七年级数学平行线测试题

合集下载

人教版七年级数学下册平行线同步测试(含答案)

人教版七年级数学下册平行线同步测试(含答案)

5.2.1 平行线一、选择题1.在同一平面内,下列说法中,错误的是( )A.过两点有且只有一条直线B.过一点有无数条直线与已知直线平行C.过直线外一点有且只有一条直线与已知直线平行D.过一点有且只有一条直线与已知直线垂直2.若直线a∥b,b∥c,则a∥c的依据是( ))A.平行公理B.等量代换C.等式的性质D.平行于同一条直线的两条直线互相平行3.下列说法错误的是( )A.过一点有且只有一条直线与已知直线平行B.平行于同一条直线的两条直线平行C.若a∥b,b∥c,c∥d,则a∥dD.同一平面内,若一条直线与两平行线中的一条相交,那么它也和另一条相交4.如图,AB∥CD,EF∥AB,AE∥MN,BF∥MN,由图中字母标出的互相平行的直线共有( )A.4组B.5组C.6组D.7组5.点P,Q都是直线l外的点,下列说法正确的是( )A.连接PQ,则PQ一定与直线l垂直B.连接PQ,则PQ一定与直线l平行C.连接PQ,则PQ一定与直线l相交D.过点P能画一条直线与直线l平行6.在同一平面内的两条不重合的直线的位置关系( )A.有两种:垂直或相交B.有三种:平行,垂直或相交C.有两种:平行或相交D.有两种:平行或垂直二、填空题7.在同一平面内,直线a与b满足下列条件,把它们的位置关系填在后面的横线上.(1)a与b没有公共点,则a与b ;(2)a与b有且只有一个公共点,则a与b ;(3)a与b有两个公共点,则a与b .8.如图,在下面的方格纸中,找出互相平行的线段,并用符号表示出来:.9.如图,PC∥AB,QC∥AB,则点P,C,Q在一条直线上.理由是。

10.如图所示,直线AB,CD是一条河的两岸,并且AB∥CD,点E为直线AB,CD外一点,现想过点E作河岸CD的平行线,只需过点E作,其理由是。

11.在同一平面内,一条直线和两条平行线中的一条直线相交,那么这条直线与平行线中的另一条直线必。

12.观察下图所示的长方体,回答下列问题.(1)用符号表示两棱的位置关系:A1B1AB,AA1AB,A1D1C1D1,AD BC;(2)AB与B1C1所在的直线不相交,它们平行线(填“是”或“不是”).由此可知,在内,两条不相交的直线才是平行线.三、解答题13.在同一平面内,有三条直线a,b,c,它们之间有哪几种可能的位置关系?画图说明.14.如图所示,取一张长方形的硬纸板ABCD,将硬纸板ABCD对折使CD 与AB重合,EF为折痕.把长方形ABFE平放在桌面上,另一个面CDEF无论怎么改变位置总有CD∥AB存在,你知道为什么吗?参考答案5.2.1 平行线一、选择题1.在同一平面内,下列说法中,错误的是(B)A.过两点有且只有一条直线B.过一点有无数条直线与已知直线平行C.过直线外一点有且只有一条直线与已知直线平行D.过一点有且只有一条直线与已知直线垂直2.若直线a∥b,b∥c,则a∥c的依据是(D)A.平行公理B.等量代换C.等式的性质D.平行于同一条直线的两条直线互相平行3.下列说法错误的是(A)A.过一点有且只有一条直线与已知直线平行B.平行于同一条直线的两条直线平行C.若a∥b,b∥c,c∥d,则a∥dD.同一平面内,若一条直线与两平行线中的一条相交,那么它也和另一条相交4.如图,AB∥CD,EF∥AB,AE∥MN,BF∥MN,由图中字母标出的互相平行的直线共有(C)A.4组B.5组C.6组D.7组5.点P,Q都是直线l外的点,下列说法正确的是(D)A.连接PQ,则PQ一定与直线l垂直B.连接PQ,则PQ一定与直线l平行C.连接PQ,则PQ一定与直线l相交D.过点P能画一条直线与直线l平行6.在同一平面内的两条不重合的直线的位置关系(C)A.有两种:垂直或相交B.有三种:平行,垂直或相交C.有两种:平行或相交D.有两种:平行或垂直二、填空题7.在同一平面内,直线a与b满足下列条件,把它们的位置关系填在后面的横线上.(1)a与b没有公共点,则a与b平行;(2)a与b有且只有一个公共点,则a与b相交;(3)a与b有两个公共点,则a与b重合.8.如图,在下面的方格纸中,找出互相平行的线段,并用符号表示出来:CD∥MN,GH∥PN.9.如图,PC∥AB,QC∥AB,则点P,C,Q在一条直线上.理由是经过直线外一点,有且只有一条直线与这条直线平行.10.如图所示,直线AB,CD是一条河的两岸,并且AB∥CD,点E为直线AB,CD外一点,现想过点E作河岸CD的平行线,只需过点E作AB的平行线即可,其理由是平行于同一条直线的两条直线平行.11.在同一平面内,一条直线和两条平行线中的一条直线相交,那么这条直线与平行线中的另一条直线必相交.12.观察下图所示的长方体,回答下列问题.(1)用符号表示两棱的位置关系:A1B1∥AB,AA1⊥AB,A1D1⊥C1D1,AD ∥BC;(2)AB与B1C1所在的直线不相交,它们不是平行线(填“是”或“不是”).由此可知,在同一平面内,两条不相交的直线才是平行线.三、解答题13.在同一平面内,有三条直线a,b,c,它们之间有哪几种可能的位置关系?画图说明.解:有四种可能的位置关系,如下图:14.如图所示,取一张长方形的硬纸板ABCD,将硬纸板ABCD对折使CD 与AB重合,EF为折痕.把长方形ABFE平放在桌面上,另一个面CDEF无论怎么改变位置总有CD∥AB存在,你知道为什么吗?解:因为AB∥EF,CD∥EF,所以CD∥AB.。

新人教版七年级数学下册同步练习5.2平行线及其判定(练习卷+解析版)

新人教版七年级数学下册同步练习5.2平行线及其判定(练习卷+解析版)

新人教版七年级数学下册同步练习 5.2 平行线及其判定
参考答案与试题解析
一.选择题(共 10 小题,每小题 3 分,满分 30 分)
1.在同一平面内,不重合的两条直线的位置关系是( )
A.平行
B.相交
C.平行或相交
D.平行、相交或垂直
选:C.
2.直线 a、b、c 在同一平面内,
(1)如果 a⊥b,b⊥c,那么 a∥c;
B.有两条
C.不存在
D.有一条或不存在
解:①若点 P 在 OA 上,则不能画出与 OA 平行的直线,
②若点 P 不在 OA 上,则过点 P 有且只有一条直线与 OA 平行,
所以,这样的直线有一条或不存在.
故选 D.
4.下面推理正确的是( )
A.∵a∥b,b∥c,∴c∥d
B.∵a∥c,b∥d,∴c∥d
16.如图,EF⊥AB 于点 F,CD⊥AB 于点 D,E 是 AC 上一点,∠1=∠2,则图中互相平行 的直线有 2 对.
解:∵EF⊥AB,CD⊥AB, ∴∠EFA=∠CDA=90°, ∴EF∥CD, ∴∠1=∠EDC, ∵∠1=∠2, ∴∠EDC=∠2, ∴DE∥BC, 即图中互相平行的直线有 2 对, 故答案为:2.
(2)如果 a∥b,b∥c,c∥d,那么 a∥d;
(3)如果 a∥b,b⊥c,那么 a⊥c;
(4)如果 a 与 b 相交,b 与 c 相交,那么 a 与 c 相交.
在上述四种说法中,正确的个数为( )
A.1 个
B.2 个
C.3 个
D.4 个
解:直线 a、b、c 在同一平面内,
(1)如果 a⊥b,b⊥c,那么 a∥c;正确.
8.两条直线相交所成的四个角都相等时,这两条直线的位置关系是( )

