八年级数学平行线和数据分析测试题

合集下载

北师大版数学八年级上册全册复习典型例题

北师大版数学八年级上册全册复习典型例题

考点二 直角三角形的判别
例 2 如图 1-1,在正方形 ABCD 中,F 为 DC 的中点,E 为 BC 上一点,且 EC=14BC,请说明:AF⊥EF.
图 1-1
[解析] 要说明 AF⊥EF,可说明△AEF 是直角三角形,只要根 据勾股定理的逆定理说明 AF2+EF2=AE2 就可以了.
解:连接 AE,设正方形边长为 a,则 DF=FC=a2,EC=a4.
找出格点C,使△ABC是面积为1个平方单位的直角三角形,这样
的点有____6____个.
图1-8 图1-9
[解析] 如图1-9,当∠A为直角时,满足面积为1的点是A1、 A2;当∠B为直角时,满足面积为1的点是B1、B2;当∠C为直角 时,满足面积为1的点是C、C1,所以满足条件的点共有6个.
3.已知三角形的三边为 a=34,b=54,c=1,这个三角形是 直角三角形吗?
图1-17
13.如图1-18,在直线l上依次摆放着三个正方形,已知中间 斜放置的正方形的面积是6,则正放置的两个正方形的面积之和 为( A )
图1-18
A.6 B.5 C. 6 D.36
14.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点 沿纸箱爬到B点,那么它所行的最短路线的长是__1_0_____.
6.B、C 是河岸边两点,A 为对岸岸上一点,测得∠ABC=45°, ∠ACB=45°,BC=50 m,则河宽 AD 为( )
B
A.25 2 m B.25 m
50 C. 3 3 m
D.25 3 m
图 1-10
7.如图1-11,已知△ABC中,∠C=90°,BA=15,AC=12,
以直角边BC为直径作半圆,则这个半圆的面积是__8_81_π____.

2024届北京市昌平区北京人大附中昌平校区数学八下期末综合测试试题含解析

2024届北京市昌平区北京人大附中昌平校区数学八下期末综合测试试题含解析

2024届北京市昌平区北京人大附中昌平校区数学八下期末综合测试试题注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题(每小题3分,共30分)1.菱形的周长等于其高的8倍,则这个菱形的较大内角是()A.30°B.120°C.150°D.135°2.把直线a沿水平方向平移4cm,平移后的像为直线b,则直线a与直线b之间的距离为( )A.等于4cm B.小于4cmC.大于4cm D.小于或等于4cm3.如图,点E是矩形ABCD的边DC上的点,将△AED沿着AE翻折,点D刚好落在对角线AC的中点D’处,则∠AED 的度数为()A.50°B.60°C.70°D.80°4.一个多边形的每个内角均为108°,则这个多边形是()边形.A.4 B.5 C.6 D.75.如图,一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,则该一次函数的表达式为()A.y=-x+2 B.y=x+2 C.y=x-2 D.y=-x-26.如图,已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(10,0),点B(0,6),点P为BC 边上的动点,将△OBP沿OP折叠得到△OPD,连接CD、AD.则下列结论中:①当∠BOP=45°时,四边形OBPD为正方形;②当∠BOP=30°时,△OAD的面积为15;③当P在运动过程中,CD的最小值为346;④当OD⊥AD 时,BP=1.其中结论正确的有()A .1个B .1个C .3个D .4个7.要从甲、乙、丙三名学生中选出一名学生参加数学竞赛,对这三名学生进行了10次数学测试,经过数据分析,3人的平均成绩均为92分,甲的方差为0.024、乙的方差为0.08、丙的方差为0.015,则这10次测试成绩比较稳定的是( )A .甲B .乙C .丙D .无法确定8.在某次实验中,测得两个变量m 和v 之间的4组对应数据如右表,则m 与v 之间的关系最接近于下列各关系式中的( ) m 1 2 3 4 v2.01 4.9 10.03 17.1A .2v m =B .21v m =+C .31v m =-D .31v m =+ 9.下列说法中,错误的是( )A .对角线互相垂直的四边形是菱形B .对角线互相平分的四边形是平行四边形C .菱形的对角线互相垂直D .平行四边形的对角线互相平分10.化简的结果是( ) A . B . C . D .二、填空题(每小题3分,共24分)11.某跳远队甲、乙两名运动员最近10次跳远成绩的平均数为602cm ,若甲跳远成绩的方差为2S 甲=65.84,乙跳远成绩的方差为2S 乙=285.21,则成绩比较稳定的是_____.(填“甲”或“乙”)12.马拉松赛选手分甲、乙两组运动员进行了艰苦的训练,他们在相同条件下各10次比赛,成绩的平均数相同,方差分别为0.25,0.21,则成绩较为稳定的是_________(选填“甲”或“乙)13.已知方程组122x y x y +=⎧⎨-=⎩的解为10x y =⎧⎨=⎩,则一次函数y =﹣x+1和y =2x ﹣2的图象的交点坐标为_____. 14.使得分式值242x x -+为零的x 的值是_________;15.已知一个一元二次方程,它的二次项系数为1,两根分别是2和3,则这个方程是______.16.计算1555÷⨯所得的结果是______________。

2024年外研版八年级数学下册阶段测试试卷614

2024年外研版八年级数学下册阶段测试试卷614

2024年外研版八年级数学下册阶段测试试卷614考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四五总分得分评卷人得分一、选择题(共6题,共12分)1、如图.直线AB值对应的函数解析式是()A. y=-x+3B. y=x+3C. y=-x+3D. y=x+32、如图,∠ABD=∠BCD=900,AD=10,BD=6。

如果两个三角形相似,则CD的长为A. 3.6B. 4.8C. 4.8或3.6D. 无法确定3、-64的立方根是()A. -8B. 8C. -4D. 44、化简22鈭�32+168的结果是()A. 922B. 鈭�722C. 92D. 鈭�725、下列说法正确的是()A. 函数y=-x+2中y随x的增大而增大B. 直线y=2x-4与x轴的交点坐标是(0,-4)C. 图象经过(2,3)的正比例函数的表达式为y=6xD. 直线y=-x+1不过第三象限.6、下列从左边到右边的变形,是因式分解的是()A. (a﹣1)(a﹣2)=a2﹣3a+2B. a2﹣3a+2=(a﹣1)(a﹣2)C. (a﹣1)2+(a﹣1)=a2﹣aD. a2﹣3a+2=(a﹣1)2﹣(a﹣1)评卷人得分二、填空题(共6题,共12分)7、如图,将直角△ABC绕点C顺时针旋转90°至△A′B′C的位置,已知AB=10,BC=6,M是A′B′的中点,则AM ____________.8、如图,有一块直角三角形纸片,两直角边AC=6cmBC=8cm将纸片沿AD折叠,直角边AC恰好落在斜边上,且与AE重合,则鈻�BDE的面积为 ______cm2.9、把函数y=3x鈭�2的图象向上平移6个单位长度后,所得到的函数解析式为 ______ .10、等腰梯形的中点四边形(顺次连接等腰梯形各边中点)是____.11、若梯形的上底长为a+2b,下底长为2a+3b,高为a+b,则梯形的面积为____.12、(2010秋•招远市期末)如图,当∠B,∠C,∠D满足条件____时,AB∥ED.评卷人得分三、判断题(共7题,共14分)13、3m2-6m=m(3m-6)____.(判断对错)14、线段是中心对称图形,对称中心是它的中点。

