数学选择性必修一 模块综合检测
高中数学模块综合检测新人教A版选择性必修第一册

模块综合检测(时间:120分钟,满分150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设x ,y ∈R ,向量a =(x,1,1),b =(1,y,1),c =(2,-4,2),a ⊥c ,b ∥c ,则|a +b |=( )A .2 2B .10C .3D .4【答案】C【解析】∵b ∥c ,∴y =-2.∴b =(1,-2,1).∵a ⊥c ,∴a ·c =2x +1·()-4+2=0,∴x =1.∴a =(1,1,1).∴a +b =(2,-1,2).∴|a +b |=22+-12+22=3.2.如图,在空间四边形ABCD 中,设E ,F 分别是BC ,CD 的中点,则AD →+12(BC →-BD →)等于( )A .AD →B .FA →C .AF →D .EF →【答案】C【解析】∵BC →-BD →=DC →,12(BC →-BD →)=12DC →=DF →,∴AD →+12(BC →-BD →)=AD →+DF →=AF →.3.若直线l 1:mx +2y +1=0与直线l 2:x +y -2=0互相垂直,则实数m 的值为( ) A .2 B .-2 C .12 D .-12【答案】B【解析】直线l 1:y =-m 2x -12,直线l 2:y =-x +2,又∵直线l 1与直线l 2互相垂直,∴-m2×(-1)=-1,即m =-2.4.已知直线l :x -2y +a -1=0与圆(x -1)2+(y +2)2=9相交所得弦长为4,则a =( )A .-9B .1C .1或-2D .1或-9【答案】D【解析】由条件得圆的半径为3,圆心坐标为(1,-2),因为直线l :x -2y +a -1=0与圆(x -1)2+(y +2)2=9相交所得弦长为4,所以9-⎝ ⎛⎭⎪⎫422=⎝ ⎛⎭⎪⎫|1+4+a -1|52,所以a 2+8a -9=0,解得a =1或a =-9.5.已知M (x 0,y 0)是双曲线C :x 2a 2-y 2b2=1上的一点,半焦距为c ,若|MO |≤c (其中O 为坐标原点),则y 20的取值范围是( )A .⎣⎢⎡⎦⎥⎤0,b 4c 2 B .⎣⎢⎡⎦⎥⎤0,a 4c 2C .⎣⎢⎡⎭⎪⎫b 4c 2,+∞ D .⎣⎢⎡⎭⎪⎫a 2c 2,+∞ 【答案】A【解析】因为|MO |≤c ,所以|MO |≤a 2+b 2,所以x 20+y 20≤a 2+b 2,又因为x 20a 2-y 20b2=1,消去x 2得0≤y 20≤b 4a 2+b 2,所以0≤y 20≤b 4c2.6.已知椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),焦距为2c ,直线l :y =24x 与椭圆C 相交于A ,B 两点,若|AB |=2c ,则椭圆C 的离心率为( )A .32B .34C .12D .14【答案】A【解析】设直线与椭圆在第一象限内的交点为A (x ,y ),则y =24x ,由|AB |=2c ,可知|OA |=x 2+y 2=c ,即x 2+⎝⎛⎭⎪⎫24x 2=c ,解得x =223c ,所以A ⎝ ⎛⎭⎪⎫223c ,13c .把点A 代入椭圆方程得到⎝ ⎛⎭⎪⎫223c 2a2+⎝ ⎛⎭⎪⎫13c 2b2=1,整理得8e 4-18e 2+9=0,即(4e 2-3)(2e 2-3)=0,因为0<e <1,所以可得e =32. 7.在空间直角坐标系Oxyz 中,O (0,0,0),E (22,0,0),F (0,22,0),B 为EF 的中点,C 为空间一点且满足|CO →|=|CB →|=3,若cos 〈EF →,BC →〉=16,则OC →·OF →=( )A .9B .7C .5D .3【答案】D【解析】设C (x ,y ,z ),B (2,2,0),OC →=(x ,y ,z ),BC →=(x -2,y -2,z ),EF →=(-22,22,0),由cos 〈EF →,BC →〉=EF →·BC→|EF →||BC →|=-22,22,0·x -2,y -2,z 4×3=16,整理可得x -y =-22,由|CO →|=|CB →|=3,得x 2+y 2=x -22+y -22,化简得x +y =2,以上方程组联立得x =24,y =324,则OC →·OF →=(x ,y ,z )·(0,22,0)=22y =3. 8.已知点M ,N 是抛物线y =4x 2上不同的两点,F 为抛物线的焦点,且满足∠MFN =135°,弦MN 的中点P 到直线l :y =-116的距离为d ,若|MN |2=λ·d 2,则λ的最小值为( )A .22B .1-22C .1+22D .2+ 2【答案】D【解析】抛物线y =4x 2的焦点F ⎝ ⎛⎭⎪⎫0,116,准线为y =-116.设|MF |=a ,|NF |=b ,由∠MFN =135°,得|MN |2=|MF |2+|NF |2-2|MF |·|NF |·cos ∠MFN =a 2+b 2+2ab .由抛物线的定义,得点M 到准线的距离为|MF |,点N 到准线的距离为|NF |.由梯形的中位线定理,得d =12(|MF |+|NF |)=12(a +b ).由|MN |2=λ·d 2,得14λ=a 2+b 2+2ab a +b 2=1-2-2aba +b 2≥1-2-2ab 2ab2=1-2-24=2+24,得λ≥2+2,当且仅当a =b 时取得最小值2+2.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知直线l :(a 2+a +1)x -y +1=0,其中a ∈R ,下列说法正确的是( ) A .