管道的水力计算
支管水力计算

支管水力计算水力计算是水利工程中非常重要的一部分,它涉及到管道、泵站、水轮机等工程构筑物的设计与运行。
正确进行水力计算可以确保工程的安全稳定运行,因此水力计算是水利工程中一项非常重要的技术。
本文将全面介绍水力计算的内容,包括管道水力计算、泵站水力计算和水轮机水力计算。
一、管道水力计算1.流量计算:根据管道的材质、孔径和坡度等参数,使用雷诺数和曼宁公式等计算方法,确定管道的流量。
2.压力损失计算:根据管道的材质和长度、流量和流速等参数,使用达西公式等计算方法,确定管道的压力损失。
3.防冲击计算:在水力计算中,还需要考虑管道内部的防冲击设计。
因为当管道中的流速发生突变时,会产生压力冲击。
通过伯努利方程和马朝尔方程等计算方法,来设计管道内部的防冲击设施。
二、泵站水力计算1.扬程计算:泵站的扬程是指泵站出水口与进水口之间的水位差。
通过测量进水口和出水口的水位,使用流量守恒公式,结合泵的性能曲线,计算得出泵站的扬程。
2.泵功率计算:泵站的功率是指在不同流量和扬程条件下泵的输出功率。
根据泵的性能曲线和流量扬程计算公式,在给定的流量和扬程条件下,计算得出泵站的功率。
3.变频器调速计算:变频器能够通过调整泵的转速,调整出水量,使之与水的需求相匹配。
通过对泵站的运行情况进行分析,结合流量扬程计算公式,计算出变频器的转速。
三、水轮机水力计算1.入水流速计算:水轮机的入水流速是指水流进入水轮机之前的流速。
根据水轮机型号和水量,使用水力计算方法,计算出水流的流速。
2.转动力矩计算:水轮机的转动力矩是指水轮机在给定的水量和入水流速条件下,转动的力矩。
通过计算水轮机的进水和出水之间的压力差和叶轮半径等参数,利用液力动量守恒定律和转动动力学方程,计算出水轮机的转动力矩。
3.输出功率计算:水轮机的输出功率是指在给定的水量和入水流速条件下,水轮机产生的功率。
通过计算水轮机的转动力矩和转速,使用功率计算公式,计算出水轮机的输出功率。
简单管道的水力计算精

hf
k
Q2 K2
l 0.1522 2.464 2
2500 9.5m
H1 2 1 H 2 h f 45 61 25 9.5 18.5m
第六章 孔口、管嘴出流与有压管流
§6.4 简单管道水力计算的基本类型
3. 管道管线布置已定,当要求输送一定的流量时,确定所需 的断面尺寸(圆形管即确定直径)。这时可能出现下列两 种情况:
这种类型的题一般在输流工程中用到的较多,按长管计算:
H
hf
Q2 l, K K2
AC
R,C
1
R
1 6
或者用查表法。
n
供水工程中当 v 1.2时m s
H
hf
k
Q2 K2
l
当 v 1.2时m s
H
hf
k
Q2 K2
l
式中k 查表可得
式中 k 1
第六章 孔口、管嘴出流与有压管流
§6.4 简单管道水力计算的基本类型
2. 管道的输流能力,管长已知,要求选定所需的管径及相应的水头。 这是工程中常见的实际问题。通常是从技术和经济两方面综合考虑,
确定满足技术要求的经济流速。 ①管道的技术要求。流量一定的条件下,所选管径的大小影响着管中的 流速,所选管径应使流速控制在既不会产生过大的压力,降低管道的使 用寿命,又不能过小,使泥沙沉积,阻塞管路。一般情况下,水电站引 水管中流速不应大于(5~6)m/s ,给水管中的流速不应大于(2.5~3) m/s,不应小于0.25m/s 。
例6.2 由水塔向工厂供水,如图所示,采用铸铁管,管长2500m,
管径400mm。水塔处地形标高为 ,工厂1 需61水m 量
,工
厂地Q 形 0标.15高2 m3 s ,管路末端需要的2 自 4由5m水头 ,试设计水塔高
市政工程给水管道规范要求的水力计算

市政工程给水管道规范要求的水力计算市政工程中的给水管道是指用于供水的管道系统,它负责将水源从供水厂或其他水源输送到市区的各个用水点。
为了保证给水管道系统正常运行,规范要求对水力进行精确计算。
本文将介绍市政工程给水管道规范要求的水力计算的相关内容。
1. 水力计算的基本概念水力计算是指根据给定的管道参数和流体性质,通过计算确定流体在管道中的流速、压力、流量等水力参数的过程。
市政工程给水管道水力计算的目的是为了确定管道的尺寸和流量,以保证供水的正常运输和供应。
2. 水力计算的方法市政工程给水管道水力计算采用的主要方法有以下几种:2.1 雷诺数法雷诺数是描述流体在运动状态下的流态的重要参数,用于判断流态属于层流还是紊流。
在水力计算中,可以根据管道的雷诺数来确定流态,并借助此计算流体在管道中的流速和流量。
2.2 流体力学公式法根据流体力学的基本原理和方程,可以通过计算来得到水力参数。
其中,包括流量公式、阻力公式、连续方程、动量方程等。
2.3 直接解法直接解法是指利用数值方法和计算机模拟技术来解决复杂的水力计算问题。
通过建立数学模型和计算机仿真,可以获得更为准确的水力参数。
3. 水力计算的步骤为了满足市政工程给水管道的规范要求,水力计算一般包括以下几个步骤:3.1 收集基本数据首先,需要收集与给水管道相关的基本数据,包括供水源、管道长度、管径、材料、地形条件等信息。
3.2 设计流量确定根据给定的用水量和供水要求,确定给水管道的设计流量。
设计流量是给水系统中的水量,通常根据当地的用水量统计数据和供水规范来确定。
3.3 确定管道尺寸和水力参数在知道设计流量后,可以通过水力计算方法,计算得到管道的水力参数,如管道的流速、流量和压力损失等。
3.4 确定管道材料和防腐措施根据水力计算的结果,确定合适的管道材料和防腐措施,保证给水管道在运输过程中的安全和稳定。
4. 水力计算的注意事项在进行市政工程给水管道规范要求的水力计算时,需注意以下几点:4.1 流态判断准确在选择水力计算方法时,要准确判断管道中的流态,以保证计算结果的准确性。
管道的水力计算

第三章管道的水力计算及强度计算第一节管道的流速和流量流体最基本的特征就是它受外力或重力的作用便产生流动。
如图3—1所示装置,如把管道中的阀门打开,水箱内的水受重力作用,以一定的流速通过管道流出。