2023-2024学年山东省青岛市即墨区八年级(上)期末数学试卷+答案解析

2023-2024学年山东省青岛市即墨区八年级(上)期末数学试卷+答案解析

2023-2024学年山东省青岛市即墨区八年级(上)期末数学试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列四个实数中,是无理数的是( )A. 3B.C.D. 02.下列语句是命题的是( )A. 画一条直线B. 正数都大于零C. 多彩的青春D. 明天晴天吗?3.如图,小石同学在正方形网格中确定点A的坐标为,点B的坐标为,则点C的坐标为( )A.B.C.D.4.如图,在数轴上表示实数的点可能是( )A. 点PB. 点QC. 点MD. 点N5.生活中的椅子一般依据人体工学原理设计,如图为生活中一把椅子的侧面图,从人体脊柱的形势而言,当靠背角度时,能产生较为接近自然腰部的形状,此时最舒适.已知DE与地面平行,支撑杆BD与地面夹角,则制作时用螺丝固定时支撑杆BD和AF需构成夹角为( )A. B. C. D.6.“践行垃圾分类助力双碳目标”主题班会结束后,米乐和琪琪一起收集了一些废电池,米乐说:“我比你多收集了7节废电池”琪琪说:“如果你给我8节废电池,我的废电池数量就是你的2倍.”如果他们说的都是真的,设米乐收集了x节废电池,琪琪收集了y节废电池,根据题意可列方程组为( )A. B.C. D.7.两个直角三角板如图摆放,其中,,,,,AC与BD交于点P,则点B到AC的距离为( )A. 4B. 2C.D.8.在同一平面直角坐标系中,函数与的图象大致是( )A. B. C. D.9.若函数与的图象交于点,则关于x,y的二元一次方程组的解是( )A. B. C. D.10.等腰在平面直角坐标系中的位置如图所示,点A为原点,,,把等腰沿x轴正半轴作无滑动顺时针翻转,第一次翻转到位置①,第二次翻转到位置②,…,依此规律,第2023次翻转后点B的坐标是( )A. B. C. D.二、填空题:本题共6小题,每小题3分,共18分。

11.的算术平方根是______.12.某射击运动队进行了五次射击测试,甲、乙两名选手的测试成绩如图所示,甲、乙两选手成绩的方差分别记为、,则______填“>”“<”或“=”13.如果点和都在直线上,则与的大小关系是______.14.某公司招聘员工,采取笔试与面试相结合的方式进行,两项成绩的满分均为100分.编号为①,②,③的三名应聘者的成绩如下:应聘者、应聘者①②③笔试成绩/分859290面试成绩/分908590根据该公司规定,笔试成绩和面试成绩分别按和的比例折合成综合成绩,那么这三名应聘者中第一名的成绩是______分.15.如图,在长方形ABCD中,,,点E为边AD上的一个动点,把沿BE折叠,若点A的对应点刚好落在边AD的垂直平分线MN上,则AE的长为______.16.勾股定理是人类最伟大的科学发现之一.如图1,以直角三角形ABC的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大的正方形内,三个阴影部分面积分别记为,,,若已知,,,则两个较小正方形纸片的重叠部分四边形的面积为______.三、解答题:本题共9小题,共72分。

2023-2024学年江西省赣州市崇义县八年级(下)期末数学试卷+答案解析

2023-2024学年江西省赣州市崇义县八年级(下)期末数学试卷+答案解析

2023-2024学年江西省赣州市崇义县八年级(下)期末数学试卷一、选择题:本题共6小题,每小题3分,共18分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.要使在实数范围内有意义,x应满足的条件是()A. B. C. D.2.已知中,a、b、c分别是、、的对边,则下列条件中不能判断是直角三角形的是()A.a:b::4:5B.:::4:5C. D.3.矩形具有而菱形不一定具有的性质是()A.对角线垂直B.对边平行C.对角相等D.对角线相等4.关于函数,下列结论不正确的是()A.函数图象过点B.函数图象经过第一、三象限C.y随x的增大而增大D.不论x为何值,总有5.如图,一次函数的图象过,两点,则关于x的不等式的解集是()A.B.C.D.6.某公司统计了今年3月销售部10名员工的销售某种商品的业绩如表:每人销售量/件数510250210120人数人1252则这10名销售人员在该月销售量的中位数和众数分别为()A.250,230B.250,210C.210,230D.210,210二、填空题:本题共6小题,每小题3分,共18分。

7.已知是最简二次根式,请你写出一个符合条件的正整数a的值______.8.在平行四边形ABCD中,若,则______9.某一次函数的图象经过点,且函数值y随自变量x的增大而减小,请你写出一个符合上述条件的函数表达式:______.10.为进一步增强文化自信,肩负起传承发展中华优秀传统文化的历史责任,某校举行了“诵读国学经典传承中华文明”演讲比赛.演讲得分按“演讲内容”占,“语言表达”占,“形象风度”占,“整体效果”占进行计算,小颖这四项的得分依次为85,88,92,90,则她的最后得分是______分. 11.如图,,过P作且,得;再过作且,得;又过作且得;…依此法继续作下去,得______.12.平面直角坐标系中,已知点,,,若以点A,B,C,D为顶点的四边形是平行四边形,则点D的坐标是______.三、解答题:本题共11小题,共84分。

2019-2020初中数学八年级上册《平行线》专项测试(含答案) (623).pdf

2019-2020初中数学八年级上册《平行线》专项测试(含答案) (623).pdf

24.(7 分)如图,△ABC 中, ∠A =∠ B,若 CE 平分外角∠ACD,则 CE∥AB.试说明理 由.
25.(7 分)如图,AB⊥BC 于 B,∠1=55°,∠2= 35°,直线 a、b 平行吗?请说明理由.
26.(7 分)如图所示,木工师傅用角尺画出工件边缘的两条垂线,这两条垂线平行吗?为什 么?
的度数是( )
A.60°
B.80°
C.100 °
D.120°
7.(2 分)如图,AB∥DE, E = 65 ,则 B + C =( )
A. 135
B. 115
C. 36
D. 65
8.(2 分)如图, AB∥CD , AD 和 BC 相交于点 O , A = 35 , AOB = 75 ,则 C
等于( )
21.(2 分)如图,若 ∠1 =∠2,则 ∥ ,理由是