七年级数学下册平行线的判定练习题

七年级数学下册平行线的判定练习题

七年级数学下册平行线的判定练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,下列四个结论:①①1=①3;①①B =①5;①①B +①BAD =180º;①①2=①4;①①D +①BCD =180º.能判断AB ①CD 的个数有 ( )A .2个B .3个C .4个D .5个2.如图,//AB CD ,120BAE ∠=︒,40DCE ∠=︒,则AEC ∠=( )A .70︒B .80︒C .90︒D .100︒3.如图,已知直线a ,b 被直线c 所截,下列条件不能判断a ①b 的是( )A .①2=①6B .①2+①3=180°C .①1=①4D .①5+①6=180°4.如图点E 在BC 的延长线上,则下列条件中,不能判定AB ∥CD 的是( )A .①1=①2B .①B =①DCEC .①3=①4D .①D +①DAB =180°5.如图所示,在下列四组条件中,能判断//AB CD 的是( )A .12∠=∠B .180BAD ABC ∠+∠=︒ C .34∠=∠D .ABD BDC ∠=∠6.下列给出的条件能够推理出a b ∥的是( )A .12∠=∠B .24∠∠=C .34∠=∠D .14180∠+∠=︒二、填空题7.如图,木工师傅用角尺画平行线的依据是_________________________.8.已知:如图,在三角形ABC 中,CD AB ⊥于点D ,连接DE ,当1290∠+∠=︒时,求证:DE ∥BC . 证明:①CD AB ⊥(已知),①90ADC ∠=︒(垂直的定义).①1∠+________90=︒,①1290∠+∠=︒(已知),①________2=∠(依据1:________),①∥DE BC (依据2:________).9.如图,写出能判定AB①CD的一对角的数量关系:___________________.BC ,DO①AB,则①O的半径10.如图,AB是①O的直径,CB切①O于B,连结AC交①O于D,若8cmOA=___________cm.11.如图,用符号语言表达定理“内错角相等,两直线平行”的推理形式:①_____,①a①b.三、解答题12.请完成下面的推理过程:如图,已知①D=108°,①BAD=72°,AC①BC于C,EF①BC于F.求证:①1=①2.证明:①①D=108°,①BAD=72°(已知)①①D+①BAD=180°AB CD()①//①①1= ( )又①AC ①BC 于C ,EF ①BC 于F (已知)①EF // ( )①①2= ( )①①1=①2( )13.如图,四边形ABCD 中,①A =①C =90°,BE 平分①ABC ,DF 平分①ADC ,则BE 与DF 有何位置关系?试说明理由.14.如图,已知AC ①BC 于点C ,①B =70º,①ACD =20º.(1)求证:AB //CD ;(2)在不添加任何辅助线的情况下,请补充一个条件________,使BC //AD .15.如图所示,在四边形ABCD 中,ABC ∠的角平分线及外角DCE ∠的平分线所在的直线相交于点F ,若A α∠=,D β∠=.(1)如图(a )所示,180αβ+>,试用α,β表示F ∠,直接写出结论.(2)如图(b )所示,180αβ+<,请在图中画出F ∠,并试用α,β表示F ∠.(3)一定存在F ∠吗?若有,写出F ∠的值;若不一定,直接写出α,β满足什么条件时,不存在F ∠.16.下面是王倩同学的作业及自主探究笔记,请认真阅读并补充完整.【作业】如图①,直线12l l ∥,ABC 与DBC △的面积相等吗?为什么?解:相等.理由如下:设1l 与2l 之间的距离为h ,则12ABC SBC h =⋅,12DBC S BC h =⋅△. ①ABC DBC S S =.【探究】(1)如图①,当点D 在1l ,2l 之间时,设点A ,D 到直线2l 的距离分别为h ,h ',则ABC DBC S h S h ='△△.证明:①ABC S(2)如图①,当点D 在1l ,2l 之间时,连接AD 并延长交2l 于点M ,则ABC DBC S AM S DM=△△.证明:过点A 作AE BM ⊥,垂足为E ,过点D 作DF BM ⊥,垂足为F ,则90AEM DFM ∠=∠=︒, ①AE ∥ .①AEM △∽ . ①AE AM DF DM=. 由【探究】(1)可知ABC DBCS S =△△ , ①ABC DBC S AM S DM=△△. (3)如图①,当点D 在2l 下方时,连接AD 交2l 于点E .若点A ,E ,D 所对应的刻度值分别为5,1.5,0,ABC DBCS S △△的值为 .17.如图,在下列括号中填写推理理由①①1=135°(已知),①①3=①135°( )又①①2=45°(已知),①①2+①3=45°+135°=180°,①a ①b ( )18.已知:如图,点E在线段CD上,EA、EB分别平分①DAB和①ABC,①AEB=90°,设AD=x,BC=y,且(x﹣2)2+|y﹣5|=0.(1)求AD和BC的长.(2)试说线段AD与BC有怎样的位置关系?并证明你的结论.(3)你能求出AB的长吗?若能,请写出推理过程,若不能,说明理由.19.如图,AB=CD,BC=DA,求证:AB①CD,BC①DA.参考答案:1.A【分析】根据同位角相等、内错角相等、同旁内角互补的两直线平行分别判断即可.【详解】解:①①13∠=∠,①//AD BC ,无法推出//AB CD ;①①5B ∠=∠,①//AB CD ;①①180B BAD ∠+∠=°,①//AD BC ,无法推出//AB CD ;①①24∠∠=,①//AB CD ;①①180D BCD ∠+∠=︒①//AD BC ,无法推出//AB CD ,综上所述,能判断//AB CD 的是:①①,有2个,故选:A .【点睛】题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.2.D【分析】过点E 作//EF AB ,先根据平行线的判定可得//EF CD ,再根据平行线的性质分别可得AEF ∠和CEF ∠的度数,然后根据角的和差即可得.【详解】如图,过点E 作//EF AB ,120BAE ∠=︒,18060AEF BAE ∴∠=︒-∠=︒,又//AB CD ,//EF CD ∴,40DCE CEF ∴=∠=∠︒,6040100AEC AEF CEF ∴∠=∠+∠=︒+︒=︒,故选:D .【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解题关键.3.D【分析】根据同位角相等,内错角相等,同旁内角互补来判定两直线平行.【详解】解:A ,①2和①6是内错角,内错角相等两直线平行,能判定a ①b ,不符合题意;B ,①2+①3=180°,①2和①3是同旁内角,同旁内角互补两直线平行,能判定a ①b ,不符合题意;C ,①1=①4,由图可知①1与①2是对顶角,①①1=①2=①4,①2和①4互为同位角,能判定a ①b ,不符合D ,①5+①6=180°,①5和①6是邻补角,和为180°,不能判定a ①b ,符合题意;故选:D .【点睛】此题主要考查了平行线的判定,结合平行线判定的条件是解决这道题的关键.4.C【分析】根据平行线的判定定理进行逐一分析解答即可.【详解】解:A 、正确,符合“内错角相等,两条直线平行”的判定定理;B 、正确,符合“同位角相等,两条直线平行”的判定定理;C 、错误,若①3=①4,则AD ①BE ;D 、正确,符合“同旁内角互补,两条直线平行”的判定定理;故选:C .【点睛】本题考查的是平行线的判定定理,比较简单.5.D【分析】根据平行线的判定定理求解判断即可.【详解】解:A 、①①1=①2,①AD //BC (内错角相等,两直线平行),故此选项不符合题意;B 、①①BAD +①ABC =180°,①AD //BC (同旁内角互补,两直线平行),故此选项不符合题意;C 、①①3=①4,①AD //BC (内错角相等,两直线平行),故此选项不符合题意;D 、①①ABD =①BDC ,①AB //CD (内错角相等,两直线平行),故此选项符合题意;故选:D .【点睛】此题主要考查了平行线的判定,熟记平行线的判定定理是解题关键.6.D【分析】根据平行线的判定逐一判定即可.【详解】解:A.由12∠=∠不能推理出a b ∥,故不符合题意;B.由24∠∠=不能推理出a b ∥,故不符合题意;C.由34∠=∠不能推理出a b ∥,故不符合题意;D. ①①4+①5=180°时能推出a b ∥,又①①1=①5,①由14180∠+∠=︒能推理出a b ∥,故符合题意;【点睛】本题考查了平行线的判定定理,解决此题的关键是清楚平行线的判定定理同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.7.在同一平面内,垂直于同一条直线的两条直线平行或根据同位角相等两直线平行.【分析】在同一平面内,垂直于同一条直线的两条直线平行或根据同位角相等两直线平行.【详解】解:在同一平面内,垂直于同一条直线的两条直线平行或根据同位角相等两直线平行. 故答案为在同一平面内,垂直于同一条直线的两条直线平行或根据同位角相等两直线平行【点睛】本题考查的是平行线的判定,熟知平行线的判定方法是解答此题的关键8. EDC ∠ EDC ∠ 同角的余角相等 内错角相等,两直线平行【分析】根据垂直的定义及平行线的判定定理即可填空.【详解】①CD AB ⊥(已知),①90ADC ∠=︒(垂直的定义).①1∠+EDC ∠90=︒,①1290∠+∠=︒(已知),①EDC ∠2=∠(同角的余角相等),①//DE BC (内错角相等,两直线平行).故答案为:EDC ∠;EDC ∠;同角的余角相等;内错角相等,两直线平行.【点睛】此题考查了平行线的判定与性质,熟记 “内错角相等,两直线平行”是解题的关键.9.①BAC =①ACD (或①B +①BCD =180°或①D +①BAD =180°)【分析】根据平行线的判定定理进行填空.【详解】解:由“内错角相等,两直线平行”可以添加条件①BAC =①ACD .由“同旁内角互补,两直线平行”可以添加条件①B +①BCD =180°,或①D +①BAD =180°.故答案为:①BAC =①ACD (或①B +①BCD =180°或①D +①BAD =180°).【点睛】本题考查了平行线的判定.解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放性题目,能有效地培养学生“执果索因”的思维方式与能力. 10.4【分析】先根据切线的性质得出BC①AB,再根据平行线的判定得出BC OD∥,再根据平行线分线段成比例,得出OD AOBC AB=,根据点O是AB的中点,8BC=cm,求出OD,即可得出结果.