当a =-1时,直线l 与直线x +y =0垂直 B .若直线l 与直线x -y =0平行,则a =0C .直线l 过定点(0,1)D .当a =0时,直线l 在两坐标轴上的截距相等 【答案】AC【解析】对于A 项,当a =-1时,直线l 的方程为x -y +1=0,显然与x +y =0垂直,所以正确;对于B 项,若直线l 与直线x -y =0平行,可知(a 2+a +1)·(-1)=1·(-1),解得a =0或a =-1,所以不正确;对于C 项,当x =0时,有y =1,所以直线过定点(0,1),所以正确;对于D 项,当a =0时,直线l 的方程为x -y +1=0,在x 轴、y 轴上的截距分别是-1,1,所以不正确.故选AC .10.已知F 1,F 2是双曲线C :y 24-x 22=1的上、下焦点,点M 是该双曲线的一条渐近线上的一点,并且以线段F 1F 2为直径的圆经过点M ,则下列说法正确的是( )A .双曲线C 的渐近线方程为y =±2xB .以F 1F 2为直径的圆的方程为x 2+y 2=2 C .点M 的横坐标为± 2 D .△MF 1F 2的面积为2 3 【答案】ACD【解析】由双曲线方程y 24-x 22=1知a =2,b =2,焦点在y 轴,渐近线方程为y =±abx =±2x ,A 正确;c =a 2+b 2=6,以F 1F 2为直径的圆的方程是x 2+y 2=6,B 错误;由⎩⎨⎧x 2+y 2=6,y =2x ,得⎩⎨⎧x =2,y =2或⎩⎨⎧x =-2,y =-2,由对称性知点M 横坐标是±2,C 正确;S △MF 1F 2=12|F 1F 2||x M |=12×26×2=23,D 正确.故选ACD .11.已知点A 是直线l :x +y -2=0上一定点,点P ,Q 是圆x 2+y 2=1上的动点,若∠PAQ 的最大值为90°,则点A 的坐标可以是( )A .(0,2)B .(1,2-1)C .(2,0)D .(2-1,1)【答案】AC【解析】如图所示,原点到直线l 的距离为d =212+12=1,则直线l 与圆x 2+y 2=1相切.由图可知,当AP ,AQ 均为圆x 2+y 2=1的切线时,∠PAQ 取得最大值.连接OP ,OQ ,由于∠PAQ 的最大值为90°,且∠APO =∠AQO =90°,|OP |=|OQ |=1,则四边形APOQ 为正方形,所以|OA |=2|OP |=2.设A (t ,2-t ),由两点间的距离公式,得|OA |=t 2+2-t2=2,整理得2t 2-22t =0,解得t =0或t =2,因此,点A 的坐标为(0,2)或(2,0).故选AC .12.关于空间向量,以下说法正确的是( )A .空间中的三个向量,若有两个向量共线,则这三个向量一定共面B .若对空间中任意一点O ,有OP →=16OA →+512OB →+512OC →,则P ,A ,B ,C 四点共面C .设{}a ,b ,c 是空间中的一组基底,则{2a ,-b ,c }也是空间的一组基底D .若a ·b <0,则〈a ,b 〉是钝角 【答案】ABC【解析】对于A 中,根据共线向量的概念,可知空间中的三个向量,若有两个向量共线,则这三个向量一定共面,所以是正确的;对于B 中,若对空间中任意一点O ,有OP →=16OA →+13OB →+12OC →,因为16+512+512=1,所以P ,A ,B ,C 四点一定共面,所以是正确的;对于C 中,由{}a ,b ,c 是空间中的一组基底,则向量a ,b ,c 不共面,可得向量2a ,-b ,c 也不共面,所以{2a ,-b ,c }也是空间的一组基底,所以是正确的;对于D 中,若a ·b <0,又由〈a ,b 〉∈[0,π],所以〈a ,b 〉∈⎝ ⎛⎦⎥⎤π2,π,所以不正确. 三、填空题:本题共4小题,每小题5分,共20分.13.在空间直角坐标系Oxyz 中,点M (1,-1,1)关于x 轴的对称点坐标是__________;|OM |=________.【答案】(1,1,-1)3【解析】在空间直角坐标系Oxyz 中,点M (1,-1,1)关于x 轴的对称点坐标是M ′(1,1,-1),|OM |=12+-12+12=3.14.(2021年惠州期末)圆C :(x -1)2+y 2=1关于直线l :x -y +1=0对称的圆的方程为______________.【答案】(x +1)2+(y -2)2=1【解析】圆C :(x -1)2+y 2=1圆心C (1,0),半径r =1,设圆C 关于直线l :x -y +1=0的对称点C ′(a ,b ),则⎩⎪⎨⎪⎧a +12-b2+1=0,ba -1=-1,解得a =-1,b =2,即圆C 的圆心关于直线l 的对称圆心为C ′(-1,2),而圆关于直线对称得到的圆的半径不变,所以所求的圆的方程为(x +1)2+(y -2)2=1.15.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,点M ,N 分别是线段BB 1,B 1C 1的中点,则直线MN 到平面ACD 1的距离为________.【答案】32【解析】如图,以点D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则D (0,0,0),C (0,1,0),D 1(0,0,1),M ⎝ ⎛⎭⎪⎫1,1,12,A (1,0,0).∴AM →=⎝⎛⎭⎪⎫0,1,12,AC→=(-1,1,0),AD 1→=(-1,0,1).设平面ACD 1的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD 1→=0,即⎩⎪⎨⎪⎧-x +y =0,-x +z =0,令x =1,则y =z =1,∴n =(1,1,1).