对应的要素数据可用表3.4.1给出。

(点击显示该表)在聚类分析中,常用的聚类要素的数据处理方法有如下几种。

① 总和标准化②标准差标准化③ 极大值标准化经过这种标准化所得的新数据,各要素的极大值为1,其余各数值小于1。

④ 极差的标准化经过这种标准化所得的新数据,各要素的极大值为1,极小值为0,其余的数值均在0与1之间。

2. 距离的计算距离是事物之间差异性的测度,差异性越大,则相似性越小,所以距离是系统聚类分析的依据和基础。

① 绝对值距离选择不同的距离,聚类结果会有所差异。

在地理分区和分类研究中,往往采用几种距离进行计算、对比,选择一种较为合适的距离进行聚类。

[举例说明](点击打开显示该例)例:表3.4.2给出了某地区九个农业区的七项指标,它们经过极差标准化处理后,如表3.4.3所示。

对于表3.4.3中的数据,用绝对值距离公式计算可得九个农业区之间的绝对值距离矩阵:3. 直接聚类法直接聚类法是根据距离矩阵的结构一次并类得到结果。

▲ 基本步骤:① 把各个分类对象单独视为一类;② 根据距离最小的原则,依次选出一对分类对象,并成新类;③ 如果其中一个分类对象已归于一类,则把另一个也归入该类;如果一对分类对象正好属于已归的两类,则把这两类并为一类;每一次归并,都划去该对象所在的列与列序相同的行;④ 那么,经过m-1次就可以把全部分类对象归为一类,这样就可以根据归并的先后顺序作出聚类谱系图。

★ 直接聚类法虽然简便,但在归并过程中是划去行和列的,因而难免有信息损失。

因此,直接聚类法并不是最好的系统聚类方法。

[举例说明](点击打开新窗口,显示该内容)例:已知九个农业区之间的绝对值距离矩阵,使用直接聚类法做聚类分析。

解:根据上面的距离矩阵,用直接聚类法聚类分析:第一步,在距离矩阵D中,除去对角线元素以外,d49=d94=0.51为最小者,故将第4区与第9区并为一类,划去第9行和第9列;第二步,在余下的元素中,除对角线元素以外,d75=d57=0.83为最小者,故将第5区与第7区并为一类,划掉第7行和第7列;第三步,在第二步之后余下的元素之中,除对角线元素以外,d82= d28=0.88为最小者,故将第2区与第8区并为一类,划去第8行和第8列;第四步,在第三步之后余下的元素中,除对角线元素以外,d43= d34=1.23为最小者,故将第3区与第4区并为一类,划去第4行和第4列,此时,第3、4、9区已归并为一类;第五步,在第四步之后余下的元素中,除对角线元素以外,d21= d12=1.52为最小者,故将第1区与第2区并为一类,划去第2行和第2列,此时,第1、2、8区已归并为一类;第六步,在第五步之后余下的元素中,除对角线元素以外,d65= d56=1.78为最小者,故将第5区与第6区并为一类,划去第6行和第6列,此时,第5、6、7区已归并为一类;第七步,在第六步之后余下的元素中,除对角线元素以外,d31= d13=3.10为最小者,故将第1区与第3区并为一类,划去第3行和第3列,此时,第1、2、3、4、8、9区已归并为一类;第八步,在第七步之后余下的元素中,除去对角线元素以外,只有d51= d15=5.86,故将第1区与第5区并为一类,划去第5行和第5列,此时,第1、2、3、4、5、6、7、8、9、区均归并为一类;根据上述步骤,可以做出直接聚类谱系图。

(点击展开显示该图)4. 最短距离聚类法最短距离聚类法是在原来的m×m距离矩阵的非对角元素中找出,把分类对象Gp和Gq归并为一新类Gr,然后按计算公式计算原来各类与新类之间的距离,这样就得到一个新的(m-1)阶的距离矩阵;再从新的距离矩阵中选出最小者dij,把Gi和Gj归并成新类;再计算各类与新类的距离,这样一直下去,直至各分类对象被归为一类为止。

[举例说明](点击打开新窗口,显示该例)例:已知九个农业区之间的绝对值距离矩阵,使用最短距离聚类法做聚类分析。

解:用最短距离聚类法对某地区的九个农业区进行聚类分析:第一步,在9×9阶距离矩阵D中,非对角元素中最小者是d94=0.51,故首先将第4区与第9区并为一类,记为G10,即G10={G4,G9}。

分别计算G1,G2,G3,G5,G6,G7,G8与G10之间的距离得:这样就得到G1,G2,G3,G5,G6,G7,G8,G10上的一个新的8×8阶距离矩阵:第二步,在上一步骤中所得到的8×8阶距离矩阵中,非对角元素中最小者为d57=0.83,故将G5与G7归并为一类,记为G11,即G11={G5,G7}。

分别计算G1,G2,G3,G6,G8,G10与G11之间的距离,可得到一个新的7×7阶距离矩阵:第三步,在第二步所得到的7×7阶距离矩阵中,非对角元素中最小者为d28=0.88,故将G2与G8归并为一类,记为G12,即G12={G2,G8}。