如果水箱内的水位始终保持不变,那么管道中的流速也自始至终保持不变。
管道中的水流速度有多大?每小时通过管道的流量是多少?这些都是实际工作中经常遇到的问题。
图3—1水在管道内的流动为了研究流体在管道内流动的速度和流量,这里先引出过流断面的概念。
图3—2为水通过管道流动的两个断面1—1及2—2,过流断面指的是垂直于流体流动方向上流体所通过的管道断面,其断面面积用符号A来表示,它的单位为m2或cm2。
图32管流的过流断面a)满流b)不满流流量是指单位时间内,通过过流断面的流体体积。
以符号q v表示,其单位为m3/h,cm3/h或m3/s,cm3/s。
流速是指单位时间内,流体流动所通过的距离。
以符号。
表示,其单位为m/s或cm/s。
图3—3管流中流速、流量、过流断面关系示意图流量、流速与过流断面之间的关系如下:以水在管道中流动为例,如图3—3所示,在管段上取过流断面1—1,如果在单位时间内水从断面1—1流到断面2—2,那么断面1—1和断面2—2所包围的管段的体积即为单位时间内通过过流断面1—1时水的流量q v,而断面1—1和断面2—2之间的距离就是单位时间内水流所通过的路程,即流速。
由上可知,流量、流速和过流断面之间的关系式为q v=vA (3—1) 式(3—1)叫做流量公式,它说明流体在管道中流动时,流速、流量和过流断面三者之间的相互关系,即流量等于流速与过流断面面积的乘积。
如果在一段输水管道中,各过流断面的面积及所输送的水量一定,即在管道中途没有支管与其连接,既没有水流出,也没有水流入,那么管道内各过流断面的水流速度也不会变化;若管段的管径是变化的(即过流断面的面积A是变化的),那么管段中各过流断面处的流速也随着管径的变化而变化。
排水管道水力计算表格(自编)

钢筋混凝土管 粗糙系数 0.014
公称直径dn(mm) dn200 dn300 dn400 计算内径(mm) 200 300 400 对应流速v(m/s) 0.61 0.8 0.97 对应流量q(L/s) 9.58 28.27 60.95 备注:计算内径即为管道内径,钢筋混凝土管管道内径即为公称直径,不
硬聚氯乙烯双壁波纹管 粗糙系数 0.009
ቤተ መጻሕፍቲ ባይዱ
dn280 243 1.09 25.28 备注:计算内径即为管道内
管道水力计算
dn200 188.8 0.92 12.88 dn250 dn315 236 297.8 1.07 1.24 23.4 43.18
dn75 dn90 dn110 dn125 dn160 69.6 83 102.4 117.4 150.8 0.47 0.53 0.61 0.67 0.79 0.89 1.43 2.51 3.63 7.05 T5836.1-2006《建筑排水用硬聚氯乙烯管材》P2。
dn200 202.4 0.67 10.78
dn250 dn300 255.2 304 0.78 0.87 19.95 31.57
dn500 dn600 dn700 dn800 dn900 500 600 700 800 900 1.13 1.28 1.41 1.54 1.67 110.94 180.96 271.32 387.04 531.2 管道内径即为公称直径,不同级别壁厚要求不一样。
柔性接口铸铁管(A型TB 级) 粗糙系数 0.013
公称直径dn(mm) dn50 计算内径(mm) 50 对应流速v(m/s) 0.26 对应流量q(L/s) 0.26 备注:计算内径即为管道内径,取值参照GBT12772-1999《排水用柔性接口
水力计算公式选用

水力计算公式选用水力计算是指利用水的流动性质进行流量、压力和速度等相关参数的计算。
在水力学中,常用的水力计算公式主要有流量计算公式、速度计算公式和压力计算公式。
下面将介绍几种常用的水力计算公式。
一、流量计算公式:1.泊松公式:流量计算公式是通过测定流速和截面积的方式来计算流量。
泊松公式是最常用的流量计算公式之一,其公式为:Q=A×v其中,Q为流量,A为流体通过的截面积,v为流速。
2.管道流量公式:当涉及到管道流量计算时,可以使用伯努利公式来计算流量,伯努利公式为:Q=π×r²×v其中,Q为流量,r为管道的半径,v为流速。
3.梯形槽流量公式:当涉及到梯形槽流量计算时,可以使用曼宁公式来计算流量,曼宁公式为:Q=(1.49/A)×R^(2/3)×S^(1/2)其中,Q为流量,A为梯形槽的横截面积,R为梯形槽湿周和横截面积之比,S为梯形槽的比降,1.49为曼宁系数。
二、速度计算公式:1.波速计算公式:在涉及到波浪速度计算时,可以使用波速公式进行计算,波速公式的一般形式为:c=λ×f其中,c为波速,λ为波长,f为频率。
2.重力加速度和液体高度差计算公式:当涉及到重力加速度和液体高度差计算时,可以使用水头计算公式,水头计算公式的一般形式为:H=v²/2g+z其中,H为水头,v为速度,g为重力加速度,z为液体的高度。
三、压力计算公式:1.应力计算公式:当涉及到液体对物体的压力计算时,可以使用应力计算公式,应力计算公式的一般形式为:P=F/A其中,P为压力,F为受力大小,A为受力的面积。
2.流体静压力计算公式:当涉及到流体的静压力计算时,可以使用静压力计算公式,静压力计算公式的一般形式为:P=ρ×g×h其中,P为压力,ρ为流体密度,g为重力加速度,h为液体的高度。
以上是一些常用的水力计算公式,可以根据不同的情况和具体要求选择合适的公式进行计算。
管道水力计算(给排水)