【详解】解:①CB切①O于B,①BC①AB,①DO①AB,①BC OD∥,①OD AOBC AB=,①点O是AB的中点,①2AB AO=,①12 OD AOBC AB==,①8BC=cm,①OD=4cm,①OA=OD,①OA=4cm.故答案是:4.【点睛】本题主要考查了切线的性质,平行线的判定,平行线分线段成比例,根据切线的性质,结合已知条件,求出BC OD∥,是解题的关键.11.①4=①1【分析】两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.【详解】解:①①4=①1,①a①b.故答案为:①4=①1.【点睛】本题主要考查平行线的判定,熟记判定方法是解题的关键.12.见解析【分析】由直线相交及平行的相关定理性质即可得到答案.【详解】解:①①D=108°,①BAD=72°(已知)①①D+①BAD=180°①//AB CD(同旁内角互补,两直线平行)①①1=3∠(两直线平行,内错角相等)又①AC ①BC 于C ,EF ①BC 于F (已知)①EF //AC (垂直于同一直线的两条直线平行)①①2=3∠(两直线平行,同位角相等)①①1=①2(等量代换)【点睛】本题考查直线相交及平行的相关定理性质,熟练掌握相关知识是解题的关键.13.BE ①DF ,理由见解析【分析】根据四边形的内角和定理和①A =①C =90°,得①ABC +①ADC =180°;根据角平分线定义、等角的余角相等易证明和BE 与DF 两条直线有关的一对同位角相等,从而证明两条直线平行.【详解】解:BE ①DF .理由如下:①①A =①C =90°,①①ABC +①ADC =180°①BE 平分①ABC ,DF 平分①ADC ,①①1=①2=12①ABC ,①3=①4=12①ADC ,①①1+①3=12(①ABC +①ADC )=12×180°=90°, 又①①1+①AEB =90°,①①3=①AEB①BE ①DF【点睛】本题考查了四边形的内角和是360°、角平分线定义、等角的余角相等和平行线的判定,考察的知识点较多,只有熟练掌握,才能运用自如.14.(1)证明见解析(2)AC ①AD (答案不唯一)【分析】(1)由题意易求出110BCD BCA ACD ∠=∠+∠=︒,即可利用同旁内角互补,两直线平行证明; (2)由在同一平面内,垂直于同一条直线的两条直线互相平行,即可补充条件为:AC ①AD .(答案不唯一)(1)证明:①AC ①BC ,①90ACB ∠=︒,①110BCD BCA ACD ∠=∠+∠=︒,①180BCD B ∠+∠=︒,①AB CD ;(2)补充条件:AC ①AD ,①AC ①AD ,AC ①BC①BC //AD .故答案为:AC ①AD .【点睛】本题考查垂直的定义,平行线的判定.掌握平行线的判定条件是解题关键.15.(1)()1902F αβ∠=+-︒;(2)图见解析,()1902F αβ∠=︒-+,证明见解析;(3)180αβ+=︒时,不存在F ∠,证明见解析.【分析】(1)先根据四边形的内角和求出360D ABC CB βα∠=︒-∠-+,再根据角平分线的定义、邻补角的定义得出1,19022ABC F FBC DC E B C ∠=︒-∠∠∠=,然后根据三角形的外角性质即可得; (2)先根据角平分线的定义画出图形,再参照题(1):由四边形的内角和求出360D ABC CB βα∠=︒-∠-+,再根据角平分线的定义、对顶角的性质得出11,9022GBC ABC BCF DCB ∠=∠∠=︒-∠,然后根据三角形的外角性质即可得;(3)由题(1)和(2)可知,当180αβ+>︒和180αβ+<︒时,存在F ∠的值,因此,考虑当180αβ+=︒时,F ∠是否存在.证明如下:先根据四边形的内角和得出180ABC DCB ∠+∠=︒,再根据邻补角的定义得出180DCE DCB ∠+∠=︒,从而得出ABC DCE ∠=∠,然后根据角平分线的定义可得出GBC ECF ∠=∠,最后根据平行线的判定得出//BG CF ,即可得证.【详解】(1)()1902F αβ∠=+-︒,求解过程如下: 在四边形ABCD 中,,A D αβ∠=∠=360360DCB ABC D A αβ∠=︒-∠-=︒∴∠-+-∠ BF 平分ABC ∠,CF 平分DCE ∠1,2111(180)90222FBC DCE DCB DCB ABC FCE ∴∠=∠=︒-∠=︒-∠∠∠= F FC FB E C ∠=∠-∴∠119022DC AB B C =︒∠-∠- 902)1(DCB ABC =︒-∠+∠ 190(362)0αβ=︒-︒--)1(902βα=-+︒; (2)由题意,画ABC ∠的角平分线及外角DCE ∠的平分线所在的直线相交于点F ,则所要画的F ∠如下图所示.求解过程如下:①()360ABC DCB A D ∠+∠=︒-∠+∠,且A α∠=,D β∠=①360D ABC CB βα∠=︒-∠-+①BG 平分ABC ∠,CH 平分DCE ∠ ①1111,(180)902222GBC ABC ECH DCE DCB DCB ∠=∠∠=∠=︒-∠=︒-∠ 1902BCF ECH DCB ∴∠=∠=︒-∠ ①GBC ∠是BCF ∆的一个外角①GBC F BCF ∠=∠+∠①F GBC BCF ∠=∠-∠11(90)22ABC DCB =∠-︒-∠ 1()902ABC DCB =∠+∠-︒ 1(360)902αβ=︒---︒ 190()2αβ=︒-+;(3)当180αβ+=︒时,不存在F ∠.证明过程如下:①()360ABC DCB A D ∠+∠=︒-∠+∠,且A α∠=,D β∠=①360180ABC DCB αβ∠+∠=︒--=︒180DCE DCB ∠+∠=︒ABC DCE ∴∠=∠①BG 平分ABC ∠,CF 平分DCE ∠ ①11,22GBC ABC ECF DCE ∠=∠∠=∠GBC ECF ∴∠=∠①//BG CF故当180αβ+=︒时,不存在F ∠.【点睛】本题考查了四边形的内角和、三角形的外角性质、角平分线的定义、平行线的判定等知识点,较难的是题(3),综合题(1)和(2)的题设与结论,正确提出假设是解题关键.16.(1)证明见解析(2)证明见解析 (3)73【分析】(1)根据三角形的面积公式可得11,22ABC DBC S S BC h BC h '=⋅=⋅,由此即可得证; (2)过点A 作AE BM ⊥,垂足为E ,过点D 作DF BM ⊥,垂足为F ,先根据平行线的判定可得AE DF ,再根据相似三角形的判定可证AEM DFM ~,根据相似三角形的性质可得AE AM DF DM =,然后结合【探究】(1)的结论即可得证;(3)过点A 作AM BC ⊥于点M ,过点D 作DN BC ⊥于点N ,先根据相似三角形的判定证出AME DNE ~,再根据相似三角形的性质可得73AM AE DN DE ==,然后根据三角形的面积公式可得12ABC S BC AM =⋅,12DBC S BC DN =⋅,由此即可得出答案. (1) 证明:12ABC SBC h =⋅,12DBC BC h S '=⋅, ABC DBC Sh S h ∴='. (2)证明:过点A 作AE BM ⊥,垂足为E ,过点D 作DF BM ⊥,垂足为F ,则90AEM DFM ∠=∠=︒,AE DF ∴∥.AEM DFM ~∴.AE AM DF DM∴=. 由【探究】(1)可知ABC DBC SAE S DF =, ABC DBC SAM S DM∴=. (3)解:过点A 作AM BC ⊥于点M ,过点D 作DN BC ⊥于点N ,则90AME DNE ∠=∠=︒,AM DN ∴, AME DNE ∴~, AM AE DN DE∴=, 点,,A E D 所对应的刻度值分别为5,1.5,0,5 1.5 3.5AE ∴=-=, 1.5DE =,3.571.53AM DN ∴==, 又12ABC S BC AM =⋅,12DBC S BC DN =⋅, 73ABC DBC S AM S DN =∴=, 故答案为:73.【点睛】本题考查了相似三角形的判定与性质、平行线的判定、三角形的面积等知识点,熟练掌握相似三角形的判定与性质是解题关键.17.对顶角相等,同旁内角互补,两直线平行【分析】根据图形由对顶角相等,及平行线的判定中同旁内角互补,两直线平行可直接得出理由;【详解】①①1=135°(已知),①①3=①135°(对顶角相等)又①①2=45°(已知),①①2+①3=45°+135°=180°,①a ①b (同旁内角互补,两直线平行)故答案为:对顶角相等;同旁内角互补,两直线平行【点睛】本题考查了对顶角相等;平行线的判定中同旁内角互补,两直线平行;重点掌握平行线判定定理. 18.(1)2AD =,5BC =;(2)//AD BC ,见解析;(3)能,见解析【分析】(1)根据算术平方根和绝对值的非负性即可得出AD 、BC 的长度;(2)根据题意证明180BAD ABC ∠+∠=︒即可得出结果;(3)延长AE 交直线BC 于F ,先证明①AEB ①①FEB ,然后证明()ADE FCE ASA ∆≅∆,即可得出结果.【详解】解:(1)2(2)|5|0x y -+-=,20x ∴-=,50y -=,解得2x =,5y =,即2AD =,5BC =;(2)//AD BC .理由如下:EA 、EB 分别平分DAB ∠和ABC ∠,12BAE BAD ∴∠=∠,12ABE ABC ∠=∠, 1()2BAE ABE BAD ABC ∴∠+∠=∠+∠, 90AEB ∠=︒,90BAE ABE ∴∠+∠=︒,180BAD ABC ∴∠+∠=︒,//AD BC ∴;(3)能.理由如下:延长AE 交直线BC 于F ,如图,//AD BC ,DAF F ∴∠=∠,而DAF BAF ∠=∠,BAF F ∴∠=∠,在①AEB 和①FEB 中90BAE F BEA BEF BE BE ⎧∠=∠⎪∠=∠=⎨⎪=⎩,①①AEB ①①FEB (AAS )AB FB ∴=,AE =EF .在①ADE 和①FCE 中DAE F AE FEAED FEC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ADE FCE ASA ∴∆≅∆,2AD CF ∴==,527AB BF ∴==+=.【点睛】本题考查了算术平方根和绝对值的非负性,角平分线的定义,平行线的判定,全等三角形的判定与性质,熟知相关性质定理是解本题的关键.19.见解析【分析】连接AC ,利用SSS 得到ABC CDA △△≌,利用全等三角形的对应角相等得到两对内错角相等,利用内错角相等两直线平行即可得证.【详解】证明:连接AC ,在ABC 和CDA 中,AB CD BC AD AC CA =⎧⎪=⎨⎪=⎩,①()ABC CDA SSS ≌,①BAC DCA ACB CAD ∠=∠∠=∠, ,①//AB DC ,//AD BC .【点睛】此题考查了全等三角形的判定与性质,以及平行线的判定,熟练掌握全等三角形的判定与性质是解本题的关键.。