∴点M 到平面ACD 1的距离d =|AM →·n ||n |=32.又∵MN →綉12AD 1→,∴MN ∥平面ACD 1.∴直线MN 到平面ACD 1的距离为32.16.设双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,P 为该双曲线上一点且2|PF 1|=3|PF 2|,若∠F 1PF 2=60°,则该双曲线的离心率为________.【答案】7【解析】2|PF 1|=3|PF 2|,|PF 1|-|PF 2|=2a ,故|PF 1|=6a ,|PF 2|=4a .在△PF 1F 2中,利用余弦定理得4c 2=36a 2+16a 2-2·6a ·4a cos60°,化简整理得到c =7a ,故e =7.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)在△ABC 中,A (2,-5,3),AB →=(4,1,2),BC →=(3,-2,5). (1)求顶点B ,C 的坐标; (2)求CA →·BC →.解:(1)设点O 为坐标原点,OB →=OA →+AB →=(2,-5,3)+(4,1,2)=(6,-4,5), 则B (6,-4,5).OC →=OB →+BC →=(6,-4,5)+(3,-2,5)=(9,-6,10),则C (9,-6,10).(2)AC →=AB →+BC →=(7,-1,7),则CA →=(-7,1,-7),又因为BC →=(3,-2,5),所以CA →·BC →=-7×3+1×(-2)+(-7)×5=-58. 18.(12分)菱形ABCD 的顶点A ,C 的坐标分别为A (-4,7),C (6,-5),BC 边所在直线过点P (8,-1).求:(1)AD 边所在直线的方程; (2)对角线BD 所在直线的方程.解:(1)k BC =-5--16-8=2,∵AD ∥BC ,∴k AD =2.∴AD 边所在直线的方程为y -7=2(x +4),即2x -y +15=0. (2)k AC =-5-76--4=-65.∵菱形的对角线互相垂直,∴BD ⊥AC ,∴k BD =56.∵AC 的中点(1,1),也是BD 的中点,∴对角线BD 所在直线的方程为y -1=56(x -1),即5x -6y +1=0.19.(12分)已知圆C 1:x 2+y 2-2x -6y -1=0和圆C 2:x 2+y 2-10x -12y +45=0. (1)求证:圆C 1和圆C 2相交;(2)求圆C 1和圆C 2的公共弦所在直线的方程和公共弦长. (1)证明:圆C 1的圆心C 1(1,3),半径r 1=11. 圆C 2的圆心C 2(5,6),半径r 2=4.两圆圆心距d =|C 1C 2|=5,r 1+r 2=11+4,|r 1-r 2|=4-11, ∴|r 1-r 2|<d <r 1+r 2. ∴圆C 1和圆C 2相交.(2)解:圆C 1和圆C 2的方程相减, 得4x +3y -23=0,∴两圆的公共弦所在直线的方程为4x +3y -23=0.圆心C 2(5,6)到直线4x +3y -23=0的距离d =|20+18-23|16+9=3,故公共弦长为216-9=27.20.(12分)如图,过抛物线C :x 2=2py (p >0)的焦点F 的直线交C 于M (x 1,y 1),N (x 2,y 2)两点,且x 1x 2=-4.(1)求抛物线C 的标准方程;(2)R ,Q 是C 上的两动点,R ,Q 的纵坐标之和为1,R ,Q 的垂直平分线交y 轴于点T ,求△MNT 的面积的最小值.解:(1)由题意,设直线MN 的方程为y =kx +p2,由⎩⎪⎨⎪⎧y =kx +p 2,x 2=2py ,得x 2-2pkx -p 2=0,由题意知x 1,x 2是方程两根,所以x 1x 2=-p 2=-4, 所以p =2,抛物线的标准方程为x 2=4y .(2)设R (x 3,y 3),Q (x 4,y 4),T (0,t ),因为点T 在RQ 的垂直平分线上,所以|TR |=|TQ |, 得x 23+(y 3-t )2=x 24+(y 4-t )2.因为x 23=4y 3,x 24=4y 4,所以4y 3+(y 3-t )2=4y 4+(y 4-t )2, 即4(y 3-y 4)=(y 3+y 4-2t )(y 4-y 3), 所以-4=y 3+y 4-2t .又因为y 3+y 4=1,所以t =52,故T ⎝ ⎛⎭⎪⎫0,52.于是S △MNT =12|FT ||x 1-x 2|=34|x 1-x 2|.由(1)得x 1+x 2=4k ,x 1x 2=-4, 所以S △MNT =34|x 1-x 2|=34x 1+x 22-4x 1x 2=3416k 2-4×-4=3k 2+1≥3. 所以当k =0时,S △MNT 有最小值3.21.(12分)如图,在四棱锥P -ABCD 中,PC ⊥底面ABCD ,底面ABCD 是直角梯形,AB ⊥AD ,AB ∥CD ,AB =2AD =2CD =2,E 是PB 上的点.(1)求证:平面EAC ⊥平面PBC ; (2)二面角P -AC -E 的余弦值为63,求直线PA 与平面EAC 所成角的正弦值.(1)证明:∵PC ⊥底面ABCD ,AC ⊂底面ABCD , ∴PC ⊥AC .∵AB =2,AD =CD =1,∴AC =BC =2. ∴AC 2+BC 2=AB 2,∴AC ⊥BC . 又∵BC ∩PC =C ,∴AC ⊥平面PBC . ∵AC ⊂平面EAC ,∴平面EAC ⊥平面PBC .(2)解:如图,以C 为原点,取AB 中点F ,CF →,CD →,CP →分别为x 轴、y 轴、z 轴正方向,建立空间直角坐标系,则C (0,0,0),A (1,1,0),B (1,-1,0). 