;若∠4=∠3,则 ∥ ,理由
22.(2 分)填空:
(1)∵∠1=∠E,∴ ∥ (

(2)∵∠2=∠ ,∴AB∥ (同位角相等,两直线平行)
评卷人 得分
三、解答题
23.(7 分) 如图,已知 DE∥ BC,CD 是∠ACB 的平分线,∠B =70°,∠ACB =50°,求 ∠EDC 和 ∠BDC 的度数.
∠B 是同位角;④∠2 与∠C 是内错角.其中正确的是( )
A.①②
B.③④
C.②③
D.①④
14.(2 分)下列图形中,∠l 与∠2 不是同位角的是( )
A.
B.
C.
15.(2 分)如图,与∠α构成同位角的角的个数有( )
A.1 个
B.2 个
C.3 个
D. D.4 个

2018-2019学年初中数学二次根式、勾股定理、平行四边形一次函数和数据的分析中考模拟考试测试题

①求y关于n的函数关系式;
②该手机店购进A型、B型手机各多少部,才能使销售总利润最大?
(3)实际进货时,厂家对B型手机出厂价下调m(30<m<100)元,且限定商店最多购进B型手机80台.若商店保持两种手机的售价不变,请你根据以上信息及(2)中的条件,设计出使这110部手机销售总利润最大的进货方案.
24.某初中在“读书共享月”活动中.学生都从家中带了图书到学校给大家共享阅读.经过抽样调查得知,初一人均带了2册;初二人均带了3.5册:初三人均带了2.5册.已知各年级学生人数的扇形统计图如图所示,其中初三共有210名学生.请根据以上信息解答下列问题:
(1)扇形统计图中,初三年级学生数所对应的圆心角为°;
28.如图,在▱ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B,F为圆心,大于 BF的长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.
(1)根据条件与作图信息知四边形ABEF是
A.非特殊的平行四边形
B.矩形
C.菱形
D.正方形
(2)设AE与BF相交于点O,四边形ABEF的周长为16,BF=4,求AE的长和∠C的度数.
22.随着”互联网+“时代的到来,利用网络呼叫专车的打车方式深受大众欢迎.据了解,在非高峰期时,某种专车所收取的费用y(元)与行驶里程x(km)的函数图象如图所示.请根据图象,回答下列问题:
(1)当x≥5时,求y与x之间的函数关系式;
(2)若王女士有一次在非高峰期乘坐这种专车外出,共付费47元,求王女士乘坐这种专车的行驶里程.
【详解】
∵EF∥BC,GH∥AB,
∴四边形HPFD、BEPG、AEPH、CFPG为平行四边形,
∴S△PEB=S△BGP,

2023-2024学年广东省深圳市南山区八年级上学期期末考数学试卷含详解

【分析】本题主要考查数轴与绝对值,解题的关键在于掌握数轴上点的意义以及绝对值的含义.根据图逐一判断即可.
【详解】解: 由图可知数 表示的点在 左侧.
,故选项A错误,不符合题意.
到 的距离大于 到 的距离.
, ,故选项B错误,不符合题意.
到 的距离大于 到 的距离.
,故选项C正确,符合题意.
.
,故选项D错误,不符合题意.
A.17B. C. D.
第二部分非选择题
二,填空题
ቤተ መጻሕፍቲ ባይዱ11.比较大小: ______3(填“ ”,“ ”或“ ”).
12.一个正数的两个平方根分别是 与 ,则a的值为________.
13.已知等腰 的底边 , 是腰 上一点,且 , ,则 的长为______.
14.如图1,11月10日晚,“深爱万物”—2023深圳人才嘉年华活动正式启动,千余架无人机在深圳人才公园上空上演“天空之舞”,为人才喝彩,向人才致敬.如图2的平面直角坐标系中,线段 分别表示1号,2号无人机在队形变换中飞行高度 , 与飞行时间 的函数关系,其中 ,线段 与 相交于点P, 轴于点B,点A的横坐标为25.则在第______秒时1号和2号无人机在同一高度.
A. B. C. D.
9.如图,用大小形状完全相同的长方形纸片在直角坐标系中摆成如图图案,已知A(﹣2,6),则点B的坐标为()
A.(﹣6,4)B.( , )C.(﹣6,5)D.( ,4)
10.如图,这是一个供滑板爱好者使用的 型池的示意图,该 型池可以看作是长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是直径为 的半圆,其边缘 ,点 在 上, ,一名滑板爱好者从 点滑到 点,则他滑行的最短距离为()m(边缘部分的厚度可以忽略不计, 取3)

(常考题)北师大版初中数学八年级数学上册第七单元《平行线的证明》测试卷(包含答案解析)(4)