初一数学相交线与平行线28道典型题(含 答案和解析)

初一数学相交线与平行线28道典型题(含 答案和解析)

初一数学相交线与平行线28道典型题(含答案和解析及考点)1、若直线AB,CD相交于O,∠AOC与∠BOD的和为200°,则∠AOD的度数为.答案:80°.解析:∵∠AOC=∠BOD,∠AOC与∠BOD的和为200°.∴∠AOC=100°.∵∠AOD与∠AOC互补.∴∠AOD=80°.考点:几何初步——相交线与平行线——对顶角、邻补角.2、已知OA⊥OB,∠AOC∶∠AOB=2∶3,则∠BOC= .答案:30°或150°.解析:当OC在∠AOB内部时,∠BOC=30°;当OC在∠AOB外部时,∠BOC=150°.考点:几何初步——相交线与平行线——对顶角、邻补角——垂线.3、若直线a与直线b相交于点A,则直线b上到直线a距离等于2cm的点的个数是().A.0B.1C.2D.3答案:C.解析: 直线b的交点两侧各有一点到直线a的距离等于2cm.考点:几何初步——相交线与平行线——点到直线的距离.4、如图所示,在平面内,两条直线l1、l2相交于点O,对于平面内任意一点M,若p、q分别是点M到直线l1、l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有个.答案:4.解析:因为两条直线相交有四个角,因此每一个角内就有一个到直线l1、l2的距离分别是2、1,的点,即距离坐标是(2,1)的点,因而共有4个.考点:几何初步——相交线与平行线——点到直线的距离.5、若∠1和∠2是同旁内角,若∠1=50°,则∠2的度数为( ). A.45° B.135° C.45°或135° D. 不能确定 答案:D.解析:若∠1和∠2是同旁内角,若∠1=50°,则∠2的度数为不能确定. 考点:几何初步——相交线与平行线——三线八角.6、平面上n 条直线最少能将平面分为__________部分,最多能将平面分为__________部分. A. 最少能将平面分成n+1部分;最多分为n2+n+22.B. 最少能将平面分成n+2部分;最多分为n2+n−22.C. 最少能将平面分成n+1部分;最多分为n2+n−22. D. 最少能将平面分成n+2部分;最多分为n2−n+22.答案:A.解析:1条直线将平面分成2部分.2条直线最少将平面分成3部分,最多将平面分成4部分,其中4=1+1+2. 3条直线最少将平面分成4部分,最多将平面分成7部分,其中7=1+1+2+3. 4条直线最少将平面分成5部分,最多将平面分成11部分,其中11=1+1+2+3+4. ……n 条直线最少将平面分成n+1部分,最多将平面分成n2+n+22部分,其中n2+n+22=1+1+2+3+…+n .综上,n 条直线最少能将平面分成n+1部分,对多能将平面分成n2+n+22部分.考点:几何初步——相交线与平行线——相交线.7、如图,已知∠1=∠2,要使∠3=∠4,则需( ).A. ∠1=∠2B. ∠2=∠4C. ∠1=∠4D. AB ∥CD答案:D.解析:假设∠3=∠4,即∠BEF=∠CFE.由内错角相等,两直线平行,可得AB∥CD.故已知∠1=∠2,要使∠3=∠4,只要AB∥CD.考点:几何初步——相交线与平行线——平行线公理及推论.8、如图①是长方形纸带,将纸带沿EF折叠成图②,再沿BF折叠成图③.(1)若图①中的∠DEF=20°,则图②中的∠CFE度数是.(2)若图①中的∠DEF=α,则图③中的∠CFE度数是.(用含有α的式子表示)答案:(1)160°.(2)180°-3α.解析:(1)在图①中:∵AD∥BC.∴∠BFE=∠DEF=20°.∴∠CFE=160°.在图②中,根据折叠性质,∠CFE大小不变.∴∠CFE=160°.(2)在图①中,∠CFE=180°-∠BFE=180°-α.在图②中,∠CFB=∠CFE-∠BFE=180°-α.根据折叠性质,图③中∠CFB与图②中∠CFB相等.在图③中,∠CFE=∠CFB-∠BFE=180°-3α.∴图③中的∠CFE度数是180°-3α.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的性质.几何变换——图形的对称——翻折变换(折叠问题)——轴对称基础——轴对称的性质.9、已知:如图,∠D=110°,∠EFD=70°,∠1=∠2.求证:∠3=∠B.证明:∵∠D=110°,∠EFD=70°,(已知).∴∠D+∠EFD=180°.∴_____∥ _____.().又∵∠1=∠2,(已知).∴_____∥ _____.().∴_____∥ _____.().∴∠3=∠B.().答案:答案见解析.解析:∵∠D=110°,∠EFD=70°,(已知).∴∠D+∠EFD=180°.∴AD∥EF.(同旁内角互补,两直线平行).又∵∠1=∠2,(已知).∴AD∥BC.(内错角相等,两直线平行).∴EF∥BC.(平行于同一直线的两直线平行).∴∠3=∠B.(两直线平行,同位角相等).考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.10、车库的电动门栏杆如图所示,BA垂直于地面AE于A,CD平行于地面AE,则∠ABC+∠BCD的大小是().A.150°B.180°C.270°D.360°答案:C.解析:过B作CD的平行线BF,则CD∥BF∥AE.∴∠DCB+∠CBF=180°,∠ABF=90°.∴∠ABC+∠BCD=∠DCB+∠CBD+∠ABF=180°+90°=270°.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的性质.11、如图,一条公路修到湖边时,需拐弯绕湖而过;如果第一次拐角∠A是120°,第二次拐角∠B是150°,第三次拐角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是.答案:150°.解析:如图,作BE∥AD.∴∠1=∠A=120°.∴∠2=∠ABC=∠1=150°-120°=30°.∵AD∥CF.∴BE∥CF.∴∠C+∠2=180°.∴∠C=180°-30°=150°.考点:几何初步——相交线与平行线——平行线公理及推论——平行线的性质.12、如图所示,若AB∥CD,则角α,β,γ的关系为().A.α+β+γ=360°B.α-β+γ=180°C.α+β+γ=180°D.α+β-γ=180°答案:D.解析:过β角的顶点为E,作EF∥AB,α+β-γ=180°.考点:几何初步——相交线与平行线平行线的判定——平行线的性质——平行有关的几何模型.13、如图AB∥CD∥EF,CG平分∠ACE,∠A=140°,∠E=110°,则∠DCG=().A.13°B.14°C.15°D.16°答案:C.解析:∵EF∥CD,∴∠ECD=180°-∠E=70°.同理∠ACD=40°.∴∠ACE=110°.∵CG平分∠ACE.∴∠ECG=55°.∴∠DCG=∠ECD-∠ECG=70°-55°=15°.考点:几何初步——相交线与平行线——平行线——平行线的性质——平行有关的几何模型.14、如图,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B-∠D=24°,求∠GEF的度数.A.15°B.20°C.25°D.30°答案:D.解析:由AB∥EF∥CD,可知∠BED=∠B+∠D.已知∠B+∠BED+∠D=192°.∴2∠B+2∠D=192°,∠B+∠D=96°.又∠B-∠D=24°,于是可得关于∠B、∠D的方程组:{∠B+∠D=96°∠B−∠D=24°.解得∠B=60°.由AB∥EF知∠BEF=∠B=60°.因为EG平分∠BEF,所以∠GEF=12∠BEF=30°.考点:几何初步——相交线与平行线——平行线——平行有关的几何模型.15、把命题“在同一平面内,垂直于同一直线的两直线互相平行”改写成“如果……,那么……”的形式:.答案:“在同一平面内,如果两条直线都垂直于同一直线,那么这两直线互相平行”.解析:略.考点:命题与证明——命题与定理.16、下列命题中,假命题是().A. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行.B. 两条直线被第三条直线所截,同旁内角互补.C. 两直线平行,内错角相等.D. 在同一平面内,过一点有且只有一条直线与已知直线垂直.答案:B.解析:两条直线被第三条直线所截,同旁内角不一定互补,只有两直线平行时,同旁内角互补.考点:命题与证明——命题与定理.17、已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB∥CD.(2)求∠C的度数.答案:(1)证明见解析.(2)∠C=25°.解析:(1)∵AE⊥BC,FG⊥BC.∴AE∥FG.∴∠2=∠A.∵∠1=∠2.∴∠1=∠A.∴AB∥CD.(2)∵AB∥CD.∴∠C=∠3.∵∠D=∠3+60°,∠CBD=70°,∠C+∠D+∠CBD=180°.∴∠C+∠C+60°+70°=180°.∴∠C=25°.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.18、已知:如图,在△ABC中,BD⊥AC于点D,E为BC上一点,过E点作EF⊥AC,垂足为F,过点D作DH∥BC交AB于点H.(1)请你补全图形.(2)求证:∠BDH=∠CEF.答案:(1)画图见解析.(2)证明见解析.解析:(1)补全图形.(2)∵BD⊥AC,EF⊥AC.∴BD∥EF.∴∠CEF=∠CBD.∵DH∥BC.∴∠BDH=∠CBD.∴∠BDH=∠CEF.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.尺规作图——过一点作已知直线的垂线——过一点作已知直线的平行线.19、已知,如图,AB∥CD,∠1=∠B,∠2=∠D.求证:BE⊥DE.答案:证明见解析.解析:过E点作EF∥AB,则∠B=∠3.又∵∠1=∠B.∴∠1=∠3.∵AB∥EF,AD∥CD.∴EF∥CD.∴∠A=∠D.又∵∠2=∠D.∴∠2=∠4.∵∠1+∠2+∠3+∠4=180°.∴∠3+∠4=90°,即∠BED=90°.∴BE⊥ED.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的判定——平行线的性质.20、如图,已知CD∥EF,∠1+∠2=∠ABC.求证:AB∥GF.答案:证明见解析.解析:延长CD、GF交于点H,∠1=∠H.故∠2+∠H=∠ABC.易得AB∥GF.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.21、如图,已知点A,E,B在同一条直线上,设∠CED=x,∠C+∠D=y.(1)若AB∥CD,试用含x的式子表示y,并写出x的取值范围.(2)若x=90°,且∠AEC与∠D互余,求证:AB∥CD.答案:(1)y=180°-x,其中x的取值范围是(0<x<180).(2)证明见解析.解析:(1)∵AB∥CD.∴∠AEC=∠C,∠BED=∠D.∵∠C+∠D=y.∴∠AEC+∠BED=y.∵∠CED=x,∠AEC+∠CED+∠BED=180°.∴x+y=180°.∴y=180°-x,其中x的取值范围是(0<x<180).(2)∵x=90°,即∠CED=90°.∴∠AEC+∠BED=90°.∵∠AEC与∠D互余.∴∠AEC+∠D=90°.∴∠BED=∠D.∴AB∥CD.考点:函数——函数基础知识——函数自变量的取值范围.几何初步——角——余角和补角——角的计算与证明.相交线与平行线——平行线的判定——平行线的性质.22、阅读材料:材料1:如图(a)所示,科学实验证明:平面镜反射光线的规律是:射到平面镜上的光线和反射出的光线与平面镜所夹的角相等.即∠1=∠2.材料2:如图(b)所示,已知△ABC,过点A作AD∥BC,则∠DAC=∠C,又∵AD∥BC,∴∠DAC+∠BAC+∠B=180°,∴∠BAC+∠B+∠C=180°.即三角形内角和为180°.根据上述结论,解决下列问题:(1)如图(c)所示,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b镜反射,若b反射出的光线n平行于m,且∠1=50°,则∠2= ,∠3= .(2)在(1)中,若∠1=40°,则∠3= ,若∠1=55°,则∠3= .(3)由(1)(2)请你猜想:当∠3= 时,任何射到平面镜a上的光线m经过平面镜a和b的两次反射后,入射光线m与反射光线n总是平行,请说明理由.答案:(1)1.100°.2.90°.(2)1.90°.2.90°.(3)90°.解析:(1)∵∠1=50°.∴∠4=∠1=50°.∴∠6=180°-50°-50°=80°.∵m∥n.∴∠2+∠6=180°.∴∠2=100°.∴∠5=∠7=40°.∴∠3=180°-50°-40°=90°.故答案为:100°,90°.(2)∵∠1=40°.∴∠4=∠1=40°.∴∠6=180°-40°-40°=100°.∵m∥n.∴∠2+∠6=180°.∴∠2=80°.∴∠5=∠7=50°.∴∠3=180°-50°-40°=90°.∵∠1=55°.∴∠4=∠1=55°.∴∠6=180°-55°-55°=70°.∵m∥n.∴∠2+∠6=180°.∴∠2=110°.∴∠5=∠7=35°.∴∠3=180°-55°-35°=90°.(3)当∠3=90°时,m∥n.理由是:∵∠3=90°.∴∠4+∠5=180°-90°=90°.∵∠4=∠1,∠7=∠5.∴∠1+∠7+∠4+∠5=2×90°=180°.∴∠2+∠6=180°-(∠1+∠4)+180°-(∠5+∠7)=180°.∴m∥n.故答案为:90°.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.23、如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角)(1)如图1,当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD.,(2)如图2,当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?(请画出图形并直接回答成立或不成立)(3)如图3,当动点P落在第③部分时,探究∠PAC,∠APB,∠PBD之间的关系,请画出图形并直接写出相应的结论.答案:(1)证明见解析.(2)不成立.(3)证明见解析.解析:(1)过点P作直线AC的平行线,易知∠1=∠PAC,∠2=∠PBD.又∵∠APB=∠1+∠2,∴∠APB=∠PAC+∠PBD.(2)不成立.(3)①当动点P在射线BA的右侧时(如图4).结论是∠PBD =∠PAC+∠APB.②当动点P在射线BA上(如图5).结论是∠PBD =∠PAC+∠APB或∠PAC =∠PBD +∠APB或∠APB=0°,∠PAC=∠PBD.③当动点P在射线BA的左侧时(如图6).结论是∠PAC =∠PBD +∠APB.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质——平行有关的几何模型.24、如图所示,在下列条件中:①∠1=∠2;②∠BAD=∠BCD;③∠3=∠4且∠ABC=∠ADC;④∠BAD+∠ABC=180°;⑤∠ABD=∠ACD;⑥∠ABC+∠BCD=180°.能判定AB∥CD的共有()个.A.2B.3C.4D.5答案:A.解析:由平行的判定知③⑥可以判定AB∥CD.考点:几何初步——相交线与平行线——平行线的判定.25、有下列四个命题:①如果两条直线都与第三条直线平行,那么这两条直线也互相平行.②两条直线被第三条直线所截,同旁内角互补.③在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也互相垂直.④在同一平面内,过一点有且只有一条直线与已知直线垂直.其中所有正确的命题是().A. ①②B. ①④C. ②③D. ③④答案:B.解析:①④正确;②两条直线被第三条直线所截,同旁内角不一定互补,需要两条直线平行;③在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行. 考点:几何初步——相交线与平行线——平行线公理及推论——平行线的判定——平行线的性质.26、如图,DB ∥FG ∥EC ,∠ABD=60°,∠ACE=30°,AP 平分∠BAC ,求∠PAG 的度数.A.11°B.12°C.13°D.14°答案:B.解析:由DB ∥FG ∥EC.可得∠BAC=∠BAG+∠CAG=∠DBA+∠ACE=60°+36°=96°.由AP 平分∠BAC 得∠CAP=12∠BAC=12×96°=48°. 由FG ∥EC 得∠GAC=∠ACE=36°.∴∠PAG=48°-36°=12°.考点:几何初步——相交线与平行线——平行线——平行有关的几何模型.27、如图,AB ∥CD ,且∠BAP=60°-α,∠APC=45°+α,∠PCD=30°-α,则α=( ).A.10°B.15°C.20°D.30°答案:B.解析:得∠APC=∠BAP+∠DCP .∴45°+α=60°-α+30°-α.解得:α=15°.考点:几何初步——相交线与平行线——平行线的性质.28、已知,如图,AB∥CD,直线α交AB、CD分别于点E、F,点M在线段EF点上,P是直线CD 上的一个动点,(点P不与F重合).(1)当点P在射线FC上移动时,∠FMP、∠FPM和∠AEF之间的数量关系是:.(2)当点P在射线FD上移动时,∠FMP、∠FPM和∠AEF之间的数量关系是:. 答案:(1)∠FMP+∠FPM=∠AEF.(2)∠FMP+∠FPM+∠AEF=180°.解析:(1)当点P在射线FC上移动时.∵AB∥CD.∴∠AEF+∠CFE=180°.又∵∠FMP+∠FPM+∠CFE=180°.∴∠FMP+∠FPM=∠AEF.(2)当点P在射线FD上移动时.∵AB∥CD.∴∠AEF=∠MFD.又∵∠FMP+∠FPM+∠CFE=180°.∴∠FMP+∠FPM+∠AEF=180°.考点:几何初步——相交线与平行线——平行线的性质.。