第十六篇%管道水力计算第一章%钢管和铸铁管水力计算一!计算公式!&按水力坡降计算水头损失水管的水力计算#一般采用以下公式&Q H ,!+lE 22-$!$#!#!%式中%Q ...水力坡降(,...摩阻系数(+l...管子的计算内径$(%(E...平均水流速度$(*h %(-...重力加速度#为3&1!$(*h2%!应用公式$!$#!#!%时#必须先确定求取系数,值的依据!对于旧的钢管和铸铁管&当F E#3&2W !"/!(时$E...液体的运动粘滞度#(2*h %#,H "&"2!"+l"&)($!$#!#2%当F E<3&2W !"/!(时,H !+l"&)!&/W !"#1I E ()F "&)($!$#!#)%或采用E H !&)W !"#$(2*h $水温为!"?%时#则,H "&"!43+l"&)!I "&1$4()F "&)($!$#!#0%管壁如发生锈蚀或沉垢#管壁的粗糙度就增加#从而使系数,值增大#公式$!$#!#2%和公式$!$#!#)%适合于旧钢管和铸铁管这类管材的自然粗糙度!将公式$!$#!#2%和公式$!$#!#0%中求得的,值代入公式$!$#!#!%中#得出的旧钢管和铸铁管的计算公式&当F #!&2(*h 时#Q H "&""!"4F2+l!&)$!$#!#/%当F <!&2(*h 时#’4!0!’第一章%钢管和铸铁管水力计算Q H "&"""3!2F 2+l!&)!I"&1$4()F "&)$!$#!#$%钢管和铸铁管水力计算表即按公式$!$#!#/%和$!$#!#$%制成!2&按比阻计算水头损失由公式$!$#!#0%求得比阻公式如下&DH Q ;2H "&""!4)$+l/&)$!$#!#4%钢管和铸铁管的D 值#列于表!$#!#0!二!水力计算表编制表和使用说明!&钢管及铸铁管水力计算表采用管子计算内径+l 的尺寸#见表!$#!#!!在确定计算内径+l 时#直径小于)""((的钢管及铸铁管#考虑锈蚀和沉垢的影响#其内径应减去!((计算!对于直径等于)""((和)""((以上的管子#这种直径的减小没有实际意义#可不必考虑!编制钢管和铸铁管水力计算表时所用的计算内径尺寸表!$#!#!钢%管%$((%水煤气钢管中等管径钢管公称直径M 8外%径M 内%径+计算内径+l 公称直径M 8外%径M 内%径+计算内径+l 铸铁管$((%内%径+计算内径+l 1!)&/"3&""1&""!2/!0$!2$!2//"03!"!4&""!2&/"!!&/"!/"!$1!01!044/40!/2!&2/!/&4/!0&4/!4/!30!40!4)!""332"2$&4/2!&2/2"&2/2""2!3!33!31!2/!202/))&/"24&""2$&""22/20/22/220!/"!03)202&2/)/&4/)0&4/2/"24)2/)2/22""!330"01&""0!&""0"&""24/2332432412/"203/"$"&""/)&""/2&"")"")2/)"/)"/)"")""4"4/&/"$1&""$3&"")2/)/!))!))!)/")$"1"11&/"1"&/"43&/")/")44)/4)/4!""!!0&""!"$&""!"/&""’1!0!’第十六篇%管道水力计算钢%管%$((%水煤气钢管中等管径钢管公称直径M 8外%径M 内%径+计算内径+l 公称直径M 8外%径M内%径+计算内径+l铸铁管$((%内%径+计算内径+l!2/!0"&""!)!&""!)"&""!/"!$/&""!/$&""!//&""2&表!$#!#2"表!$#!#)$中等管径钢管水力计算表%管壁厚均采用!"((#使用中如需精确计算#应根据所选用的管子壁厚的不同#分别对表!$#!#2"表!$#!#)中的!"""Q 和F 值或对表!$#!#0中的D 值加以修正!!"""Q 值和D 值的修正系数i !采用下式计算&i !H +l+l()m/&)$!$#!#1%式中%+l...壁厚!"((时管子的计算内径$(%#+l m...选用管子的计算内径$(%!修正系数i !值#见表!$#!#2!平均水流速度F 的修正系数i 2#采用下式计算&i 2H +l+l()m2$!$#!#3%修正系数i 2值#见表!$#!#)!)&按比阻计算水头损失时#公式$!$#!#4%只适用于平均水流速度F #!&2(*h 的情况!当F <!&2(*h 时#表!$#!#0中的比阻D 值#应乘以修正系数i )!i )可按下式计算&中等管径的钢管!"""Q 值和D 值的修正系数i !表!$#!#2公称直径M 8$((%壁%厚%(%$((%0/$413!"!!!2!2/!/"!4/2""22/2/"24/)"")2/)/""&$!"&$$"&4""&4)"&4$"&41"&1""&1!"&1)"&10"&$$"&4""&40"&44"&43"&1!"&1)"&10"&1/"&1$"&42"&4$"&43"&1!"&1)"&1$"&1$"&14"&11"&13"&41"&1!"&1)"&1/"&14"&11"&13"&3""&3!"&32"&1/"&11"&13"&3""&3!"&32"&3)"&3)"&30"&3/"&32"&3)"&30"&3/"&3/"&3$"&3$"&34"&34"&34!!!!!!!!!!!&"3!&"1!&"$!&"$!&"/!&"0!&"0!&")!&")!&")!&!1!&!$!&!)!&!2!&!"!&"3!&"1!&"4!&"4!&"$’3!0!’第一章%钢管和铸铁管水力计算中等管径钢管F 值的修正系数i 2表!$#!#)公称直径M 8$((%壁%厚%(%$((%0/$413!"!!!2!2/!/"!4/2""22/2/"24/)"")2/)/""&1)"&1/"&14"&13"&3""&3!"&32"&3)"&3)"&30"&1$"&11"&13"&3!"&32"&3)"&3)"&30"&30"&3/"&11"&3""&3!"&32"&3)"&30"&30"&3/"&3/"&3$"&3!"&32"&3)"&30"&3/"&3/"&3$"&3$"&3$"&34"&30"&3/"&3$"&34"&34"&34"&34"&34"&31"&31"&34"&34"&31"&31"&31"&31"&33"&33"&33"&33!!!!!!!!!!!&")!&")!&"2!&"2!&"2!&"2!&"!!&"!!&"!!&"!!&"4!&"/!&"/!&"0!&"0!&")!&")!&")!&"2!&"2钢管和铸铁管的比阻D 值表!