一、选择题1.如图,直线AB 、CD 被BC 所截,若//AB CD ,150∠=︒,240∠=︒,则3∠的大小是( )A .80︒B .70︒C .90︒D .100︒ 2.下列命题是真命题的是( )A .平行于同一直线的两条直线平行B .两直线平行,同旁内角相等C .同旁内角互补D .同位角相等3.如图,有下列说法:①若13∠=∠,//AD BC ,则BD 是ABC ∠的平分线;②若//AD BC ,则123∠=∠=∠;③若13∠=∠,则//AD BC ;④若34180C ∠+∠+∠=,则//AD BC .其中正确的有( ).A .1个B .2个C .3个D .44.下列选项中,可以用来证明命题“若,a b >则a b >”是假命题的反例是( ) A .1,0a b == B .1,2a b ==- C .2,1a b =-= D .2,1a b ==- 5.下列命题是假命题的是( )A .三角形的内角和是180°B .两直线平行,内错角相等C .三角形的外角大于任何一个内角D .同旁内角互补,两直线平行6.下列命题中真命题有( )①周长相等的两个三角形是全等三角形;②一组数据中,出现次数最多的数据为这组数据的众数;③同位角相等;④方差可以刻画数据的波动程度,方差越大,波动越小;方差越小,波动越大. A .1个 B .2个 C .3个 D .4个7.如图,AD 平分∠BAC ,AE ⊥BC ,∠B=45°,∠C=73°,则∠DAE 的度数是( ).A .22°B .16°C .14°D .23°8.如图,//AB CD ,一副三角尺按如图所示放置,18AEG ∠=︒,则HFD ∠为( )A .23B .33C .36D .389.如图,要得到AB ∥CD ,只需要添加一个条件,这个条件不可以...是( )A .∠1=∠3B .∠B +∠BCD =180°C .∠2=∠4D .∠D +∠BAD =180°10.下列命题是真命题的是( )A .两直线平行,同位角相等B .面积相等的两个三角形全等C .同旁内角互补D .相等的两个角是对顶角 11.下列说法错误的是( )A .过任意一点P 可作已知直线m 的一条平行线B .同一平面内的两条不相交的直线是平行线C .过直线外一点只能画一条直线与已知直线平行D .平行于同一条直线的两条直线平行12.下列命题:①相等的两个角是对顶角;②若∠1+∠2=180°,则∠1与∠2互为补角;③同旁内角互补;④垂线段最短,其中假命题有( )A .1个B .2个C .3个D .4个 二、填空题13.如图,Rt △ABC 中,∠ACB =90°,∠A =52°,将其折叠,使点A 落在边CB 上A′处,折痕为CD ,则∠A′DB 为_____.14.如图,点D是△ABC的边BC的延长线上的一点,∠ABC的平分线与∠ACD的平分线交于点A1,∠A1BC的平分线与∠A1CD的平分线交于点A2,依此类推…,已知∠A=α,则∠A2020的度数为_____.(用含α的代数式表示).15.在△ABC中,∠A=∠B+∠C,∠B=2∠C﹣6°,则∠C的度数为_____.为16.如图,AB CD,一副三角尺按如图所示放置,∠AEG=20度,则HFD______________度.17.在△ABC中,BO平分∠ABC,CO平分∠ACB,若∠O=120°,则∠A=_____.18.如图,AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90°,M、N分别是BA,CD延长线上的点,∠EAM和∠EDN的平分线交于点F.下列结论:①AB∥CD;②∠AEB+∠ADC=180°;③DE平分∠ADC;其中结论正确的有______________19.如图,BD=BC,BE=CA,∠DBE=∠C=60°,∠BDE=75°,则∠AFE的度数等于_____.20.三角形中,如果有一个内角是另外一个内角的3倍,我们把这个三角形叫做“三倍角三角形”.在一个“三倍角三角形”中有一个内角为60°,则另外两个角分别为_____.三、解答题21.如图,AD 平分∠BAC ,点E ,F 分别在边BC ,AB 上,且∠BFE =∠DAC ,延长EF ,CA 交于点G ,求证:∠G =∠AFG .22.如图,已知在ABC 中,CE 是外角ACD ∠的平分线,BE 是ABC ∠的平分线.(1)求证:2A E ∠=∠.(2)若A ABC ∠=∠,求证://AB CE .23.阅读下面内容,并解答问题在学习了平行线的性质后,老师请学们证明命题:两条平行线被第三条直线所截,一组同旁内角的平分线互相垂直.小颖根据命题画出图形并写出如下的已知条件.已知:如图1,//AB CD ,直线EF 分别交AB ,CD 于点E ,F ,BEF ∠的平分线与DFE ∠的平分线交于点G .(1)直线EG ,FG 有何关系?请补充结论:求证:“__________”,并写出证明过程; (2)请从下列A 、B 两题中任选一题作答,我选择__________题,并写出解答过程. A .在图1的基础上,分别作BEG ∠的平分线与DFG ∠的平分线交于点M ,得到图2,求EMF ∠的度数.B .如图3,//AB CD ,直线EF 分别交AB ,CD 于点E ,F .点O 在直线AB ,CD 之间,且在直线EF 右侧,BEO ∠的平分线与DFO ∠的平分线交于点P ,请猜想EOF ∠与EPF ∠满足的数量关系,并证明它.24.如图,AB ∥CD ,点E 是CD 上一点,连结AE .EB 平分∠AED ,且DB ⊥BE ,AF ⊥AC ,AF 与BE 交于点M .(1)若∠AEC =100°,求∠1的度数;(2)若∠2=∠D ,则∠CAE =∠C 吗?请说明理由.25.在ABC 中,ABC ∠与ACB ∠的平分线相交于点P .(1)如图①,如果80A ∠=︒,求BPC ∠的度数;(2)如图②,作ABC 外角MBC ∠,NCB ∠的角平分线,且交于点Q ,试探索Q ∠,A ∠之间的数量关系;(3)如图③,在图②中延长线段BP ,QC 交于点E 若BQE △中存在一个内角等于另一个内角的2倍,求A ∠的度数.26.如图,AB DB =,ABD ACD ∠=∠,AC 与BD 交于点F ,点E 在线段AF 上,AE DC =,6DBE ∠=︒,108BCD ∠=︒.(1)求证:BCD BEA ≅△△;(2)求AFD ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先根据平行线的性质求出C ∠,再由三角形外角性质即可得解;【详解】∵//AB CD ,150∠=︒,∴150∠=∠=︒C ,∵240∠=︒,∴3290C ∠=∠+∠=︒;故答案选C .【点睛】本题主要考查了平行线的性质和三角形的外角性质,准确计算是解题的关键. 2.A解析:A【分析】对照平行线的性质和定理,逐一判断即可.【详解】∵平行于同一直线的两条直线平行,∴选项A 正确;∵两直线平行,同旁内角互补,∴选项B 错误;∵两直线平行,同旁内角互补,∴选项C 错误;∵两直线平行,同位角相等,∴选项D 错误;故选A.【点睛】本题考查了平行线的性质和判定,熟记性质和判定的条件和结论是解题的关键. 