七年级数学平行线试卷

七年级数学平行线试卷

一、选择题(每题2分,共20分)1. 下列说法正确的是:A. 在同一平面内,不相交的两条直线叫做平行线。

B. 平行线之间的距离是固定的。

C. 如果两条直线分别与第三条直线垂直,那么这两条直线也垂直。

D. 平行线的夹角是直角。

2. 下列图形中,存在平行线的是:A. 一个等腰三角形B. 一个正方形C. 一个等边三角形D. 一个不规则四边形3. 如果一条直线被一条斜线所截,那么截得的两个角互为补角的条件是:A. 两个角都是直角B. 两个角都是锐角C. 两个角都是钝角D. 两个角都是邻补角4. 在下列各对角中,属于同位角的是:A. ∠A和∠BB. ∠A和∠DC. ∠B和∠CD. ∠C和∠D5. 下列命题中,正确的是:A. 如果两条直线平行,那么它们的对应角相等。

B. 如果两条直线平行,那么它们的同位角互补。

C. 如果两条直线平行,那么它们的内错角相等。

D. 如果两条直线平行,那么它们的同旁内角互补。

6. 下列图形中,能够通过平移变换得到原图形的是:A. 一个等腰三角形B. 一个矩形C. 一个正方形D. 一个等边三角形7. 如果一条直线与一组平行线相交,那么这些交点构成的图形是:A. 矩形B. 正方形C. 平行四边形D. 等腰梯形8. 下列说法正确的是:A. 平行四边形的对边平行。

B. 平行四边形的对角线互相垂直。

C. 平行四边形的对角线互相平分。

D. 平行四边形的邻角互补。

9. 下列图形中,能够通过旋转变换得到原图形的是:A. 一个等腰三角形B. 一个矩形C. 一个正方形D. 一个等边三角形10. 下列命题中,正确的是:A. 如果两条直线平行,那么它们的内错角相等。