$#!#0水煤气钢管中等管径钢管铸铁管公称直径M 8$((%D $;()*h %D $;7*h %公称直径M 8$((%D $;()*h %内径$((%D $;()*h %1!"!/2"2/)20"/"4"1"!""!2/!/"22//""""")23/""""11"3"""!$0)"""0)$4""3)1$"00/)"!!"1"213)!!$12$4&01$&2)))&3/22/&/)2&3/1&1"3!&$0)"&0)$4"&"3)1$"&"00/)"&"!!"1"&""213)"&""!!$1"&"""2$40"&""""1$2)"&""""))3/!2/!/"!4/2""22/2/"24/)"")2/)/"!"$&200&3/!1&3$3&24)0&1222&/1)!&/)/"&3)32"&$"11"&0"41/"4/!""!2/!/"2""2/")"")/"!/!3"!4"3)$/&)!!"&10!&1/3&"232&4/2!&"2/"&0/23i )H "&1/2!I "&1$4()F"&)$!$#!#!"%修正系数i )值#见表!$#!#/!’"20!’第十六篇%管道水力计算钢管和铸铁管D 值的修正系数i )表!$#!#/F $(*h %"&2"&2/"&)"&)/"&0"&0/"&/"&//"&$i )!&0!!&))!&2"!&20!&2"!&!4/!&!/!&!)!&!/F $(*h %"&$/"&4"&4/"&1"&1/"&3!&"!&!!&2i )!&!"!&"1/!&"4!&"$!&"/!&"0!&")!&"!/!&""0&钢管$水煤气管%的!"""Q 和F 值见表!$#!#$#钢管M8H !2/>)/"((的!"""Q 和F 值见表!$#!#4(铸铁管M 8H /">)/"((的!"""Q 和F 值见表!$#!#1#表中F 值为平均水流速度(*h!计算示例&3例!4%当流量;H !0.*h H "&"!0()*h 时#求管长.H )/""(#外径W 壁厚H !30W$((的钢管的水头损失!3解4%由表!$#!#!中查得外径MH !30((的钢管公称直径为M 8H !4/((#又由表!$#!#4中M 8H !4/((一栏内查得!"""Q H 0&!/#F H "&$(*h !因为管壁厚度不等于!"(($为$((%#故需对!"""Q 值加以修正!由表!$#!#2中查得修正系数i !H"&43!故水头损失为&,H Q i !.H 0&!/!"""W "&43W )/""H !!&04(按着比阻求水头损失时#由表!$#!#0中查得DH !1&3$$;以()*h 计%#因为平均水流速度F "&$(*h $小于!&2(*h %#故需对D 值加以修正!由表!$#!#/查得修正系数i )H !&!!/!修正系数i !仍等于"&43!故水头损失为&,H D i !i ).;2H !1&3$W "&43W !&!!/W )/""W "&"!02H !!&0$(同样#因为管壁厚度不等于!"((#也应对平均水流速度F 值加以修正#由表!$#!#)查得修正系数i 2H"&3!!则求得&FH "&$"W "&3!H "&//(*h 3例24%当流量;H 4.*h H "&""4()*h 时#求M 8H !/"((#管长.H 2"""(的铸铁管的水头损失!3解4%由表!$#!#1中查到&!"""Q H 2&0$(F H "&0"(*h #故,H Q .H 2&0$!"""W 2"""H 0&32(!按比阻D 值求水头损失时#由表!$#!#0中查得DH 0!&1/$;以()*h 计%!因为平均流速小于!&2(*h #故必须计入修正系数i )#当F H "&0"(*h 时#由表!$#!#/中查得i )H !&2"!故水头损失为&,H D i ).;2H 0!&1/W !&2"W2"""W"&""42H 0&32(’!20!’第一章%钢管和铸铁管水力计算钢管和铸铁管水力计算见表!$#!#$#!$#!#4#!$#!#1!’220!’第十六篇%管道水力计算’)20!’第一章%钢管和铸铁管水力计算’020!’第十六篇%管道水力计算’/20!’第一章%钢管和铸铁管水力计算’$20!’’420!’’120!’’320!’’")0!’’!)0!’’2)0!’’))0!’’0)0!’’/)0!’’$)0!’第十六篇%管道水力计算’4)0!’第一章%钢管和铸铁管水力计算’1)0!’第十六篇%管道水力计算’3)0!’第一章%钢管和铸铁管水力计算’"00!’第十六篇%管道水力计算’!00!’第一章%钢管和铸铁管水力计算’200!’第十六篇%管道水力计算第二章%塑料给水管水力计算一!计算公式Q H ,!+l F 22-$!$#2#!%式中%Q ...水力坡降(,...摩阻系数(+l...管子的计算内径$(%(F...平均水流速度$(*h %(-...重力加速度#为3&1!$(*h 2%!应用公式$!$#2#!%时#应先确定系数,值!对于各种材质的塑料管$硬聚氯乙烯管"聚丙烯管"聚乙烯等%#摩阻系数定为&,H "&2/X f "&22$$!$#2#2%式中%X f ...雷诺数(X f HF +l E$!$#2#)%其中%E ...液体的运动粘滞系数$(2*h %!当E H !&)W !"#$(2*h $水温为!"?%时#将公式$!$#2#2%和式$!$#2#)%中求得的,值代入公式$!$#2#!%中#进行整理后得到&Q H "&"""3!/;!&440+l0&440$!$#2#0%式中%;...计算流量$()*h %(+l...管子的计算内径$(%!塑料给水管水力计算表即按公式$!$#2#0%制成!二!水力计算表的编制和使用说明$!%为计算方便#水力计算表是按标准管的计算内径编制的!对于公称管径M 8H 1>!/((的塑料管#采用,轻工业部部标准5P 41>1".4/-中B 8H!&"F B 9$!"J -*c (2%规格的硬聚氯乙烯管的实际内径作为标准管计算内径!对于公称管径M 8H 2">)/"((的塑料’)00!’