3.B解析:B【分析】根据平行线的性质和角平分线的定义,对各个选项逐个分析,即可得到答案.【详解】13∠=∠,//AD BC∴23∠∠=∴123∠=∠=∠∴BD 是ABC ∠的平分线,即①正确;若//AD BC ,得23∠∠=,14∠=∠,不构成123∠=∠=∠成立的条件,故②错误; 若13∠=∠,不构成//AD BC 成立的条件,故③错误;若34180C ∠+∠+∠=,且34ADC ∠+∠=∠∴180C ADC ∠+∠=∴//AD BC ,即④正确;故选:B .【点睛】本题考查了平行线和角平分线的知识,解题的关键是熟练掌握平行线的性质和角平分线的定义.4.B解析:B【分析】需要证明一个结论不成立,可以举反例证明;【详解】∵当1a =,2b =-时,1<2-,∴证明了命题“若,a b >则a b >”是假命题;故答案选B .【点睛】本题主要考查了命题与定理,准确分析判断是解题的关键.5.C解析:C【分析】根据三角形内角和定理、外角性质、平行线的性质与判定进行判断即可.【详解】解:A 选项,三角形的内角和是180°,是真命题,不符合题意;B 选项,两直线平行,内错角相等,是真命题,不符合题意;C选项,三角形的外角大于任何一个内角,是假命题,符合题意;D选项,同旁内角互补,两直线平行,是真命题,不符合题意;故选:C.【点睛】本题考查了三角形内角和定理和外角的性质,平行的性质与判定,解题关键是熟练准确掌握基础知识.6.A解析:A【分析】根据题意对四个命题作出判断即可求解.【详解】解:①周长相等的两个三角形是全等三角形,是假命题;②一组数据中,出现次数最多的数据为这组数据的众数,是真命题;③同位角相等,是假命题;④方差可以刻画数据的波动程度,方差越大,波动越小;方差越小,波动越大,是假命题.真命题有1个.故选:A【点睛】本题考查全等三角形的判定,众数,方差等知识,熟知相关知识是解题关键.7.C解析:C【分析】根据∠DAE=∠DAC-∠CAE,只要求出∠DAC,∠CAE即可.【详解】解:∵∠BAC=180°-∠B-∠C,∠B=45°,∠C=73°,∴∠BAC=62°,∵AD平分∠BAC,∠BAC=31°,∴∠DAC=12∵AE⊥BC,∴∠AEC=90°,∴∠CAE=90°-73°=17°,∴∠DAE=31°-17°=14°,故选:C.【点睛】本题考查三角形内角和定理,角平分线的定义等知识,解题的关键是熟练掌握基本知识.8.B解析:B过点G作AB平行线交EF于P,根据平行线的性质求出∠EGP,求出∠PGF,根据平行线的性质、平角的概念计算即可.【详解】解:过点G作AB平行线交EF于P,由题意易知,AB∥GP∥CD,∴∠EGP=∠AEG=18°,∴∠PGF=72°,∴∠GFC=∠PGF=72°,∴∠HFD=180°-∠GFC-∠GFP-∠EFH=33°.故选:B.【点睛】本题考查的是平行线的性质、三角形内角和定理的应用,掌握两直线平行、内错角相等是解题的关键.9.A解析:A【分析】根据B、D中条件结合“同旁内角互补,两直线平行”可以得出AB∥CD,根据C中条件结合“内错角相等,两直线平行”可得出AB∥CD,而根据A中条件结合“内错角相等,两直线平行”可得出AD∥BC.由此即可得出结论.【详解】解:A.∵∠1=∠3,∴AD∥BC(内错角相等,两直线平行);B.∵∠B+∠BCD=180°,∴AB∥CD(同旁内角互补,两直线平行);C.∠2=∠4,∴AB∥CD(内错角相等,两直线平行);D.∠D+∠BAD=180°,∴AB∥CD(同旁内角互补,两直线平行).故选A.【点睛】本题考查了平行线的判定,解题的关键是根据四个选项给定的条件结合平行线的性质找出平行的直线.本题属于基础题,难度不大,解决该题型题目时,根据相等或互补的角找出平行的两直线是关键.10.A解析:A【分析】根据平行线的性质,全等三角形的性质,对顶角的性质等逐一对选项进行分析即可.A选项中,两直线平行,同位角相等,说法正确,是真命题;B选项中,一个三角形底为3,高为4,另一个三角形底为6,高为2,面积相等但不全等,是假命题;C选项中,只有两直线平行时,同旁内角才互补,是假命题;D选项中,相等的两个角不一定是对顶角,也可能是同位角,内错角等,是假命题.故选:A.【点睛】本题主要考查真命题,会判断命题的真假是解题的关键.11.A解析:A【分析】根据平行线的定义及平行公理进行判断.【详解】解:选项A:当点P在直线m上时则不可以作出已知直线的平行线,而是与已知直线重合,故选项A错误,选项B、C、D显然正确,故选:A.【点睛】本题主要考查平行线的定义及平行公理,熟练掌握公理、定理是解决本题的关键.12.B解析:B【分析】根据对顶角的定义对①进行判断;根据补角的定义对②进行判断;根据平行线的性质对③进行判断;根据垂线段公理对④进行判断.【详解】解:相等的两个角不一定为对顶角,所以①为假命题;若∠1+∠2=180°,则∠1与∠2互为补角,所以②为真命题;两直线平行,同旁内角互补,所以③为假命题;垂线段最短,所以④为真命题.故选:B.【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.二、填空题13.14°【分析】根据∠A=52°可求∠B由折叠可知∠DA′C=52°利用外角性质可求【详解】解:∵∠ACB =90°∠A =52°∴∠B=90°-52°=38°由折叠可知∠DA′C=∠A =52°∠A′DB解析:14°【分析】根据∠A =52°,可求∠B ,由折叠可知∠D A′C=52°,利用外角性质可求.【详解】解:∵∠ACB =90°,∠A =52°,∴∠B=90°-52°=38°,由折叠可知∠D A′C=∠A =52°,∠A′DB=∠D A′C -∠B=52°-38°=14°,故答案为:14°.【点睛】本题考查了直角三角形的性质、轴对称的性质、三角形外角的性质,解题关键是灵活运用三角形的性质和轴对称性质建立角之间的联系.14.【分析】根据角平分线的定义及三角形的内角和的及外角的性质可得∠A1=∠A2=∠A3=据此找规律可求解【详解】解:在△ABC 中∠A =∠ACD ﹣∠ABC =α∵∠ABC 的平分线与∠ACD 的平分线交于点A1 解析:202012α【分析】根据角平分线的定义及三角形的内角和的及外角的性质可得∠A 1=12α,∠A 2=212α,∠A 3=312α,据此找规律可求解. 【详解】 解:在△ABC 中,∠A =∠ACD ﹣∠ABC =α,∵∠ABC 的平分线与∠ACD 的平分线交于点A 1,∴∠A 1=∠A 1CD ﹣∠A 1BC =12(∠ACD ﹣∠ABC )=12∠A =12α, 同理可得∠A 2=12∠A 1=212α, ∠A 3=12∠A 2=312α, …以此类推,∠A 2020=202012α, 故答案为:202012α.【点睛】考查三角形内角和定理以及三角形外角的性质,熟练掌握和运用三角形外角的性质是解题的关键.15.32°【分析】根据三角形的内角和等于180°求出∠A=90°从而得到∠B∠C互余然后用∠C表示出∠B再列方程求解即可【详解】∵∠A=∠B+∠C∠A+∠B+∠C=180°∴∠A=90°∴∠B+∠C=9解析:32°【分析】根据三角形的内角和等于180°求出∠A=90°,从而得到∠B、∠C互余,然后用∠C表示出∠B,再列方程求解即可.