B. 如果两条直线平行,那么它们的同旁内角互补。

C. 如果两条直线平行,那么它们的同位角相等。

D. 如果两条直线平行,那么它们的对角线互相平分。

二、填空题(每题2分,共20分)11. 在同一平面内,不相交的两条直线叫做______线。

12. 平行线的夹角是______度。

平行线 单元测试卷 2022-2023学年浙教版数学七年级下册

平行线 单元测试卷 2022-2023学年浙教版数学七年级下册

第1章 平行线 单元测试卷一、单选题(共10题;共30分)1. 如图,直线a ∥b ,∠1=50°,∠2=30°,则∠3的度数为( )A. 30°B. 50°C. 80°D. 100°2. 一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向平行行驶,那么这两个拐弯的角度可能是( )A. 先向左转130°,再向左转50°B. 先向左转50°,再向右转50°C. 先向左转50°,再向右转40°D. 先向左转50°,再向左转40°3. 下列图形中1∠与2∠是内错角的是A. B. C.D.4. 如图,以下条件能判定GE CH ∥的是( )A. ∠FEB =∠ECDB. ∠AEG =∠DCHC. ∠GEC =∠HCFD. ∠HCE =∠AEG5. 如图,有一块含有30°角的直角三角形板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )A. 14°B. 15°C. 16°D. 17°6. 如图,在“A”字型图中,AB 、AC 被DE 所截,则ADE ∠与DEC ∠是( )A. 内错角B. 同旁内角C. 同位角D. 对顶角7. 如图,AD 是∠EAC 的平分线,AD ∥BC ,∠B =30°,则∠C 为( )A. 30°B. 60°C. 80°D. 120°8. 如图,给出了过直线AB 外一点P ,作已知直线AB 的平行线的方法,其依据是( )A. 同位角相等,两直线平行B. 内错角相等,两直线平行C. 同旁内角互补,两直线品行D. 过直线外一点有且只有一条直线与这条直线平行9. 如图,直线l 1∥l 2,AB 与直线l 1垂直,垂足为点B ,若∠ABC=37°,则∠EFC的度数为( )A. 127°B. 133°C. 137°D. 143°10. 有下列说法:①三角形ABC在平移的过程中,对应线段一定相等;②三角形ABC在平移的过程中,对应线段一定平行;③三角形ABC在平移的过程中,周长不变;④三角形ABC在平移的过程中,面积不变.其中正确的有( )A. ①②③B. ①②④C. ①③④D. ②③④二、填空题(共6题;共24分)11. 如图所示,与∠C构成同旁内角的有___________个.12. 如图,已知∠1=∠2,则图中互相平行的线段是___________;理由是:__________________________.13. 如图a是长方形纸带,∠DEF=25°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是____________°.14. 如图,三角形ABC经过平移得到三角形DEF,那么图中平行且相等的线段有_____对;若∠BAC=50°,则∠EDF=_____.15. 如图,直线a∥b,∠BAC的顶点A在直线a上,且∠BAC=100°.若∠1=34°,则∠2=_____°.16. 如图,现给出下列条件:①∠1=∠2,②∠B=∠5,③∠3=∠4,④∠5=∠D,⑤∠B+∠BCD=180°,其中能够得到AD∥BC的条件是______(填序号);能够得到AB∥CD的条件是_______.(填序号)三、解答题(共8题;共66分)17. 如图,李老师在黑板上画了一个图形,请你在这个图形中分别找出角A的一个同位角、内错角和同旁内角,并指出是哪两条直线被哪条直线所截形成的.18. 如图,MF⊥NF于F,MF交AB于点E,NF交CD于点G,∠1=140°,∠=︒,试判断AB和CD的位置关系,并说明理由.25019. 如图,张三打算在院落里种上蔬菜,已知院落为东西长32m,南北宽20m的长方形,为了行走方便,要修筑同样宽的三条道路:东西两条,南北一条,南北道路垂直于东西道路,余下的部分要分别种上西红柿、青椒、菜豆、黄瓜等蔬菜,若每条道路的宽均为1m,求蔬菜的总种植面积是多少?20. 如图,已知AB∥CD∥EF,PS ⊥ GH交GH于P.在∠FRG=110°时,求∠PSQ.21. 如图,B处在A处的南偏西42°的方向,C处在A处的南偏东16°的方向,C 处在B处的北偏东72°的方向,求从C处观测A、B两处的视角∠ACB的度数.22. 如图,已知AB∥CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN 的度数.23. 如图,E 点为DF 上的点,B 为AC 上的点,12C D ∠=∠∠=∠,,求证:(1)BD CE∥(2)DF AC∥24. 如图,直线l 1∥l 2,∠BAE =125°,∠ABF =85°,则∠1+∠2等于多少度?第1章平行线单元测试卷一、单选题(共10题;共30分)【1题答案】【答案】D【解析】【分析】利用平角的定义求出∠4=100°,再利用平行线的性质可得出结果.【详解】∵∠1=50°,∠2=30°,∴∠4=100°,∵a∥b,∴∠3=∠4=100°,故选D.【点睛】本题考查了平行线的性质,解题的关键是:两直线平行,同位角相等.【2题答案】【答案】B【解析】【详解】根据同位角相等,两直线平行,可得B.【3题答案】【答案】A【解析】【详解】A. <2与<1是内错角,故此选项正确;B. <2与<1的对顶角是内错角,故此选项错误;C. <2与<1 是同旁内角,故此选项错误;D. <2与<1的邻补角是内错角,故此选项错误;故选A.点睛:本题主要考查的知识点为内错角,两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角.掌握内错角的定义是解答本题的关键.【4题答案】【答案】C【解析】【详解】解:∠FEB=∠ECD,∠AEG=∠DCH,∠HCE=∠AEG,它们不是直线∥;GE、CH被某条直线截得的同位角或内错角,不能判定GE CH∵∠GEC=∠HCF.且它们是直线GE、CH被直线EC截得的内错角.∥∴GE CH故选C.【5题答案】【答案】C【解析】【分析】依据∠ABC=60°,∠2=44°,即可得到∠EBC=16°,再根据BE∥CD,即可得出∠1=∠EBC=16°.【详解】如图,∵∠ABC=60°,∠2=44°,∴∠EBC=16°,∵BE∥CD,∴∠1=∠EBC=16°,故选C.【点睛】考查了平行线的性质,解题时注意:两直线平行,内错角相等.【6题答案】【答案】A【解析】【详解】试题分析:如图,∠ADE与∠DEC是AB、AC被DE所截的内错角.故选A.考点:同位角、内错角、同旁内角.点评:正确记忆内错角的定义是解决本题的关键.【7题答案】【答案】A【解析】【分析】根据两直线平行,同位角相等可得∠EAD=∠B,再根据角平分线的定义求出∠EAC,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:∵AD∥BC,∠B=30°,∴∠EAD=∠B=30°,∵AD是∠EAC的平分线,∴∠EAC=2∠EAD=2×30°=60°,∴∠C=∠EAC﹣∠B=60°﹣30°=30°,故选:A.【点睛】本题主要考查平行线的性质及角平分线的定义,熟练掌握平行线的性质及角平分线的定义是解题的关键.【8题答案】【答案】A【解析】【分析】由平行线的画法可知,∠2与∠1相等,根据图形判断出∠2与∠1的位置关系,由此可得答案.【详解】解:由平行线的画法可知,∠2与∠1相等,且∠2与∠1是一对同位角,所以画法的依据是:同位角相等,两直线平行.故选A.【点睛】本题考查的是平行线的原理,熟练掌握平行线的判定方法是解答本题的关键.【9题答案】【答案】A【解析】【详解】因为AB与直线l1垂直,垂足为点B,∠ABC=37°,所以∠CBD=90°-∠ABC=53°;又因为直线l1∥l2,所以∠CBD=∠BFG=53°(两直线平行,同位角相等),所以∠EFC=180°-∠BFG=127°.故选A【10题答案】【答案】C【解析】【详解】①∵平移不改变图形的大小,∴△ABC在平移过程中,对应线段一定相等,故正确;②∵经过平移,对应线段所在的直线共线或平行,∴对应线段一定平行错误;③∵平移不改变图形的形状和大小,∴△ABC在平移过程中,周长不变,故正确;④∵平移不改变图形的形状和大小且对应角相等,∴△ABC在平移过程中,面积不变,故正确;∴①、③、④都符合平移的基本性质,都正确.故选C.二、填空题(共6题;共24分)【11题答案】【答案】3【解析】【分析】据图形和同旁内角的定义,可知∠C构成同旁内角的有∠EBC、∠DBC、∠BDC,共3个.【详解】AC把EB、DC相截,与∠C构成同旁内角的有∠EBC;AC把BD、DC相截,与∠C构成同旁内角的有∠DBC;DC把BD、BC相截,与∠C构成同旁内角的有∠BDC;共3个.答案为3.【点睛】本题主要考查同旁内角的定义,注意区分同位角、内错角、同旁内角的差别.【12题答案】【答案】①. AD∥BC②. 内错角相等,两直线平行【解析】【详解】解:∵∠1=∠2,∴AD∥BC(内错角相等,两直线平行).故答案为AD∥BC,内错角相等,两直线平行.【13题答案】【答案】105°【解析】【详解】由图a知,∠EFC=155°.图b中,∠EFC=155°,则∠GFC=∠EFC-∠EFG=155°-25°=130°.图c中,∠GFC=130°,则∠CFE=130°-25°=105°.故答案为105°.点睛:在长方形的折叠问题中,因为有平行线和角平分线,所以存在一个基本的图形等腰三角形,即图b中的等腰△CEF,其中CE=CF,这个等腰三角形是解决本题的关键所在.【14题答案】【答案】①. 6,②. 50°【解析】【分析】【详解】试题分析:根据平移的性质直接得出对应边平行且相等,对应角相等得出答案即可.解:∵三角形ABC经过平移得到三角形DEF,∴图中平行且相等的线段有:AB DE,AC DF,CB FE,AD BE,EB CF,AD CF,一共有六对,∵∠BAC=50°,∴∠EDF=50°.故答案为6,50°.点评:此题主要考查了平移的性质,熟练掌握平移的性质得出是解题关键.【15题答案】【答案】46【解析】【分析】根据平行线的性质和平角的定义即可得到结论.【详解】解:∵直线a∥b,∴∠3=∠1=34°,∵∠BAC=100°,∴∠2=180°−34°−100°=46°,故答案为:46.【16题答案】【答案】①. ①④②. ②③⑤【解析】【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,据此进行判断即可.【详解】解:∵①∠1=∠2,∴AD∥BC;②∵∠B=∠5,∴AB∥DC;③∵∠3=∠4,∴AB∥CD;④∵∠5=∠D,∴AD∥BC;⑤∵∠B+∠BCD=180°,∴AB∥CD,∴能够得到AD∥BC的条件是①④,能够得到AB∥CD的条件是②③⑤,故答案为①④,②③⑤.【点睛】本题考查的是平行线的判定,熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解答此题的关键.三、解答题(共8题;共66分)【17题答案】【答案】见解析【解析】【详解】分析:根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角进行分析即可.详解:∠A的同位角是∠BCE,是直线AB、BC被AE所截而成;∠A的内错角是∠ACF,是直线AB、GF被AC所截而成;∠A的同旁内角是∠B,是直线AC、BC被AB所截而成.点睛:此题主要考查了三线八角,关键是掌握同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.【18题答案】【答案】AB ∥CD ,理由见解析【解析】【分析】延长MF 交CD 于点H ,利用平行线的判定证明.【详解】解:延长MF 交CD 于点H ,∵∠1=90°+∠CHF ,∠1=140°,∠2=50°,∴∠CHF =140°-90°=50°,∴∠CHF =∠2,∴AB ∥CD .【点睛】本题主要考查了平行线的判定和外角定理,解题的关键是作出适当的辅助线求解.【19题答案】【答案】558【解析】【详解】试题分析:从平移的角度考虑本题,只需要将道路平移到边上去,即可求出总面积.试题解析:如图,将三条道路都平移到边上去,则空白部分的面积(即蔬菜的总种植面积)不变,因此,蔬菜的总种植面积为:()()()22021321558m -⨯-=.答:蔬菜的总种植面积是558平方米.【20题答案】【答案】∠PSQ=20°.【解析】【分析】首先利用平行线,垂线的定义和性质,然后根据平行线的性质求出∠APR=110°,∠APS =20°,再利用平行线的性质即可解题.【详解】∵AB∥EF,∴∠FRG=∠APR,∵∠FRG=110°,∴∠APR=110°,又∵PS⊥GH,∴∠SPR=90°,∴∠APS=∠APR-∠SPR=20°,∵AB∥CD,∴∠PSQ=∠APS=20°.【点睛】本题考查了平行线的性质,垂线的性质,中等难度,熟悉平行线的性质是解题关键.【21题答案】【答案】∠ACB=92°.【解析】【详解】试题分析:根据方向角的定义,即可求得∠EBA,∠EBC,∠DAC的度数,然后根据三角形内角和定理即可求解.试题解析:如图,∵AD,BE是正南正北方向,∴BE∥AD,∵∠EBA=42°,∴∠BAD=∠EBA=42°,∵∠DAC=16°,∴∠BAC=∠BAD+∠DAC=42°+16°=58°,又∵∠EBC=72°,∴∠ABC=72°-42°=30°,∴∠ACB=180°-∠ABC-∠BAC=180°-58°-30°=92°.【点睛】本题主要考查了方向角的定义,以及三角形的内角和定理,正确理解定义是解题的关键.【22题答案】【答案】32.5°.【解析】【详解】试题分析:已知AB ∥CD ,∠B =65°,根据平行线的性质可求得∠BCE =115°;再由角平分线的定义求得∠ECM 的度数,即可求得∠DCN 的度数.试题解析:∵ AB ∥CD ,∴ ∠B +∠BCE =180°(两直线平行,同旁内角互补)∵ ∠B =65°,∴ ∠BCE =115°∵ CM 平分∠BCE ,∴ ∠ECM =∠BCE =57.5°∵ ∠ECM +∠MCN +∠NCD =180°,∠MCN =90°∴ ∠NCD =180°-∠ECM -∠MCN =180°-57.5°-90°=32.5°.点睛:本题主要考查了角平分线的定义,两直线平行同旁内角互补这一性质,题目较为简单,属于基础题.【23题答案】【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)先由对顶角相等,得到:14∠=∠,然后根据等量代换得到:24∠∠=,然后根据同位角相等两直线平行,得到BD CE ∥;(2)根据两直线平行,同位角相等,得到C DBA ∠=∠,然后根据等量代换得到:D DBA ∠=∠,最后根据内错角相等两直线平行,即可得到DF AC ∥.【小问1详解】∵14∠=∠,12∠=∠,∴24∠∠=,∴BD CE ∥;【小问2详解】∵BD CE∥∴C DBA ∠=∠,∵C D ∠=∠,∴D DBA ∠=∠,∴DF AC ∥.【点睛】本题主要考查了平行线的性质与判定,对顶角相等,熟知平行线的性质与判定条件是解题的关键.【24题答案】【答案】30°.【解析】【分析】过点A 作l 1的平行线,过点B 作l 2的平行线,根据两直线平行,内错角相等可得∠3=∠1,∠4=∠2,再根据两直线平行,同旁内角互补求出∠CAB+∠ABD=180°,然后计算即可得解.【详解】解:如图,过点A 向左作AC ∥l 1,过点B 向左作BD ∥l 2,则∠1=∠3,∠2=∠4.因为l 1∥l 2,所以AC ∥B D.所以∠CAB +∠DBA =180°.又因为∠3+∠4+∠CAB +∠DBA =125°+85°=210°,所以∠3+∠4=30°.所以∠1+∠2=30°.【点睛】本题考查平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.熟记性质并作辅助线是解题关键.。