第二章%塑料给水管水力计算管#采用,轻工业部部标准5P 41>1".4/-中B 8H"&$F B 9$$J -*c (2%规格的硬聚氯乙烯管的实际内径作为标准管计算内径!$2%各种不同材质"不同规格的塑料管#由于计算内径互有差异#所以在进行水力计算时#应将查水力计算表所得的!"""Q 值和F 值#分别乘以阻力修正系数i !和流速修正系数i 2进行修正!i !H +l+l()m0&440$!$#2#/%i 2H +l+l()m 2$!$#2#$%式中%+l...标准管计算内径$(%(+l m...计算管计算内径$(%!$)%国产各种材质规格塑料管的i !"i 2数据见表!$#2#!"表!$#2#2和表!$#2#)!在表!$#2#!中#硬聚氯乙烯管和聚乙烯管规格取自,轻工业部部标准5P 41>1".4/-!在表!$#2#2中#聚丙烯管规格取自轻工业部聚丙烯管材标准起草小组!341年1月编制的,聚丙烯管材料暂行技术条件-!在表!$#2#)中#硬聚氯乙烯管和聚乙烯管规格取自,化工部部标准@P .$).$/-!其它材质"规格塑料管的i !"i 2可分别用公式$!$#2#/%和式$!$#2#$%自行计算!轻工业部部标准硬聚氯乙烯管及聚乙烯管i !!i 2值表!$#2#!材%质硬%聚%氯%乙%烯聚%乙%烯工作压力B -H"&$F B 9B -H !&"F B 9B -H "&0F B 9公称管径M 8$((%外径MW 壁厚$((%计算内径+lm$((%i !i 2外径MW 壁厚$((%计算内径+lm$((%i !i 2外径MW 壁厚$((%计算内径+lm$((%i !i 21!2W !&/3!!!2W !&/3!!!"!$W 2!2!!!$W 2!2!!!/2"W 2!$!!2"W 2!$!!2"2/W !&/22!!2/W 2&/2"!&/4$!&2!"2/W 22!!&203!&"312/)2W !&/23!!)2W 2&/24!&0"4!&!/0)2W 2&/24!&0"4!&!/0)20"W 2&")$!!0"W ))0!&)!0!&!2!0"W ))0!&)!0!&!2!0"/"W 2&"0$!!/"W )&/0)!&)1"!&!00/"W 002!&/00!&2""/"$)W 2&//1!!$)W 0//!&213!&!!2$)W //)!&/)1!&!314"4/W 2&/4"!!4/W 0$4!&2)2!&"321"3"W )10!!3"W 0&/1!!&!3"!&"4/!""!!"W )&/!")!!!!"W /&/33!&2"1!&"12’000!’第十六篇%管道水力计算材%质硬%聚%氯%乙%烯聚%乙%烯工作压力B -H"&$F B 9B -H !&"F B 9B -H "&0F B 9公称管径M 8$((%外径MW 壁厚$((%计算内径+lm$((%i !i 2外径MW 壁厚$((%计算内径+lm$((%i !i 2外径MW 壁厚$((%计算内径+lm$((%i !i 2!!"!2/W 0!!4!!!2/W $!!)!&!1!!&"42!!2/!0"W 0&/!)!!!!0"W 4!2$!&2"0!&"1!!/"!$"W /!/"!!!$"W 1!00!&2!/!&"1/!4/!1"W /&/!$3!!!1"W 3!$2!&220!&"112""2""W $!11!!2""W !"!1"!&2)!!&"3!22/22/W 42!!!!2/"2/"W 4&/2)/!!24/21"W 1&/2$)!!)"")!/W 3&/23$!!)/")//W !"&3))0!!0""0""W !2)4$!!计算示例&)例*%已知流量;H !0.*h H "&"!0()*h #求管长.H )/""(#管径M 2""W $#轻工业部部标准B 8H!&"F B 9$!"J -*c (2%硬聚氯乙烯管的水头损失及平均水流速度!)解*%由表!$#2#!中查得外径M 2""((的塑料公称直径为M 82""((#又由表!$#2#0中查得M 82""((#当;H !0.*h 时#!"""Q H !&)0(#F H "&/(*h!因选用非标准管#故须对已求得的!"""Q 值加以修正!由表!$#2#!查得阻力修正系数i !H!&2)!#故实际水头损失为&,H Q i !.H !&)0!"""W !&2)!W)/""H /&44(同法查得流速修正值i 2H !&"3!#将由表!$#2#0中查得的流速F H "&/"(*h 加以修正!求得管内实际流速为FH "&/"W !&"3!H "&/0$(*h $0%工程中#塑料管一律用外径W 壁厚表示其规格!本计算表中公称管径是指外径而言#单位为毫米!三!水力计算塑料给水管水力计算见表!$#2#0!’/00!’第二章%塑料给水管水力计算’$00!’’400!’’100!’’300!’’"/0!’’!/0!’’2/0!’’)/0!’’0/0!’’//0!’’$/0!’第十六篇%管道水力计算’4/0!’第二章%塑料给水管水力计算’1/0!’第十六篇%管道水力计算’3/0!’第二章%塑料给水管水力计算’"$0!’第十六篇%管道水力计算第三章%钢筋混凝土圆管!非满流$R H "&"!0"水力计算一!计算公式;H FD $!$#)#!%图!$#)#!%,<M 2%%%%%F H !RX 2*)Q !*2$!$#)#2%式中%;...流量$()*h %(F...流速$(*h %(R...粗糙系数(X ...水力半径$(%(Q ...水力坡降(D ...水流断面$(%!当,<M 2时#DH $;#h Q R ;c a h ;%^2$!$#)#)%图!$#)#2%,<M2%%%%%3H 2;^$!$#)#0%3...湿周$(%!XH ;#h Q R ;c a h ;2;^$!$#)#/%当,[M 2时#DH $1#;I h Q R ;c a h ;%^2$!$#)#$%3H 2$1#;%^$!$#)#4%3...湿周$(%!XH 1#;I h Q R ;c a h ;2$1#;%^$!$#)#1%二!水力计算钢筋混凝土圆管MH !/">1""(($非满流#R H "&"!0%水力计算见表!$#)#!!表中;为流量$.*h %#F 为流速$(*h %!’!$0!’第三章%钢筋混凝土圆管!非满流$R H "&"!0"水力计算’2$0!’第十六篇%管道水力计算’)$0!’第三章%钢筋混凝土圆管!非满流$R H "&"!0"水力计算’0$0!’第十六篇%管道水力计算’/$0!’第三章%钢筋混凝土圆管!非满流$R H "&"!0"水力计算。