【详解】∵∠A=∠B+∠C,∠A+∠B+∠C=180°,∴∠A=90°,∴∠B+∠C=90°,∴∠B=90°-∠C,∵∠B=2∠C-6°,∴90°-∠C=2∠C-6°,∴∠C=32°.故答案为32°.【点睛】本题考查了三角形内角和定理,熟记定理并求出∠A的度数是解题的关键.16.35【解析】分析:过点G作AB平行线交EF于P根据平行线的性质求出∠EGP求出∠PGF根据平行线的性质平角的概念计算即可详解:过点G作AB平行线交EF于P由题意易知AB∥GP∥CD∴∠EGP=∠AE解析:35【解析】分析:过点G作AB平行线交EF于P,根据平行线的性质求出∠EGP,求出∠PGF,根据平行线的性质、平角的概念计算即可.详解:过点G作AB平行线交EF于P,由题意易知,AB∥GP∥CD,∴∠EGP=∠AEG=20°,∴∠PGF=70°,∴∠GFC=∠PGF=70°,∴∠HFD=180°-∠GFC-∠GFP-∠EFH=35°.故答案为35°.点睛:本题考查的是平行线的性质、三角形内角和定理的应用,掌握两直线平行、内错角相等是解题的关键.17.60°【分析】根据三角形的内角和等于180°求出∠ABC+∠ACB的度数再根据角平分线的定义求出∠OBC+∠OCB的度数然后利用三角形的内角和等于180°列式计算即可得解【详解】解:∵∠ABC+∠A解析:60°.【分析】根据三角形的内角和等于180°求出∠ABC+∠ACB的度数,再根据角平分线的定义求出∠OBC+∠OCB的度数,然后利用三角形的内角和等于180°列式计算即可得解.【详解】解:∵∠ABC+∠ACB=180°﹣∠A,BO平分∠ABC,CO平分∠ACB,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=12(180°﹣∠A)=90°﹣12∠A,∴在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)=90°+12∠A=120°,∴∠A=60°,故答案为:60°.【点睛】本题考查三角形内角和定理,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18.①③【分析】先根据AB⊥BCAE平分∠BAD交BC于点EAE⊥DE∠1+∠2=90°∠EAM和∠EDN的平分线交于点F由三角形内角和定理以及平行线的性质即可得出结论【详解】解:∵AB⊥BCAE⊥DE解析:①③【分析】先根据AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90°,∠EAM和∠EDN的平分线交于点F,由三角形内角和定理以及平行线的性质即可得出结论.【详解】解:∵AB⊥BC,AE⊥DE,∴∠1+∠AEB=90°,∠DEC+∠AEB=90°,∴∠1=∠DEC,又∵∠1+∠2=90°,∴∠DEC+∠2=90°,∴∠C=90°,∴∠B+∠C=180°,∴AB∥CD,故①正确;∴∠ADN=∠BAD,∵∠ADC+∠ADN=180°,∴∠BAD+∠ADC=180°,又∵∠AEB≠∠BAD,∴AEB+∠ADC≠180°,故②错误;∵∠4+∠3=90°,∠2+∠1=90°,而∠3=∠1,∴∠2=∠4,∴ED平分∠ADC,故③正确,故答案为:①③.【点睛】本题考查了平行线的性质与判定、三角形内角和定理、直角三角形的性质及角平分线的性质,熟知三角形的内角和等于180°是解题的关键.19.150°【分析】由三角形内角和定理可得∠E=45°由SAS可证△ABC≌△EDB 可得∠A=∠E=45°由三角形的外角性质可求∠AFD=30°即可求解【详解】解:∵∠DBE=60°∠BDE=75°∴∠解析:150°【分析】由三角形内角和定理可得∠E=45°,由“SAS”可证△ABC≌△EDB,可得∠A=∠E=45°,由三角形的外角性质可求∠AFD=30°,即可求解.【详解】解:∵∠DBE=60°,∠BDE=75°,∴∠E=180°﹣60°﹣75°=45°,∵BD=BC,BE=CA,∠DBE=∠C=60°,∴△ABC≌△EDB(SAS),∴∠A=∠E=45°,∵∠BDE=∠A+∠AFD=75°,∴∠AFD=30°,∴∠AFE=150°,故答案为:150°.【点睛】本题考查了三角形内角和定理,全等三角形的判定和性质,三角形外角的性质,证明△ABC≌△EDB是解题关键.20.100°20°或90°30°【分析】分三种情形讨论求解即可解决问题【详解】解:在△ABC中不妨设∠A=60°①若∠A=3∠C则∠C=20°∠B=100°②若∠C=3∠A则∠C=180°(不合题意)③解析:100°,20°或90°,30°【分析】分三种情形讨论求解即可解决问题.【详解】解:在△ABC中,不妨设∠A=60°.①若∠A=3∠C,则∠C=20°,∠B=100°.②若∠C=3∠A,则∠C=180°(不合题意).③若∠B=3∠C,则∠B=90°,∠C=30°,综上所述,另外两个角的度数为100°,20°或90°,30°.故答案为:100°,20°或90°,30°.【点睛】本题考查了三角形的内角和定理的运用,解题的关键是学会用分类讨论的思想思考问题.三、解答题21.见解析【分析】先利用角平分线的定义得到∠BAD=∠DAC,结合已知条件∠BFE=∠DAC,可得∠BFE=∠BAD,根据平行线的判定可证EG∥AD,再由平行线的性质得∠G=∠DAC,∠AFG=∠BAD,则利用等量代换即可证得结论.【详解】证明:∵AD平分∠BAC,∴∠BAD=∠DAC,∵∠BFE=∠DAC,∴∠BFE=∠BAD,∴EG∥AD,∴∠G=∠DAC,∠AFG=∠BAD,∴∠G=∠AFG.【点睛】本题考查了平行线的判定与性质,掌握平行线的判定的方法及利用性质证明角相等是解答此题的关键.22.(1)证明见解析;(2)证明见解析.【分析】(1)根据角平分线的性质和三角形的外角性质即可求证;(2)由∠A=2∠E ,∠A=∠ABC ,∠ABC=2∠ABE 得∠ABE=∠E ,从而AB ∥CE .【详解】证明:(1)∵ACD ∠是ABC 的一个外角,2∠是BCE 的一个外角,∴ACD ABC A ∠=∠+∠,21E ∠=∠+∠,∴A ACD ABC ∠=∠-∠,21E ∠=∠-∠.∵CE 是外角ACD ∠的平分线,BE 是ABC ∠的平分线,∴22ACD ∠=∠,21ABC ∠=∠,∴2221A ∠=∠-∠2(21)=∠-∠2E =∠.(2)由(1)可知2A E ∠=∠.∵A ABC ∠=∠,2ABC ABE ∠=∠,∴22E ABE ∠=∠,即E ABE ∠=∠,∴//AB CE .【点睛】本题考查了三角形的综合问题,涉及平行线的判定,三角形的外角性质,角平分线的性质,灵活运用所学知识是解题的关键.23.(1)EG ⊥FG ,证明见解析;(2)A .45;B .2EOF EPF ∠=∠(在A 、B 两题中任选一题即可)【分析】(1)由AB ∥CD ,可知∠BEF 与∠DFE 互补,由角平分线的定义可得90GEF GFE ∠+∠=︒,由三角形内角和定理可得∠G =90︒,则EG FG ⊥; (2)A .