2022-2023学年人教版七年级数学下册《5-2平行线及其判定》同步练习题(附答案)

2022-2023学年人教版七年级数学下册《5-2平行线及其判定》同步练习题(附答案)

2022-2023学年人教版七年级数学下册《5.2平行线及其判定》同步练习题(附答案)一.选择题1.在下列4个判断中:①在同一平面内,不相交也不重合的两条线段一定平行;②在同一平面内,不相交也不重合的两条直线一定平行;③在同一平面内,不平行也不重合的两条线段一定相交;④在同一平面内,不平行也不重合的两条直线一定相交.正确判断的个数是()A.4B.3C.2D.12.如图,∠1和∠2分别为直线l3与直线l1和l2相交所成角.如果∠1=62°,那么添加下列哪个条件后,可判定l1∥l2()A.∠2=118°B.∠4=128°C.∠3=28°D.∠5=28°3.若将一副三角板按如图所示的方式放置,则下列结论正确的是()A.∠1=∠2B.如果∠2=30°,则有AC∥DEC.如果∠2=45°,则有∠4=∠D D.如果∠2=50°,则有BC∥AE4.如图,下列条件:①∠1=∠2;②∠4=∠5;③∠2+∠5=180°;④∠1=∠3;⑤∠6=∠1+∠2;其中能判断直线l1∥l2的有()A.5个B.4个C.3个D.2个5.在同一个平面内,不相邻的两个直角,如果它们有一条边共线,那么另一边互相()A.平行B.垂直C.共线D.平行或共线6.如图1,A、B两个村庄在一条河l(不计河的宽度)的两侧,现要建一座码头,使它到A、B两个村庄的距离之和最小.如图2,连接AB,与l交于点C,则C点即为所求的码头的位置,这样做的理由是()A.垂线段最短B.两点确定一条直线C.两点之间,线段最短D.平行于同一条直线的两条直线平行7.如图,①∠B+∠BFE=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5.能判定AB∥EF 的条件有()A.1个B.2个C.3个D.4个8.下列画出的直线a与b不一定平行的是()A.B.C.D.二.填空题9.在同一平面内,直线a、b、c中,若a⊥b,b∥c,则a、c的位置关系是.10.如图,用直尺和三角尺作出直线AB、CD,得到AB∥CD的理由是.11.如图,共有组平行线段.12.一副三角板按如图所示叠放在一起,其中点B、D重合,若固定三角形AOB,改变三角板ACD的位置(其中A点位置始终不变),当∠BAD=时,CD∥AB.13.下列四种说法:①过一点有且只有一条直线与已知直线平行;②在同一平面内,两条不相交的线段是平行线段;③相等的角是对顶角;④在同一平面内,若直线AB∥CD,直线AB与EF相交,则CD与EF相交.其中,错误的是(填序号).14.如图:PC∥AB,QC∥AB,则点P、C、Q在一条直线上.理由是:.三.解答题15.如图所示,在∠AOB内有一点P.(1)过P画l1∥OA;(2)过P画l2∥OB;(3)用量角器量一量l1与l2相交的角与∠O的大小有怎样关系?16.如图,AD⊥BC于D,EF⊥BC于F,∠1=∠2,AB与DG平行吗?为什么?17.证明:两直线平行,同位角的角平分线互相平行.18.如图1,已知AC∥BD,点P是直线AC,BD间的一点,连接AB,AP,BP,过点P作直线MN∥AC.(1)MN与BD的位置关系是什么,请说明理由;(2)试说明∠APB=∠PBD+∠P AC;(3)如图2,当点P在直线AC上方时,(2)中的三个角的数量关系是否仍然成立?如果成立,试说明理由;如果不成立,试探索它们存在的关系,并说明理由.19.如图,如果CD∥AB,CE∥AB,那么C,D,E三点是否共线?你能说明理由吗?20.如图,已知∠1+∠2=180°,∠3=∠B,求证:DE∥BC.21.如图,已知∠A=∠AGE,∠D=∠DGC.(1)求证:AB∥CD;(2)若∠2+∠1=180°,且∠BEC=2∠B+30°,求∠C的度数.22.将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°):(1)若∠DCE=35°,求∠ACB的度数;(2)猜想∠ACB与∠DCE的数量关系,并说明理由;(3)请你动手操作,现将三角尺ACD固定,三角尺BCE的CE边与CA边重合,绕点C 顺时针方向旋转,当0°<∠ACE<180°且点E在直线AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ACE角度所有可能的值(不必说明理由);若不存在,请说明理由.参考答案一.选择题1.解:在同一平面内,不相交也不重合的两条直线一定平行,故①错误,②正确;在同一平面内,不平行也不重合的两条直线一定相交故,③错误,④正确.故正确判断的个数是2.故选:C.2.解:∠1=62°,要使l1∥l2,则需∠3=62°(同位角相等,两直线平行),由图可知,∠2与∠3是邻补角,则只需∠2=180°﹣62°=118°,故选:A.3.解:∵∠CAB=∠DAE=90°,∴∠1=∠3,故A错误.∵∠2=30°,∴∠1=∠3=60°∴∠CAE=90°+60°=150°,∴∠E+∠CAE=180°,∴AC∥DE,故B正确,∵∠2=45°,∴∠1=∠2=∠3=45°,∵∠E+∠3=∠B+∠4,∴∠4=30°,∵∠D=60°,∴∠4≠∠D,故C错误,∵∠2=50°,∴∠3=40°,∴∠B≠∠3,∴BC不平行AE,故D错误.故选:B.4.解:①∵∠1=∠2不能得到l1∥l2,故本条件不合题意;②∵∠4=∠5,∴l1∥l2,故本条件符合题意;③∵∠2+∠5=180°不能得到l1∥l2,故本条件不合题意;④∵∠1=∠3,∴l1∥l2,故本条件符合题意;⑤∵∠6=∠2+∠3=∠1+∠2,∴∠1=∠3,∴l1∥l2,故本条件符合题意.故选:C.5.解:如图所示:不相邻的两个直角,如果它们有一条边共线,内错角相等,或同旁内角互补,那么另一边互相平行或共线.故选:D.6.解:由题意得,这样做的理由是:两点之间线段最短,故选:C.7.解:①当∠B+∠BFE=180°时,由同旁内角互补,两直线平行得AB∥EF,故①符合题意;②当∠1=∠2时,由内错角相等,两直线平行得DE∥BC,故②不符合题意;③当∠3=∠4时,由内错角相等,两直线平行得AB∥EF,故③符合题意;④当∠B=∠5时.由同位角相等,两直线平行得AB∥EF,故④符合题意;综上所述,能判定AB∥EF的有3个.故选:C.8.解:A.直线a与b不一定平行,故本选项符合题意;B.根据同旁内角互补,两直线平行可得a∥b,故本选项不符合题意;C.根据平行线的定义可得a∥b,故本选项不符合题意;D.根据同位角相等,两直线平行可得a∥b,故本选项不符合题意;故选:A.二.填空题9.解:∵c∥b,a⊥b,∴c⊥a.故答案为c⊥a10.解:用直尺和三角尺作出直线AB、CD,得到AB∥CD的理由是同位角相等,两直线平行;故答案为:同位角相等,两直线平行.11.解:图中的平行线段有AD∥EF;BD∥EF;DE∥FB;DE∥FC;DF∥AE;DF∥EC;DE∥BC;DF∥AC;EF∥AB.共有9对.故答案为:9.12.解:如图所示:当CD∥AB时,∠BAD=∠D=30°;如图所示,当AB∥CD时,∠C=∠BAC=60°,∴∠BAD=60°+90°=150°;故答案为:150°或30°.13.解:∵过直线外一点有且只有一条直线与已知直线平行,∴①错误;∵在同一平面内,两条不相交的线段可能在一条直线上,说两线段是平行线段不对,∴②错误;∵相等的角不一定是对顶角,∴③错误;∵在同一平面内,若直线AB∥CD,直线AB与EF相交,则CD与EF相交,正确,∴④正确;故答案为:①②③.14.解:∵PC∥AB,QC∥AB,∵PC和CQ都过点C,∴P、C、Q在一条直线上(过直线外一点有且只有一条直线与已知直线平行),故答案为:过直线外一点有且只有一条直线与已知直线平行.三.解答题15.解:(1)(2)如图所示,(3)l1与l2夹角有两个:∠1,∠2;∠1=∠O,∠2+∠O=180°,所以l1和l2的夹角与∠O相等或互补.16.解:结论:AB∥DG.理由:∵AD⊥BC于D,EF⊥BC于F,∴AD∥EF,∴∠1=∠BAD,∵∠1=∠2,∴∠BAD=∠2,∴AB∥DG.17.解:已知:如图,AB∥CD,HI与AB,CD分别交于点M、N,EM,FN分别是∠AMH,∠CNH的平分线.求证:EM∥FN.证明:∵AB∥CD,∴∠AMH=∠CNH(两直线平行,同位角相等),∵EM,FN分别是∠AMH,∠CNH的平分线,∴∠1=∠AMH,∠2=∠CNH,∴∠1=∠2,∴EM∥FN(同位角相等,两直线平行).18.解:(1)平行;理由如下:∵AC∥BD,MN∥AC,∴MN∥BD;(2)∵AC∥BD,MN∥BD,∴∠PBD=∠1,∠P AC=∠2,∴∠APB=∠1+∠2=∠PBD+∠P AC.(3)答:不成立.它们的关系是∠APB=∠PBD﹣∠P AC.理由是:如图2,过点P作PQ∥AC,∵AC∥BD,∴PQ∥AC∥BD,∴∠P AC=∠APQ,∠PBD=∠BPQ,∴∠APB=∠BPQ﹣∠APQ=∠PBD﹣∠P AC.19.解:共线.因为过直线AB外一点C有且只有一条直线与AB平行,CD、DE都经过点C且与AB平行,所以点C、D、E三点共线.20.证明:∵∠1+∠2=180°(已知)∵∠1=∠4(对顶角相等)∴∠2+∠4=180°(等量代换)∴AB∥EF(同旁内角互补,两直线平行)∴∠3=∠ADE(两直线平行,内错角相等)又∵∠3=∠B(已知)∴∠B=∠ADE(等量代换)∴DE∥BC(同位角相等,两直线平行)21.证明:(1)∵∠A=∠AGE,∠D=∠DGC,又∵∠AGE=∠DGC,∴∠A=∠D,∴AB∥CD;(2)∵∠1+∠2=180°,又∵∠CGD+∠2=180°,∴∠CGD=∠1,∴CE∥FB,∴∠C=∠BFD,∠CEB+∠B=180°.又∵∠BEC=2∠B+30°,∴2∠B+30°+∠B=180°,∴∠B=50°.又∵AB∥CD,∴∠B=∠BFD,∴∠C=∠BFD=∠B=50°.22.解:(1)∵∠ECB=90°,∠DCE=35°,∴∠DCB=90°﹣35°=55°,∴∠ACB=∠ACD+∠DCB=90°+55°=145°;(2)∠ACB+∠DCE=180°,理由:∵∠ACB=∠ACD+∠DCB=90°+∠DCB,∴∠ACB+∠DCE=90°+∠DCB+∠DCE=90°+90°=180°;(3)存在,当∠ACE=30°时,AD∥BC,当∠ACE=∠E=45°时,AC∥BE,当∠ACE=120°时,AD∥CE,当∠ACE=135°时,BE∥CD,当∠ACE=165°时,BE∥AD.。