设P (0,0,a )(a >0),则E ⎝ ⎛⎭⎪⎫12,-12,a 2,CA →=(1,1,0),CP →=(0,0,a ),CE →=⎝ ⎛⎭⎪⎫12,-12,a 2,设m =(x 1,y 1,z 1)为平面PAC 的法向量, 由⎩⎪⎨⎪⎧m ·CA →=x 1+y 1=0,m ·CP →=az 1=0,所以可取x 1=1,y 1=-1,z 1=0,即m =(1,-1,0). 设n =(x 2,y 2,z 2)为平面EAC 的法向量, 则n ·CA →=n ·CE →=0,即⎩⎪⎨⎪⎧x 2+y 2=0,x 2-y 2+az 2=0,取x 2=a ,y 2=-a ,z 2=-2,则n =(a ,-a ,-2),依题意,|cos 〈m ,n 〉|=|m ·n ||m ||n |=a a 2+2=63,则a =2.于是n =(2,-2,-2),PA →=(1,1,-2). 设直线PA 与平面EAC 所成角为θ,则sin θ=|cos 〈PA →,n 〉|=|PA →·n ||PA →||n |=23,即直线PA 与平面EAC 所成角的正弦值为23. 22.(12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且经过点⎝⎛⎭⎪⎫-1,32.(1)求椭圆C 的方程.(2)过点(3,0)作直线l 与椭圆C 交于A ,B 两点,试问在x 轴上是否存在定点Q 使得直线QA 与直线QB 恰关于x 轴对称?若存在,求出点Q 的坐标;若不存在,说明理由.解:(1)由题意可得32=c a ,1a 2+34b2=1, 又因为a 2-b 2=c 2, 解得a 2=4,b 2=1.所以椭圆C 的方程为x 24+y 2=1.(2)存在定点Q ⎝⎛⎭⎪⎫433,0,满足直线QA 与直线QB 恰关于x 轴对称,理由如下: 设直线l 的方程为x +my -3=0,与椭圆C 联立,整理得(4+m 2)y 2-23my -1=0. 设A (x 1,y 1),B (x 2,y 2),定点Q (t,0)(依题意t ≠x 1,t ≠x 2),则由韦达定理可得,y 1+y 2=23m 4+m 2,y 1y 2=-14+m2. 直线QA 与直线QB 恰关于x 轴对称,等价于AQ ,BQ 的斜率互为相反数. 所以y 1x 1-t +y 2x 2-t=0,即y 1(x 2-t )+y 2(x 1-t )=0.又因为x 1+my 1-3=0,x 2+my 2-3=0, 所以y 1(3-my 2-t )+y 2(3-my 1-t )=0, 整理得(3-t )(y 1+y 2)-2my 1y 2=0. 从而可得(3-t )·23m 4+m 2-2m ·-14+m2=0,11 即2m (4-3t )=0,所以当t =433,即Q ⎝ ⎛⎭⎪⎫433,0时,直线QA 与直线QB 恰关于x 轴对称成立.特别地,当直线l 为x 轴时,Q ⎝ ⎛⎭⎪⎫433,0也符合题意. 综上所述,存在x 轴上的定点Q ⎝⎛⎭⎪⎫433,0,满足直线QA 与直线QB 恰关于x 轴对称.。
新教材人教B版高中数学选择性必修第一册各章综合测验及模块测验含答案解析

人教B 选择性必修第一册综合测验第一章 空间向量与立体几何............................................................................................ 1 第二章 平面解析几何 .................................................................................................... 15 模块综合测验 . (28)第一章 空间向量与立体几何一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在平行六面体ABCD-A'B'C'D'中,向量AB '⃗⃗⃗⃗⃗⃗ 、AD '⃗⃗⃗⃗⃗⃗ 、BD ⃗⃗⃗⃗⃗⃗ 是( ) A.有相同起点的向量 B .等长的向量C.共面向量 D .不共面向量AB '⃗⃗⃗⃗⃗⃗ 、AD '⃗⃗⃗⃗⃗⃗ 、BD⃗⃗⃗⃗⃗⃗ 显然不是有相同起点的向量,A 不正确; 由该平行六面体不是正方体可知,这三个向量不是等长的向量,B 不正确. 又∵AD '⃗⃗⃗⃗⃗⃗ −AB '⃗⃗⃗⃗⃗⃗ =B 'D '⃗⃗⃗⃗⃗⃗⃗ =BD ⃗⃗⃗⃗⃗⃗ , ∴AB '⃗⃗⃗⃗⃗⃗ ,AD '⃗⃗⃗⃗⃗⃗ ,BD⃗⃗⃗⃗⃗⃗ 共面,C 正确,D 不正确. 2.已知a =(-2,-3,1),b =(2,0,4),c =(-4,-6,2),则下列结论正确的是( ) A.a ∥c ,b ∥c B.a ∥b ,a ⊥c C.a ∥c ,a ⊥b D.以上都不对a =(-2,-3,1),b =(2,0,4),c =(-4,-6,2),∴a ·b =-4+0+4=0,∴a ⊥b .∵-4-2=-6-3=21,∴a ∥c .3.在长方体ABCD-A 1B 1C 1D 1中,BA ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +DD 1⃗⃗⃗⃗⃗⃗⃗⃗ = ( ) A.D 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ B.D 1B ⃗⃗⃗⃗⃗⃗⃗ C.DB 1⃗⃗⃗⃗⃗⃗⃗⃗ D.BD 1⃗⃗⃗⃗⃗⃗⃗⃗,长方体ABCD-A 1B 1C 1D 1中,BA ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +DD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(BA ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ )+DD 1⃗⃗⃗⃗⃗⃗⃗⃗ =BD ⃗⃗⃗⃗⃗⃗ +DD 1⃗⃗⃗⃗⃗⃗⃗⃗ =BD 1⃗⃗⃗⃗⃗⃗⃗⃗ .4.