由(1)可知90BEG DFG ∠+∠=︒,根据角平分线的定义可得45MEG MFG ∠+∠=︒,故135MEF MFE ∠+∠=︒,根据三角形的内角和即可求出EMF ∠=45︒;B .设OEF α∠=,OFE β∠=,故EOF ∠=180αβ︒--,再得到180BEO DFO αβ∠+∠=--︒,根据角平分线的定义可得190122PEO PFO αβ︒-∠+∠=-,则119022PEF PFE αβ∠+∠=︒++,再求出EPF ∠,即可比较得到结论.【详解】解:(1)由题意可得,求证:“EG ⊥FG”,证明过程如下∵//AB CD∴∠BEF +∠EFD=180°EG 平分BEF ∠,FG 平分DFE ∠,12GEF BEF ∴∠=∠,12GFE DFE ∠=∠, 1111()180902222GEF GFE BEF DFE BEF DFE ∴∠+∠=∠+∠=∠+⨯︒∠==︒. 在EFG 中,180GEF GFE G ∠+∠+∠=︒,180()1809090G GEF GFE ∴∠=-∠+∠=-︒=︒︒︒,EG FG ∴⊥.(2)A .由(1)可知=90BEG DFG GEF GFE ∠+∠=∠+∠︒,∵BEG ∠的平分线与DFG ∠的平分线交于点M∴∠MEG=12∠BEG ,∠MFG=12∠DFG ∴()111190452222MEG MFG BEG DFG BEG DFG ∠+∠=∠+∠=∠+∠=⨯︒=︒ 则4591350MEF MFE ︒+∠︒=+∠=︒, ∴EMF ∠=180135︒-︒=45︒故答案为:A ,45;B.设OEF α∠=,OFE β∠=,∴EOF ∠=180αβ︒--,∵//AB CD∴∠BEF +∠EFD=180°则180BEO DFO αβ∠+∠=--︒∵BEO ∠的平分线与DFO ∠的平分线交于点P ∴190122PEO PFO αβ︒-∠+∠=-, ∴111190902222PEF PFE αβαβαβ∠+∠=︒--++=︒++, ∴EPF ∠=111809022αβ⎛⎫︒-︒++ ⎪⎝⎭=121902αβ︒--, ∵EOF ∠=1118029022αβαβ⎛⎫︒--=︒-- ⎪⎝⎭, 故2EOF EPF ∠=∠故答案为:B ,2EOF EPF ∠=∠.(在A 、B 两题中任选一题即可)【点睛】本题考查了平行线的性质、角平分线的定义、三角形内角和定理,熟练掌握平行线的性质和角平分线的定义是解题的关键.24.(1)40°;(2)∠CAE =∠C ,理由见解析.【分析】(1)根据邻补角的定义可求∠AED ,再根据角平分线的定义和平行线的性质可求∠1的度数;(2)根据三角形内角和定理可求∠BED =∠C ,根据平行线的判定可知AC ∥BE ,根据平行线的性质可得∠CAE =∠AEB ,根据角平分线的定义和等量关系即可求解.【详解】(1)∵∠AEC =100°,∴∠AED =80°,∵EB 平分∠AED ,∴∠BED =40°,∵AB ∥CD ,∴∠1=∠BED =40°;(2)∵DB ⊥BE ,AF ⊥AC ,∴∠EBD =∠CAF =90°,∵∠2=∠D ,∴∠BED =∠C ,∴AC ∥BE ,∴∠CAE =∠AEB ,∵EB 平分∠AED ,∴∠AEB =∠BED ,∴∠CAE =∠C .【点睛】本题考查平行线的判定和性质,邻补角的定义,角平分线的定义,三角形内角和定理.熟悉相应的性质和定义是解答本题的关键.25.(1)130︒;(2)1902Q A ∠=︒-∠;(3)A ∠的度数是90°或60°或120° 【分析】(1)运用三角形的内角和定理及角平分线的定义,首先求出∠PBC+∠PCB ,进而求出∠BPC 即可解决问题;(2)根据三角形的外角性质分别表示出∠MBC 与∠BCN ,再根据角平分线的性质可求得∠CBQ+∠BCQ ,最后根据三角形内角和定理即可求解;(3)在△BQE 中,由于∠Q=90°12-∠A ,求出∠E=12∠A ,∠EBQ=90°,所以如果△BQE 中,存在一个内角等于另一个内角的2倍,那么分四种情况进行讨论:①∠EBQ=2∠E=90°;②∠EBQ=2∠Q=90°;③∠Q=2∠E ;④∠E=2∠Q ;分别列出方程,求解即可.【详解】(1)∵80A ∠=︒,∴100ABC ACB ∠+∠=︒,又∵点P 是ABC ∠和ACB ∠的平分线的交点,∴50PBC PCB ∠+∠=︒,∴()180********P PBC PCB ∠=︒-∠+∠=︒-︒=︒;(2)∵外角MBC ∠,NCB ∠的角平分线交于点Q , ∴12QBC MBC ∠=∠,12QCB NCB ∠=∠, ∵180ABC MBC ∠+∠=︒,180ACB NCB ∠+∠=︒,∴180MBC ABC ∠=︒-∠,180NCB ACB ∠=︒-∠,∴()12QBC QCB MBC NCB ∠+∠=∠+∠ ()13602ABC ACB =︒-∠-∠ ()1360180-2A =︒-︒∠⎡⎤⎣⎦ ()11802A =︒+∠ 1902A =+∠︒, ∴()180Q QBC QCB ∠=︒-∠+∠1180902A ⎛⎫=︒-︒+∠ ⎪⎝⎭1902A =︒-∠; (3)延长BC 至F ,∵CQ 为△ABC 的外角∠NCB 的角平分线,∴CE 是△ABC 的外角∠ACF 的平分线,∴∠ACF=2∠ECF ,∵BE 平分∠ABC ,∴∠ABC=2∠EBC ,∵∠ECF=∠EBC+∠E ,∴2∠ECF=2∠EBC+2∠E ,即∠ACF=∠ABC+2∠E ,又∵∠ACF=∠ABC+∠A ,∴∠A=2∠E ,即∠E=12∠A , ∵∠EBQ=∠EBC+∠CBQ=12∠ABC+12∠MBC =12(∠ABC+∠A+∠ACB ) =90°. 如果△BQE 中,存在一个内角等于另一个内角的2倍,那么分四种情况:①∠EBQ=2∠E=90°,则∠E=45°,∠A=2∠E=90°;②∠EBQ=2∠Q=90°,则∠Q=45°,∠E=45°,∠A=2∠E=90°;③∠Q=2∠E ,则∠E=30°,解得∠A=2∠E=60°;④∠E=2∠Q ,则∠E=60°,解得∠A=2∠E=120°.综上所述,∠A 的度数是90°或60°或120°.【点睛】本题是三角形综合题,考查了三角形内角和定理、外角的性质,角平分线定义等知识;灵活运用三角形的内角和定理、外角的性质进行分类讨论是解题的关键.26.(1)见解析;(2)78︒【分析】(1)根据ABD ACD ∠=∠,AFB CFD ∠=∠得出D A ∠=∠,然后利用SAS 即可证明三角形全等;(2)由(1)可知BCD BEA ∆≅∆,由题意知108BCD ∠=︒,即可得出 BEF ∠的度数,然后由AFD BEF DBE ∠=∠+∠求值即可;【详解】解:(1)证明:ABD ACD ∠=∠,AFB CFD ∠=∠,D A ∴∠=∠.在BCD ∆和BEA ∆中,CD EA D A BD BA =⎧⎪∠=∠⎨⎪=⎩()BCD BEA SAS ∴∆≅∆.(2)BCD BEA ∆≅∆,108BCD ∠=︒,108∴∠=∠=︒,BEA BCD∴∠=︒-=︒.18010872BEF∠=︒,DBE6AFD BEF DBE∴∠=∠+∠=︒+︒=︒.72678【点睛】本题考查了全等三角形的性质与判定以及三角形的内角和,正确理解知识点是解题的关键;。