简单管道的水力计算(精)
k 1
Q2 0.152 2 hf k 2 l 2500 9.5m 2 K 2.464
H 1 2 1 H 2 h f 45 61 25 9.5 18.5m
Δ
水塔
H
H1 H2
Δ Δ
1 2
例
6.2
图
第六章
孔口、管嘴出流与有压管流
§6.4 简单管道水力计算的基本类型
因为管道的长度较大,考虑按照长管计算。 解: 列出水厂断面和工厂断面的能量方程
1 H 1 2 H 2 h f
当管径 d 400mm,查表铸铁管 K 2.464 10 3 l s
求得K值后反查表就可得d
A 2 gH C
② 对于短管
Q 1 d
1
4
l d
d 2 2 gH
4Q
C 2 gH
, c 1
1 l d
采用试算法
第六章
孔口、管嘴出流与有压管流
§6.4 简单管道水力计算的基本类型
2. 管道的输流能力,管长已知,要求选定所需的管径及相应的水头。 这是工程中常见的实际问题。通常是从技术和经济两方面综合考虑, 确定满足技术要求的经济流速。 ①管道的技术要求。流量一定的条件下,所选管径的大小影响着管中 的流速,所选管径应使流速控制在既不会产生过大的压力,降低管道 的使用寿命,又不能过小,使泥沙沉积,阻塞管路。一般情况下,水 电站引水管中流速不应大于(5~6)m/s ,给水管中的流速不应大于 (2.5~3)m/s,不应小于0.25m/s 。 ②管道的经济效益。重要的管道在选取管径时一般应选择几个方案进 行比选,选出一种方案,使得管道投资和运转的总费用最小,但是工 程中,费用最小的并非各方面最优或可行,往往是选一种经济上合理 工程上可行的方案作为最终设计方案,这样选定的流速称为经济流速, 对应的直径为经济直径。具体数值可参照有关设计手册。
水力计算公式选用
长距离输水管道水力计算公式的选用1. 常用的水力计算公式:供水工程中的管道水力计算一般均按照均匀流计算,目前工程设计中普遍采用的管道水力计算公式有:达西(DARCY )公式:gd v l h f 22**=λ(1)谢才(chezy )公式:i R C v **= (2)海澄-威廉(HAZEN-WILIAMS )公式:87.4852.1852.167.10dC lQ h h f ***= (3) 式中h f ------------沿程损失,mλ―――沿程阻力系数 l ――管段长度,md-----管道计算内径,mg----重力加速度,m/s 2C----谢才系数 i----水力坡降; R ―――水力半径,mQ ―――管道流量m/s 2v----流速 m/sC n ----海澄――威廉系数其中大西公式,谢才公式对于管道和明渠的水力计算都适用。
海澄-威廉公式影响参数较小,作为一个传统公式,在国内外被广泛用于管网系统计算。
三种水力计算公式中 ,与管道内壁粗糙程度相关的系数均是影响计算结果的重要参数。
2. 规范中水力计算公式的规定3. 查阅室外给水设计规范及其他各管道设计规范,针对不同的设计条件,推荐采用的水力计算公式也有所差异,见表1:表1 各规范推荐采用的水力计算公式4. 公式的适用范围: 3.1达西公式达西公式是基于圆管层流运动推导出来的均匀流沿程损失普遍计算公式,该式适用于任何截面形状的光滑或粗糙管内的层流和紊流。
公式中沿程阻力系数λ值的确定是水头损失计算的关键,一般采用经验公式计算得出。
舍维列夫公式,布拉修斯公式及柯列勃洛克(C.F.COLEBROOK )公式均是针对工业管道条件计算λ值的著名经验公式。
舍维列夫公式的导出条件是水温10℃,运动粘度1.3*10-6 m 2/s,适用于旧钢管和旧铸铁管,紊流过渡区及粗糙度区.该公式在国内运用教广. 柯列勃洛可公式)Re 51.27.3lg(21λλ+∆*-=d (Δ为当量粗糙度,Re 为雷诺数)是根据大量工业管道试验资料提出的工业管道过渡区λ值计算公式,该式实际上是泥古拉兹光滑区公式和粗糙区公式的结合,适用范围为4000<Re<108.大量的试验结果表明柯列勃洛克公式与实际商用圆管的阻力试验结果吻合良好,不仅包含了光滑管区和完全粗糙管区,而且覆盖了整个过渡粗糙区,该公式在国外得到及为广泛的应用.布拉修斯公式25.0Re 316.0=λ是1912年布拉修斯总结光滑管的试验资料提出的,适用条件为4000<Re<105,一般用于紊流光滑管区的计算. 3.2 谢才公式该式于1775年由CHEZY 提出,实际是达西公式的一个变形,式中谢才系数C 一般由经验公式y e R n C *=1计算得出,其中61=y 时称为曼宁公式,y 值采用)1.0(75.013.05.2---=n R n y (n 为粗糙系数)公式计算时称为巴浦洛夫斯基,这两个公式应用范围均较广.就谢才公式本身而言,它适用于有压或无压均匀流动的各阻力区,但由于计算谢才系数C 的经验公式只包括反映管壁粗糙状况的粗糙系数n 和水力半径R,而没有包括流速及运动年度,也就是与雷诺数Re 无关,因此该式一般仅适用于粗糙区.曼宁公式的适用条件为n<0.02,R<0.5m;巴浦洛夫斯基公式的适用条件为0.1m ≤R ≤3m;0.011≤n ≤0.04.3.3 海澄-威廉公式是在直径≤3.66m 工业管道的大量测试数据基础上建立的著名经验公式,适用于常温的清水输送管道,式中海澄-威廉系数Ch 与不同管材的管壁表面粗糙程度有关.因为该式参数取值简单,易用,也是得到广泛应用的公式之一.此公式适用范围为光滑区至部分粗糙度区,对应雷诺数Re 范围介于104-2*106.