七年级数学平行线真题试卷

七年级数学平行线真题试卷

一、选择题(每题3分,共30分)1. 下列各组图形中,一定存在平行线的是()A. 等腰梯形B. 等边三角形C. 长方形D. 一般的四边形2. 已知直线l和直线m相交于点O,如果∠AOC和∠BOD是同位角,那么下列结论正确的是()A. OA和OB平行B. OC和OD平行C. 直线l和直线m平行D. 无法确定3. 在平行四边形ABCD中,如果∠A=60°,那么∠C的度数是()A. 60°B. 120°C. 180°D. 300°4. 下列命题中,正确的是()A. 两条直线相交,且有一个角是直角,那么这两条直线一定垂直B. 两条平行线被第三条直线所截,同位角相等C. 两条平行线被第三条直线所截,内错角相等D. 两条平行线被第三条直线所截,同旁内角互补5. 在△ABC中,如果∠A=∠B,那么下列结论正确的是()A. BC和AC平行B. AB和AC平行C. AB和BC平行D. 无法确定6. 下列图形中,不满足同位角相等条件的是()A. 等腰梯形B. 等边三角形C. 长方形D. 一般的四边形7. 已知直线l和直线m相交于点O,如果∠AOB和∠COD是同旁内角,那么下列结论正确的是()A. OA和OC平行B. OB和OD平行C. 直线l和直线m平行D. 无法确定8. 在平行四边形ABCD中,如果AD=BC,那么下列结论正确的是()A. AB和CD平行B. BC和AD平行C. AB和CD垂直D. BC和AD垂直9. 下列命题中,正确的是()A. 两条直线相交,且有一个角是直角,那么这两条直线一定垂直B. 两条平行线被第三条直线所截,同位角相等C. 两条平行线被第三条直线所截,内错角相等D. 两条平行线被第三条直线所截,同旁内角互补10. 在△ABC中,如果∠A=∠B,那么下列结论正确的是()A. BC和AC平行B. AB和AC平行C. AB和BC平行D. 无法确定二、填空题(每题5分,共20分)11. 如果两条直线被第三条直线所截,同位角相等,那么这两条直线__________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.8平行线(1)平行线
◆随堂检测
1、在同一平面内,两条直线可能的位置关系是()
A、平行
B、相交
C、相交或平行
D、垂直
2、下列说法中错误的有()个
(1)两条不相交的直线叫做平行线
(2)经过直线外一点,能够画出一条直线与已知直线平行,并且只能画出一条
(3)如果a//b,b//c,则a//c
(4)两条不平行的射线,在同一平面内一定相交
A、0
B、1
C、2
D、3
3、经过已知直线外一点,有且只有______条直线与已知直线平行。

4、请举出一个生活中平行线的例子:。

5、如果a//b,b//c,则 a c,根据是。

◆典例分析
例:如图,按要求画图:过P点作PQ//AB交AC与O,作PM//AC交AB于N。

A
P
B C
解:
评析:画平行线的关键是:1、过哪个点画;2、画的线和哪条线平行。

◆课下作业
●拓展提高
1、在同一平面内,直线l和k,满足下列条件,写出对应的位置关系:
l和k没有公共点,则l和k的关系是;l和k只有一个公共点,则l和k的关系是。

2、如果MN//AB,AC//MN,则点C在上。

3、直线n
m、为空间内的两条直线,它们的位置关系是()A、平行 B、相交 C、异面 D、平行、相交或异面
4、在同一平面内的三条直线,如果要使其中两条且只有两条平行,那么它们()
A、有三个交点
B、只有一个交点
C、有两个交点
D、没有交点
5、在同一平面内,直线n
m、相交于点O,且n
l//,则直线l和m的关系是()
A、平行
B、相交
C、重合
D、以上都有可能
6、两条射线平行是指()
A、两条射线都是水平的
B、两条射线都在同一直线上且方向相同
C、两条射线方向相反
D、两条射线所在直线平行
7、作图:在梯形ABCD中,上底、下底分别为AD、BC,点M为AB中点,
(1)过M点作MN//AD交CD于N;
(2)MN和BC平行吗?为什么?
(3)用适当的方法度量并比较NC和ND的大小关系。

B C
●体验中考
1、(2008年广东肇庆中考题改编)如图,在长方体中,与棱AD 平行的棱有_________条。

2、(2018年四川绵阳中考题改编)在同一平面内,有12条互不重合的直线,,,,12321l l l l 若21l l ⊥,2l ∥3l ,43l l ⊥,4l ∥5l ……以此类推,则1l 和12l 的位置关系是( )
A 、平行
B 、垂直
C 、平行或垂直
D 、无法确定
A B C
D
D A
B C
参考答案:
◆随堂检测
1、C
2、C
3、一
4、黑板的上下沿等
5、//,平行于同一直线的两直线平行
◆课下作业
●拓展提高
1、平行,相交
2、直线AB上
3、D
4、C
5、B
6、D
7、(1)
(2)平行。

因为平行于同一直线的两直线平行。

(3)相等。

●体验中考
1、3
2、A。

相关文档
最新文档