如图所示,已知空间四边形ABCD ,连接AC ,BD.M ,G 分别是BC ,CD 的中点,则AB ⃗⃗⃗⃗⃗ +12BC ⃗⃗⃗⃗⃗ +12BD ⃗⃗⃗⃗⃗⃗ 等于 ( )A.AD ⃗⃗⃗⃗⃗B.GA ⃗⃗⃗⃗⃗C.AG ⃗⃗⃗⃗⃗D.MG ⃗⃗⃗⃗⃗⃗M ,G 分别是BC ,CD 的中点,∴12BC ⃗⃗⃗⃗⃗ =BM ⃗⃗⃗⃗⃗⃗ ,12BD ⃗⃗⃗⃗⃗⃗ =MG ⃗⃗⃗⃗⃗⃗ .∴AB ⃗⃗⃗⃗⃗ +12BC ⃗⃗⃗⃗⃗ +12BD ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BM ⃗⃗⃗⃗⃗⃗ +MG ⃗⃗⃗⃗⃗⃗ =AM ⃗⃗⃗⃗⃗⃗ +MG ⃗⃗⃗⃗⃗⃗ =AG⃗⃗⃗⃗⃗ . 5.在四棱锥P-ABCD 中,AB ⃗⃗⃗⃗⃗ =(4,-2,3),AD ⃗⃗⃗⃗⃗ =(-4,1,0),AP ⃗⃗⃗⃗⃗ =(-6,2,-8),则这个四棱锥的高h 等于 ( )A.1 B .2C.13D .26ABCD 的法向量为n =(x ,y ,z ),则{n ·AB ⃗⃗⃗⃗⃗ =0,n ·AD ⃗⃗⃗⃗⃗ =0,即{4x -2y +3z =0,-4x +y =0.不妨令x=3,则y=12,z=4,可得n =(3,12,4), 四棱锥的高h=|AP ⃗⃗⃗⃗⃗ ·n ||n |=2613=2.6.已知两不重合的平面α与平面ABC ,若平面α的法向量为n 1=(2,-3,1),AB ⃗⃗⃗⃗⃗ =(1,0,-2),AC ⃗⃗⃗⃗⃗ =(1,1,1),则( ) A.平面α∥平面ABC B.平面α⊥平面ABCC.平面α、平面ABC 相交但不垂直D.以上均有可能,n 1·AB ⃗⃗⃗⃗⃗ =2×1+(-3)×0+1×(-2)=0,得n 1⊥AB ⃗⃗⃗⃗⃗ ,n 1·AC ⃗⃗⃗⃗⃗ =2×1+(-3)×1+1×1=0,得n 1⊥AC⃗⃗⃗⃗⃗ , 所以n 1⊥平面ABC ,所以平面α的法向量与平面ABC 的法向量共线,则平面α∥平面ABC.7.直线AB 与直二面角α-l-β的两个面分别交于A ,B 两点,且A ,B 都不在棱l 上,设直线AB 与α,β所成的角分别为θ和φ,则θ+φ的取值范围是( ) A.0°<θ+φ<90° B.0°<θ+φ≤90° C.90°<θ+φ<180° D.θ+φ=90°,分别过点A ,B 向平面β,α作垂线,垂足为A 1,B 1,连接BA 1,AB 1.由已知α⊥β,所以AA 1⊥β,BB 1⊥α,因此∠BAB 1=θ,∠ABA 1=φ.由最小角定理得∠BAA 1≥θ,而∠BAA 1+φ=90°,故θ+φ=θ+90°-∠BAA 1≤90°,当AB ⊥l 时,θ+φ=90°,应选B .8.长方体A 1A 2A 3A 4-B 1B 2B 3B 4的底面为边长为1的正方形,高为2,则集合{x|x=A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A i B j ⃗⃗⃗⃗⃗⃗⃗⃗ ,i ∈{1,2,3,4},j ∈{1,2,3,4}}中元素的个数为( )A.1 B .2 C .3 D .4长方体A 1A 2A 3A 4-B 1B 2B 3B 4的底面为边长为1的正方形,高为2,∴建立如图的空间直角坐标系, 则A 1(1,1,0),A 2(0,1,0),A 3(0,0,0),A 4(1,0,0), B 1(1,1,2),B 2(0,1,2),B 3(0,0,2),B 4(1,0,2), 则A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,0,2),与A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(0,0,2)相等的向量为A 2B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =A 3B 3⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =A 4B 4⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,此时A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2×2=4, 与A 1B 4⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(0,-1,2)相等的向量为A 2B 3⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,此时A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 1B 4⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2×2=4, 与A 4B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(0,1,2)相等的向量为A 3B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,此时A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 