2024年湘教新版八年级数学上册阶段测试试卷含答案314

2024年湘教新版八年级数学上册阶段测试试卷含答案考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四总分得分评卷人得分一、选择题(共7题,共14分)1、如图,在等边△ABC中,AD是它的角平分线,DE⊥AB于E,若AC=8,则BE=()A. 4B. 3C. 2D. 12、若点P(m,n)满足m•n=0,则点P位于()A. x轴B. y轴C. 原点D. x轴或者y轴3、下列关于x的方程中,是分式方程的是()A. 3x=B. =2C.D. 3x﹣2y=14、一个正方形的边长增加了2cm,面积相应增加了32cm2,则这个正方形的边长为()A. 6cmB. 5cmC. 7cmD. 8cm5、已知y=4鈭�x+x鈭�4+3则yx的值为A. 43B. 鈭�43C. 34D. 鈭�346、如图是一个几何体的三视图,则该几何体的展开图可以是()A.B.C.D.7、下列各数中,最小的是()A. -B. 0C. -1D. -评卷人得分二、填空题(共7题,共14分)8、若等腰三角形底边上的中线等于底边的一半,则此等腰三角形的底角为____度.9、在平面直角坐标系中,等边鈻�AOB的位置如图,若OB=3则点A的坐标为 ______ .10、(2013秋•桂林校级期末)如图所示,某工程队修建高速公路,需打通一条东西走向的隧道AB,为了测得AB的长,工程队在A处正南方向800米的C处测得BC=1000米,则隧道AB的长为____.11、绝对值最小的实数是____,的绝对值是____,的相反数是____.12、直线y=x-7在y轴上的截距是____.13、分式方程的解是。

14、【题文】已知点位于轴右侧,距离轴3个单位长度,位于轴上方,距离轴4个单位长度,则点的坐标为____________。

评卷人得分三、判断题(共9题,共18分)15、平方数等于它的平方根的数有两个.____.(判断对错)16、-0.01是0.1的平方根.( )17、等腰三角形底边中线是等腰三角形的对称轴.18、判断:×=2×=()19、()20、2x+1≠0是不等式;____.21、判断:方程=与方程5(x-2)=7x的解相同. ()22、水平的地面上有两根电线杆,测量两根电线杆之间的距离,只需测这两根电线杆入地点之间的距离即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六、七章单元检测
(时间:60分钟,满分:120分)
一、选择题(本题共10小题,每小题3分,共30分)
1.下列语句中,是命题的为().
A.延长线段AB到C B.垂线段最短
C.过点O作直线a∥b D.锐角都相等吗
2.下列命题中是真命题的为().
A.两锐角之和为钝角B.两锐角之和为锐角
C.钝角大于它的补角D.锐角大于它的余角
3.“两条直线相交,有且只有一个交点”的题设是().
A.两条直线B.交点
C.两条直线相交D.只有一个交点
4.如果∠A和∠B的两边分别平行,那么∠A和∠B的关系是().
A.相等B.互余或互补
C.互补D.相等或互补
5.已知一组数据5,15,75,45,25,75,45,35,45,35,那么40是这一组数据的( )
A.平均数但不是中位数 B.平均数也是中位数
C.众数 D. 中位数但不是平均数
6.如图所示,AB⊥EF,CD⊥EF,∠1=∠F=30°,则与∠FCD相等的角有().
A.1个B.2个C.3个D.4个
7.一台机床在十天内生产的产品中,每天出现的次品个数依次为(单位:个)0,2,0,2,3,0,2,3,1,2.那么,这十天中次品个数的( )
A.平均数是2 B.众数是3 C.中位数是1.5 D.方差是1.25
8.如图所示,∠B=∠C,则∠ADC与∠AEB的大小关系是().
A.∠ADC>∠AEB B.∠ADC=∠AEB
C.∠ADC<∠AEB D.大小关系不能确定
9.如图所示,AD平分∠CAE,∠B=30°,∠CAD=65°,则∠ACD=().A.50°B.65°C.80°D.95°
10.如图所示,已知AB∥CD,AD和BC相交于点O,若∠A=42°,∠C=58°,则∠AOB的度数为().
A.45°B.60°C.80°D.90°
第七题第八题第九题
二、填空题(本大题共12小题,每小题3分,共36分)
11、如果四个整数数据中的三个分别是2、4、6,且它们的中位数也是整数,那么它们的中位数是 .
12、在数据-1,0,4,5,8中插入一数据x ,使得该数据组的中位数为3,则x =____ . 13、已知数据,,a b c 的平均数为8,那么数据1,2,3a b c +++的平均数是______ _ 14、某学校四个绿化小组,在植树节这天种下白杨树的棵数如下:10,10,x , 已知这组数据的众数和平均数相等,那么这组数据的中位数是 . 15如图所示,∠1=∠2,∠3=80°,那么∠4=__________. 16.如图所示,∠ABC =36°40′,DE ∥BC ,DF ⊥AB 于点F ,则∠D =__________. 17.如图所示,AB ∥CD ,∠1=115°,∠3=140°,则∠2=__________. 18.如图所示,在△ABC 中,BF 平分∠ABC ,CF 平分∠ACB ,∠A =65°,则∠BFC =__________.
19、同角的余角相等”的题设是__________,结论是__________. 20.过△ABC 的顶点C 作AB 的垂线,如果该垂线将∠ACB 分为40°和20°的两个角,那么∠A ,∠B 中较大的角的度数是__________. 21
则该公司员工月工资的平均数为 、中位数为 和众数为 .
22、已知数据
x
1,
x
2,…,x n 的平均数是2,则一组新数据2x 1+8,2x 2+8,…,2x n +8
的平均数是____.方差是
三、解答题(本大题共5小题,共30分)
23.(5分)如图所示,已知∠1=∠2,AE ∥BC ,求证:△ABC 是等腰三角形.
24.(5分)如图所示,已知直线BF ∥DE ,∠1=∠2,求证:GF ∥BC .
第15题
第16题 第17题 第18题
25.(6分)如图所示,已知直线AB∥CD,FH平分∠EFD,FG⊥FH,∠AEF=62°,求∠GFC的度数.
26、(6分)如图所示,已知直线AB∥CD,∠AEP=∠CFQ,求证:∠EPM=∠FQM
.
27.(8分)在△ABC中,BE平分∠ABC,AD为BC边上的高,且∠ABC=60°,∠BEC=75°,求∠DAC的度数.
28、某公司销售部有营销人员15人销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:
(1)求这15位营销人员该月销售量的平均数、中位数和众数;
(2)想一想,假设销售部负责人把每位营销员的月销售额定为320件,你认为是否合理,为什么?如不合理,请你制定一个较合理的销售定额,并说名理由.
29、如图14,已知AB∥ED,∠CAB=135°∠ACD=80°,求∠CDE的度数。

30、已知:如图15,AD ⊥BC 于D ,EG ⊥BC 于G ,∠E =∠3。

求证:AD 平分∠BAC 。

31已知:如图6,AB ∥CD ,求证:∠BED=360°-(∠B+∠D )
32.某同学进行社会调查,随机抽查了某个地区的20个家庭的收入情况,并绘制了统计图.请你根据统计图给出的信息回答:
(1) 填写完成下表:
这20个家庭的年平均收入为_____ _万元;
(2) 样本中的中位数是_____
_万元,众数是____ __万元。

(3) 在平均数、中位数两数中,_____ _更能反映这个地区家庭的年收入水平.
25% 20% 15% 10
)
所占户数比。

相关文档
最新文档