通过对各相关规范所推荐计算公式的比较,除混凝土管仍然推荐采用谢才公式外,其它管材大多推荐采用达西公式.在新版《室外给水设计规范》中取消舍维列夫公式的相关条文,笼统采用达西公式,但未明确要求计算λ值采用的经验公式.由于舍维列夫公式是建立在对旧钢管及旧铸铁管研究的基础上,然而现在一般采用的钢或铸铁材质管道,内壁通常需进行防腐内衬,经过涂装的管道内壁表面均比旧钢管,旧铸铁管内壁光滑得多,也就是Δ值小得多,采用舍维列夫公式显然也就会产生较大得计算误差,该公式得适用范围相应较窄.经过内衬得金属管道采用柯列勃洛克公式或谢才公式计算更为合理.PVC-U,PE 等塑料管道,或者内衬塑料得金属管道,因为其内壁Δ值很低,一般处于0.0015-0.015,管道流态大多位于紊流光滑区,采用适用光滑区得布拉修斯公式以及柯列勃洛克公式一般均能够得到与实际接近得计算结果.因此, 《埋地硬聚氯乙稀给水管道工程技术规程》及《埋地聚乙稀给水管道工程技术规程》中对塑料管道水力计算公式均是合理得且与《室外给水设计规范》并不矛盾. 海澄-威廉公式可以适用于各种不同材质管道得水力计算,其中海澄-威廉系数Ch 得取值应根据管材确定.对于内衬水泥砂浆或者涂装有比较光滑得内防腐涂层得管道,其海澄-威廉系数应该参考类似工程经验参数或者实测数据,合理取用.因此,无论采用达西公式,谢才公式或者海澄-威廉公式计算,不同管材得差异均表现在 管内壁表面当量粗糙程度得不同上,各公式中与粗糙度相关系数得取值是影响计算结果得重要因素.值得一提得是,同种材质管道由于采用不同得加工工艺,其内表面得粗糙度也可能有所差异,这一因素在设计过程种也应重视(常用管材得粗糙度系数参考值见表2) 表2 常见管材粗糙度相关系数参考值5.管径对选择计算公式得影响 根据雷诺数计算公式vVdRe ,雷诺数与流速v,管径d 成正比,与运动粘度成反比,因此对应管道得不同设计条件应对所使用计算公式得适用范围进行复核.保证计算得准确性.大多说供水工程得设计按照水温10℃,运动粘度1.3*10-5 m 2/s 得条件考虑,因此雷诺数实际受流速及管道口径得影响.以塑料管道为例,在正常设计流速范围条件下,管道内径大于100mm 时,虽然管道仍然处于紊流光滑区,但其雷诺数Re>105,也就是说已经超出了布拉修斯公式得适用范围,而且误差大小与雷诺数成正比.对PVC-U 管,采用布拉修斯公式与柯列勃洛克公式对比计算,当管内径为500mm ,流速1.5 m/s 时,采用布拉修斯公式得出得水力坡降比柯列波列克得结果低11%以上.采用《埋地硬聚氯乙稀给水管道工程技术规程》推荐得修正公式与柯式对比计算,修正公式计算结果,小口径管偏安全,中等口径与柯式符合较好,大口径管得负误差达5%以上.因此笔者认为,大口径塑料管或采用塑料内衬管不宜采用布拉修斯公式计算,而更宜于采用如柯列波洛克公式等适用条件更宽得其它经验公式,或应通过试验等对其进行修正.与上述情况类似,采用谢才公式计算时,如果管道内径大于2m 时则不采用曼宁公式计算谢才系数.如果采用巴甫洛夫斯基公式,其适用管径可以达到12m,对一般输水工程管道已完全足够了.海澄-威廉公式的数据基础是WILLIAMS 和HAZEN 在大量工业管道现场或试验测量或得的.该公式因为简单易用,被广泛运用在管网水力计算中,国内外不少管道水力计算软件均采用该公式编制.由此可见,对于口径大于2m 得管道应尽量避免采用海澄-威廉公式计算以策安全.6.值得提出得是,上述所有水力计算公式中采用得管径均为计算内径,各种管道均应采用管道净内空直径计算,对于采用水泥砂浆内衬得金属管道应考虑内衬层厚度得影响.大口径管道计算应尽量避免采用海澄-威廉公式,建议采用柯列勃洛克公式计算,大量试验结果证明该公式计算结果与实际工业管道符合性好,水力条件适用范围广,虽然运用该式需要进行多次迭代计算才能得到λ值,较为麻烦,不过运用计算机简单编程既能方便地得到较为准确地结果,手工计算时也可以通过查表或者查询蓦迪图辅助计算.。
排水管道纯公式水力计算
排水管道纯公式水力计算排水管道水力计算是指根据管道的水力特性和流体力学原理,计算管道内流体的速度、压力、流量等参数,以确定管道的水力性能。
下面将介绍一些常见的排水管道水力计算公式,并对其进行说明。
1.流量公式:流量是指单位时间内通过管道截面的液体体积。
流量公式可以用来计算流量,其表示为:Q=A*v式中,Q表示流量,单位为体积/时间;A表示管道截面积,单位为面积;v表示流速,单位为长度/时间。
该公式根据负责流量为截面面积与流速的乘积。
2.流速公式:流速是指单位时间内通过管道其中一点的液体线速度。
流速公式可以用来计算流速,其表示为:v=Q/A式中,v表示流速;Q表示流量;A表示管道截面积。
3.斯怀默公式:斯怀默公式用来计算管道中的流速,其表示为:v=C*R^(2/3)*S^(1/2)式中,v表示流速,单位为长度/时间;C为经验系数(一般根据实际情况取值);R表示液体在管道内运动的惯性系数;S表示液体在管道内运动的能量消耗系数。
4.伯努利方程:伯努利方程是描述流体在管道中运动的一种基本物理原理。
对于水力平衡的平稳流动有:z+(P/γ)+(v^2/2g)=常数式中,z表示位置高度;P表示压力;γ表示液体的比重;v表示流速;g表示重力加速度。
该方程表达了位置高度、压力和速度之间的关系。
5.里德伯格公式:里德伯格公式用来计算管道中的摩阻损失,其表示为:Hf=f*(L/D)*(v^2/2g)式中,Hf表示摩阻损失;f表示摩阻系数;L表示管道长度;D表示管道直径;v表示流速;g表示重力加速度。
以上是一些常见的排水管道水力计算公式,用于计算排水管道的流量、流速、摩阻损失等参数。
在实际应用中,还可以根据具体情况选择适用的公式进行计算。
需要注意的是,公式的使用需要考虑实际情况,并结合实际数据进行合理调整,以保证计算结果的准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
V——放空容器的体积 Qmax——开始出流时最大流量
放空时间是水位不下降时放空所需时间的两倍