4B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2×2=4,与A 2B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(1,0,2)相等的向量为A 3B 4⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,此时A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 2B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-1+4=3,与A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,0,2)相等的向量为A 4B 3⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,此时A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ =1+4=5,体对角线向量为A 1B 3⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,-1,2),此时A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 1B 3⃗⃗⃗⃗⃗⃗⃗⃗⃗ =1+4=5,A 2B 4⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(1,-1,2),A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 2B 4⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-1+4=3,A 3B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(1,1,2),A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 3B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-1+4=3, A 4B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,1,2),A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 4B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =1+4=5,综上集合{x|x=A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A i B j ⃗⃗⃗⃗⃗⃗⃗⃗ ,i ∈{1,2,3,4},j ∈{1,2,3,4}}={3,4,5},集合中元素的个数为3个.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对得3分. 9.设向量a ,b ,c 可构成空间一个基底,下列选项中正确的是( ) A.若a ⊥b ,b ⊥c ,则a ⊥cB.则a,b,c两两共面,但a,b,c不可能共面C.对空间任一向量p,总存在有序实数组(x,y,z),使p=x a+y b+z cD.则a+b,b+c,c+a一定能构成空间的一个基底a,b,c是空间一个基底,知:在A中,若a⊥b,b⊥c,则a与c相交或平行,故A错误;在B中,a,b,c两两共面,但a,b,c不可能共面,故B正确;在C中,对空间任一向量p,总存在有序实数组(x,y,z),使p=x a+y b+z c,故C正确;在D中,a+b,b+c,c+a一定能构成空间的一个基底,故D正确.10.已知向量a=(1,2,3),b=(3,0,-1),c=(-1,5,-3),下列等式中正确的是()A.(a·b)c=b·cB.(a+b)·c=a·(b+c)C.(a+b+c)2=a2+b2+c2D.|a+b+c|=|a-b-c|左边为向量,右边为实数,显然不相等,不正确;B.左边=(4,2,2)·(-1,5,-3)=0,右边=(1,2,3)·(2,5,-4)=2+10-12=0,∴左边=右边,因此正确.C.a+b+c=(3,7,-1),左边=32+72+(-1)2=59,右边=12+22+32+32+0+(-1)2+(-1)2+52+(-3)2=59,∴左边=右边,因此正确.D.由C可得左边=√59,∵a-b-c=(-1,-3,7),∴|a-b-c|=√59,∴左边=右边,因此正确.故BCD正确.11.在正方体ABCD-A1B1C1D1中,E,F,G,H分别为AB,CC1,A1D1,C1D1的中点,则下列结论正确的是 ()A.A1E⊥AC1B.BF∥平面ADD1A1C.BF⊥DGD.A1E∥CH解析设正方体的棱长为1,以D 为原点,DA ,DC ,DD 1所在的直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则A 1(1,0,1),E (1,12,0),C (0,1,0),F (0,1,12),C 1(0,1,1),H 0,12,1,G (12,0,1),A (1,0,0),B (1,1,0),D (0,0,0),则A 1E ⃗⃗⃗⃗⃗⃗⃗ =(0,12,-1),AC 1⃗⃗⃗⃗⃗⃗⃗ =(-1,1,1),BF ⃗⃗⃗⃗⃗ =(-1,0,12),DG ⃗⃗⃗⃗⃗ =(12,0,1),CH ⃗⃗⃗⃗⃗ =(0,-12,1), 所以A 1E ⃗⃗⃗⃗⃗⃗⃗ ·AC 1⃗⃗⃗⃗⃗⃗⃗ =-12,所以A 1E 与AC 1不垂直,故A 错误; 显然平面ADD 1A 1的一个法向量v =(0,1,0), 有BF ⃗⃗⃗⃗⃗ ·v =0,所以BF ∥平面ADD 1A 1,故B 正确; BF ⃗⃗⃗⃗⃗ ·DG ⃗⃗⃗⃗⃗ =0,所以BF ⊥DG ,故C 正确; A 1E ⃗⃗⃗⃗⃗⃗⃗ =-CH⃗⃗⃗⃗⃗ ,所以A 1E ∥CH ,故D 正确. 12.