分别计算G1,G3,G6,G10,G11与G12之间的距离,可得到一个新的6×6阶距离矩阵:第四步,在第三步中所得的6×6阶距离矩阵中,非对角元素中最小者为d6,11=1.07,故将G6与G11归并为一类,记为G13,即G13={G6,G11}={G6,(G5,G7)}。

计算G1,G3,G10,G12与G13之间的距离,可得到一个新的5×5阶距离矩阵:第五步,在第四步中所得的5×5阶距离矩阵中,非对角线元素中最小者为d3,10=1.20,故将G3与G10归并为一类,记为G14,即G14={G3,G10}={G3,(G4,G9)}。

再按照公式(3.3.10)式计算G1,G12,G13与G14之间的距离,可得一个新的4×4阶距离矩阵:第六步,在第五步所得到的4×4阶距离矩阵中,非对角线元素中最小者为d12,14=1.29,故将G12与G14归并为一类,记为G15,即G15={G12,G14}={(G2,G8),(G3,(G4,G9))}。

再按照公式(3.3.10)式计算G1,G13与G15之间的距离,可得一个新的3×3阶距离矩阵:第七步,在第六步所得的3×3阶距离矩阵中,非对角线元素中最小者为d1,15=1.32,故将G1与G15归并为一类,记为G16,即G16={G1,G15}={(G1,(G2,G8),(G3,(G4,G9))}。

再按照公式(3.3.10)式计算G13与G16之间的距离,可得一个新的2×2阶距离矩阵:第八步,将G13与G16归并为一类。

此时,所有分类对象均被归并为一类。

综合上述聚类过程,可以作出最短距离聚类谱系图。

(点击展开显示)5. 最远距离聚类法最远距离聚类法与最短距离聚类法的区别在于计算原来的类与新类距离采用的公式不同。

最远距离聚类法的计算公式:[举例说明](点击打开新窗口,显示该例)例:已知九个农业区之间的绝对值距离矩阵,使用最远距离聚类法做聚类分析。

答:最远距离聚类法的聚类步骤:第一步,在9×9阶距离矩阵中,非对角元素中最小者是d94=0.51,故首先将第4区与第9区并为一类,记为G10,即G10={G4,G9}。

计算G1,G2,G3,G5,G6,G7,G8与G10之间的距离,得到一个新的8×8阶距离矩阵:第二步,在第一步所得到的8×8阶距离矩阵中,非对角线元素中最小者为d57=0.83,故将G5与G7归并为一类,记为G11,即G11={G5,G7}。

分别计算G1,G2,G3,G6,G8,G10与G11之间的距离,得到一个新的7×7阶距离矩阵如下:第三步,在第二步中所得到的7×7阶距离矩阵中,非对角线元素中最小者为d28=0.88,故将G2与G8归并为一类,记为G12,即G12={G2,G8}。

分别计算G1,G3,G6,G10,G11与G12之间的距离,得到一个新的6×6阶距离矩阵:第四步,在第三步中所得的6×6阶距离矩阵中,非对角元素中最小者为d3,10=1.23,故将G3与G10归并为一类,记为G13,即G13={G3,G10}={G3,(G4,G9)}。

计算G1,G6,G11,G12与G13之间的距离,得到一个新的5×5阶距离矩阵:第五步,在第四步所得的5×5阶距离矩阵中,非对角线元素中最小者为d1,12=1.52,故将G1与G12归并为一类,记为G14,即G14={G1,G12}={G1,(G2,G8)}。

分别计算G6,G11,G13与G14之间的距离,得到一个新的4×4阶距离矩阵:第六步,在第五步所得的4×4阶距离矩阵中,非对角线元素中最小者为d6,11=1.78,故将G6与G11归并为一类,记为G15,即G15={G6,G11}={G6,(G5,G7)}。

分别计算G13,G14和G15之间的距离,得到一个新的3×3阶距离矩阵:第七步,在第六步中所得的3×3阶距离矩阵中,非对角线元素中最小者为d13,14=3.10,故将G13与G14归并为一类,记为G16,即G16={G13,G14}={(G3,(G4,G9)),(G1,(G2,G8))}。

计算G15与G16之间的距离,可得一个新的2×2阶距离矩阵:第八步,将G15与G16归并为一类。

此时,各个分类对象均已归并为一类。

综合上述聚类过程,可以作出最远距离聚类谱系图。

6. 系统聚类法计算类之间距离的统一公式▲ 最短距离聚类法具有空间压缩性,而最远距离聚类法具有空间扩张性(图3.4.4)。

最短距离为dAB=da1b1,最远距离为dAB=dap2。

▲ 最短距离聚类法和最远距离聚类法关于类之间的距离计算可以用统一的式子表示:当γ= -1/2时,就是最短距离聚类法计算类间距离的公式;当γ=1/2时,就是最远距离聚类法计算类间距离的公式。

▲ 系统聚类的方法还有:表示了八种不同系统聚类方法计算类间距离的统一表达式(见表3.3.4)。

相关文档
最新文档