管嘴出流
1.管嘴出流
l=3~4d的短管
列A-A、B-B断面能量方程
zA
pA
g
v
2 A
2g
zB
pB
g
vB2 2g
vB2 2g
zA
zB
pA pB
g
v
2 A
2g
1
vB2
2g
H0——作用水头
H0
1
vB2 2g
流速
vB
1
1
2gH0 2gH0
对锐缘进口的管嘴,ζ=0.5, 1 0.82
1 0.5
流量 Q vB A A 2gH0 A 2gH0
0.82
真空的抽吸作用,流量增加
2.管嘴正常使用条件
防止气蚀
列C-C、B-B断面能量方程
pC
g
vC2 2g
pB
g
vB2 2g
hw
hw
l d
vB2 2g
z1 z2
p1 p2
g
v12 v22 2g
1
1
vC2 2g
H0
1 1
vC2 2g
H0——淹没出流的作用水头
物理意义:促使流体克服阻力流入到下游的全部能量
H0与孔口位置无关
特例:P1= P2=Pa,v1= v2 =0
H0 z1 z2 H
收缩断面流速
vC
1
11
2gH0 2gH0
孔口流量
Sp kg/m7
p SpQ2
类比电路:S→R H(p)→U Q2→I
非圆管
SH
l
de
2 A2 g
Sp
l
de
2 A2
扬程
z1
p1
g
v12 2g
Hi
z2
p2
g
v22 2g
h'
Hi
z2
z1
p2 p1
g
v22 v12 2g
h' SH Q2
略去速度水头
Hi
H
p2
g0
1
l1 l2
d
12
2gH
流量 Q vA d 2
4
1
l1 l2
2
12
2gH
虹吸管正常工作条件 最大真空度 列1-1和最高断面C-C 的能量方程
z1
pa
g
zC
pC
g
1
l1 d
1C
v2 2g
pa pC
g
zC
z1
1 l1
d 1C
l1 l2
连续性方程
vC AC vB A
取 AC
A
1 12
vB 2gH0
0.82 0.02 l d 3 pB pa
解得C-C断面真空值
pa pC
g
0.75H0
允许真空值 H0的极限值
hv 7m
H0
7 0.75
9.3m
——管嘴正常使用条件之一
l 3 ~ 4d ——管嘴正常使用条件之二
vC2
2g
H0——自由出流的作用水头
H0
1
vC2
2g
物理意义:促使流体克服阻力,流入大气的全部能量
特例 自由液面:PA=Pa,液面恒定:vA=0
H0 zA zC H
收缩断面流速
vC
1
1
2gH0 2gH0
φ——孔口的流速系数,φ=0.97~0.98
孔口流量
Q vC AC vCA A 2gH0 A 2gH0
INDEX ▪ 孔口出流 ▪ 管嘴出流 ▪ 简单管道的水力计算 ▪ 复杂管道 ▪ 管网计算 ▪ 有压管道的水击 ▪ 自由紊流射流
孔口出流
薄壁小孔口
1.自由出流
列A-A、C-C断面能量方程
pA
g
zA
v
2 A
2g
pC
g
zC
vC2 2g
vC2 2g
pC pa
zA
zC
pA pa
g
v
2 A
2g
1
0.09 0.96 0.98 0.95
外伸扩张 损失大、流速低、 形管嘴 压力大(扩压管) 4 0.45 1 0.45
流线形外 损失小、动能大、
伸管嘴 流量大
0.04 0.98 1 0.98
4.例:水箱中用一带薄壁孔口的板隔开,孔口及两出 流管嘴直径均为d=100mm,为保证水位不变,流入水 箱左边的流量Q=80L/s,求两管嘴出流的流量q1、q2
1.短管的水力计算
类比孔口、管嘴的作用水头
H0
1
v2 2g
短管的作用水头
H0
1
l d
v2 2g
1→突扩ζ=1,H0→H
H l v2
d 2g
v2
4Q
d
2
2
代入,得
8 l
H
d
2d 4g
Q2
SH——管路阻抗 S2/m5
H SHQ2
8 l
p
d
2d 4
Q2
AC 面积收缩系数 流量系数 0.6 ~ 0.62
A 全部收缩(完善收缩、不完善收缩)、部分收缩 不完善收缩
'
1
0.64
A A0
2
A是孔口面积,A0是孔口所在的壁面面积
2.淹没出流
列上下游液面能量方程
p1
g
z1
v12 2g
p2
g
z2
v22 2g
1
vC2 2g
2
vC2 2g
ζ2=1——突然扩大阻力系数
解:设孔口的流量为q
q A 2gh1 h2
对管嘴
q1 1A 2gh1
0.62 1 0.82
q2 2 A 2gh2
2 0.82
连续性方程
Q q1 q2
q q2
解得 q1 50L / s q2 30L / s
简单管道的水力计算
短管(室内)、长管(室外,局阻不计或按%折合)
Q vC AC vC AC A 2gH0
与自由出流一致
气体: 作用压力
p0
p1 p2
v12 v22 2
(略去高差)
流速 v 2 p0
流量 Q A 2 p0
p0 0 排气
p0 0 吸气
应用:孔板流量计
H0
z1
z2
p1 p2
g
v12 v22 2g
p
g
Q A 2gH0
H
hv 7 ~ 8m
d
12
最大安装高度
1 l1
hmax zC z1
hv
d
l1 l2
d
1C
12
H
hv
2.长管的水力计算 局部损失(包括速度水头)不计,损失线性下降,总水 头线与测压管水头线重合
单位长阻抗——比阻a
aH
SH L
8
2d 5
g
s2/m6
3.管嘴的种类 (a)圆柱外伸管嘴; (b)圆柱内伸管嘴 ; (c)外伸收缩型管嘴 ; (d)外伸扩张型管嘴 ; (e)流线型外伸管嘴
类型
特点
ζφε μ
圆柱外伸 损失较大,流量较
管嘴
大
0.5 0.82 1 0.82
圆柱内伸 管嘴
损失大、隐蔽
1 0.71 1 0.71
外伸收缩 损失小、速度大 形管嘴 (消防龙头)
注意:A——孔口面积,μ也可查表
3.非恒定出流(以液面下降为例) 等截面S容器,t时刻孔口水头h
dt内流出体积 dV Qdt A 2ghdt
容器减少体积 dV Sdh
t
0 dt
h2
h1
A
S 2gh
dh
t 2S A 2g
h1 h2
容器放空:h2=0
2S t
h1
2Sh1
2V
A 2g A 2gh1 Qmax