将正方形ABCD 沿对角线BD 折成直二面角A -BD -C ,有如下四个结论:①AC ⊥BD ;②△ACD 是等边三角形;③AB 与平面BCD 所成的角为60°;④AB 与CD 所成的角为60°.其中正确的结论有( ) A.① B.②C.③D.④,建立空间直角坐标系Oxyz ,设正方形ABCD 的边长为√2,则D (1,0,0),B (-1,0,0),C (0,0,1),A (0,1,0),所以AC ⃗⃗⃗⃗⃗ =(0,-1,1),BD ⃗⃗⃗⃗⃗⃗ =(2,0,0),CD ⃗⃗⃗⃗⃗ =(1,0,-1),AD ⃗⃗⃗⃗⃗ =(1,-1,0),AB ⃗⃗⃗⃗⃗ =(-1,-1,0),AC ⃗⃗⃗⃗⃗ ·BD⃗⃗⃗⃗⃗⃗ =0,故AC ⊥BD ,①正确.又|AC ⃗⃗⃗⃗⃗ |=√2,|CD ⃗⃗⃗⃗⃗ |=√2,|AD ⃗⃗⃗⃗⃗ |=√2, 所以△ACD 为等边三角形,②正确. 对于③,OA ⃗⃗⃗⃗⃗ 为平面BCD 的一个法向量, cos <AB ⃗⃗⃗⃗⃗ ,OA ⃗⃗⃗⃗⃗ >=AB ⃗⃗⃗⃗⃗ ·OA ⃗⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ ||OA⃗⃗⃗⃗⃗⃗ |=√2·√1=√2=-√22.因为直线与平面所成的角∈[0°,90°],所以AB 与平面BCD 所成的角为45°,故③错误.又cos <AB ⃗⃗⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ >=AB ⃗⃗⃗⃗⃗⃗ ·CD ⃗⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗⃗ ||CD⃗⃗⃗⃗⃗⃗ |=√2·√2=-12,因为异面直线所成的角为锐角或直角,所以AB 与CD 所成的角为60°,故④正确. 三、填空题:本题共4小题,每小题5分,共20分.13.在棱长为a 的正四面体中,AB ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ·BD ⃗⃗⃗⃗⃗⃗ = . -a 22a 的正四面体中,AB=BC=a ,且AB ⃗⃗⃗⃗⃗ 与BC ⃗⃗⃗⃗⃗ 的夹角为120°,AC ⊥BD.∴AB ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ·BD ⃗⃗⃗⃗⃗⃗ =a ·a cos120°+0=-a22.14.已知a =(1,2,-y ),b =(x ,1,2),且(a +2b )∥(2a -b ),则xy= .2a +2b =(1+2x ,4,-y+4),2a -b =(2-x ,3,-2y-2),因为(a+2b )∥(2a-b ),所以存在λ∈R 使得1+2x=λ(2-x )且4=3λ且-y+4=λ(-2y-2),所以λ=43,x=12,y=-4,所以xy=-2.15.设PA ⊥Rt △ABC 所在的平面α,∠BAC=90°,PB ,PC 分别与α成45°和30°角,PA=2,则PA 与BC 的距离是 ;点P 到BC 的距离是 . √3 √7AD ⊥BC 于点D ,∵PA ⊥面ABC ,∴PA ⊥AD.∴AD 是PA 与BC 的公垂线.易得AB=2,AC=2√3,BC=4,AD=√3,连接PD ,则PD ⊥BC ,P 到BC 的距离PD=√7. 16.已知向量m =(a ,b ,0),n =(c ,d ,1),其中a 2+b 2=c 2+d 2=1,现有以下命题:①向量n 与z 轴正方向的夹角恒为定值(即与c ,d 无关); ②m ·n 的最大值为√2;③<m ,n >(m ,n 的夹角)的最大值为3π4;④若定义u ×v =|u |·|v |sin <u ,v >,则|m×n |的最大值为√2. 其中正确的命题有 .(写出所有正确命题的序号)取z 轴的正方向单位向量a =(0,0,1),则cos <n ,a >=n ·a|n ||a |=√c 2+d 2+12×1=√2=√22,∴向量n 与z 轴正方向的夹角恒为定值π4,命题正确;②m ·n =ac+bd ≤a 2+c 22+b 2+d 22=a 2+c 2+b 2+d 22=1+12=1,当且仅当a=c ,b=d 时取等号,因此m ·n 的最大值为1,命题错误;③由②可得|m ·n |≤1,∴-1≤m ·n ≤1, ∴cos <m ,n >=m ·n|m ||n | =√a 2+b 2·√c 2+d 2+12≥-1×√2=-√22, ∴<m ,n >的最大值是3π4,命题正确; ④由③可知:-√22≤cos <m ,n >≤√22,∴π4≤<m ,n >≤3π4,√22≤sin <m ,n >≤1,∴m×n =|m|×|n|×sin <m ,n >≤1×√2×1=√2,命题正确.综上可知,正确的命题序号是①③④.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)如图所示,在四棱锥M-ABCD 中,底面ABCD 是边长为2的正方形,侧棱AM 的长为3,且AM 和AB ,AD 的夹角都是60°,N 是CM 的中点,设a =AB ⃗⃗⃗⃗⃗ ,b =AD ⃗⃗⃗⃗⃗ ,c =AM ⃗⃗⃗⃗⃗⃗ ,试以a ,b ,c 为基向量表示出向量BN⃗⃗⃗⃗⃗⃗ ,并求BN 的长.⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +CN ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ +12CM ⃗⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ +12(AM ⃗⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ )=AD ⃗⃗⃗⃗⃗ +12[AM ⃗⃗⃗⃗⃗⃗ -(AD ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ )] =-12AB ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗ +12AM ⃗⃗⃗⃗⃗⃗ . 所以BN⃗⃗⃗⃗⃗⃗ =-12a+12b+12c , |BN ⃗⃗⃗⃗⃗⃗ |2=BN⃗⃗⃗⃗⃗⃗ 2=-12a+12b+12c 2 =14(a 2+b 2+c 2-2a ·b-2a ·c+2b ·c )=174. 所以|BN⃗⃗⃗⃗⃗⃗ |=√172,即BN 的长为√172.18.(12分)如图,正三棱柱ABC-A 1B 1C 1中,底面边长为√2. (1)设侧棱长为1,求证:AB 1⊥BC 1;(2)设AB 1与BC 1所成的角为π3,求侧棱的长.1=AB ⃗⃗⃗⃗⃗ +BB 1⃗⃗⃗⃗⃗⃗⃗ ,BC 1⃗⃗⃗⃗⃗⃗⃗ =BB 1⃗⃗⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ .因为BB 1⊥平面ABC , 所以BB 1⃗⃗⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =0,BB 1⃗⃗⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =0. 又△ABC 为正三角形,所以<AB ⃗⃗⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ >=π-<BA ⃗⃗⃗⃗⃗ ,BC⃗⃗⃗⃗⃗ >=π-π3=2π3. 因为AB 1⃗⃗⃗⃗⃗⃗⃗ ·BC 1⃗⃗⃗⃗⃗⃗⃗ =(AB ⃗⃗⃗⃗⃗ +BB 1⃗⃗⃗⃗⃗⃗⃗ )·(BB 1⃗⃗⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ ) =AB ⃗⃗⃗⃗⃗ ·BB 1⃗⃗⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ +BB 1⃗⃗⃗⃗⃗⃗⃗ 2+BB 1⃗⃗⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =|AB ⃗⃗⃗⃗⃗ |·|BC ⃗⃗⃗⃗⃗ |·cos <AB ⃗⃗⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ >+BB 1⃗⃗⃗⃗⃗⃗⃗ 2=-1+1=0, 所以AB 1⊥BC 1.(1)知AB 1⃗⃗⃗⃗⃗⃗⃗ ·BC 1⃗⃗⃗⃗⃗⃗⃗ =|AB ⃗⃗⃗⃗⃗ |·|BC ⃗⃗⃗⃗⃗ |·cos <AB ⃗⃗⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ >+BB 1⃗⃗⃗⃗⃗⃗⃗ 2=BB 1⃗⃗⃗⃗⃗⃗⃗ 2-1.又|AB 1⃗⃗⃗⃗⃗⃗⃗ |=√AB ⃗⃗⃗⃗⃗ 2+BB 1⃗⃗⃗⃗⃗⃗⃗ 2=√2+BB 1⃗⃗⃗⃗⃗⃗⃗ 2=|BC 1⃗⃗⃗⃗⃗⃗⃗ |,所以cos <AB 1⃗⃗⃗⃗⃗⃗⃗ ,BC 1⃗⃗⃗⃗⃗⃗⃗ >=BB 1⃗⃗⃗⃗⃗⃗⃗⃗ 2-12+BB 1⃗⃗⃗⃗⃗⃗⃗⃗ 2=12,所以|BB 1⃗⃗⃗⃗⃗⃗⃗ |=2,即侧棱长为2.19.(12分)已知空间中三点A (2,0,-2),B (1,-1,-2),C (3,0,-4),设a =AB ⃗⃗⃗⃗⃗ ,b =AC ⃗⃗⃗⃗⃗ . (1)若|c |=3,且c ∥BC⃗⃗⃗⃗⃗ ,求向量c ; (2)已知向量k a +b 与b 互相垂直,求k 的值; (3)求△ABC 的面积.∵空间中三点A (2,0,-2),B (1,-1,-2),C (3,0,-4),设a =AB ⃗⃗⃗⃗⃗ ,b =AC⃗⃗⃗⃗⃗ , ∴BC⃗⃗⃗⃗⃗ =(3,0,-4)-(1,-1,-2)=(2,1,-2), ∵|c |=3,且c ∥BC⃗⃗⃗⃗⃗ , ∴c =m BC⃗⃗⃗⃗⃗ =m (2,1,-2)=(2m ,m ,-2m ), ∴|c |=√(2m )2+m 2+(-2m )2=3|m|=3,∴m=±1,∴c =(2,1,-2)或c =(-2,-1,2). (2)由题得a =(-1,-1,0),b =(1,0,-2),∴k a +b =k (-1,-1,0)+(1,0,-2)=(1-k ,-k ,-2),∵向量k a +b 与b 互相垂直,∴(k a +b )·b =1-k+4=0,解得k=5.∴k 的值是5. (3)AB ⃗⃗⃗⃗⃗ =(-1,-1,0),AC ⃗⃗⃗⃗⃗ =(1,0,-2),BC ⃗⃗⃗⃗⃗ =(2,1,-2), cos <AB ⃗⃗⃗⃗⃗ ,AC⃗⃗⃗⃗⃗ >=AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |·|AC⃗⃗⃗⃗⃗ |=√2×√5=-√10,sin <AB ⃗⃗⃗⃗⃗ ,AC⃗⃗⃗⃗⃗ >=√1-110=√10,∴S △ABC =12×|AB ⃗⃗⃗⃗⃗ |×|AC ⃗⃗⃗⃗⃗ |×sin <AB ⃗⃗⃗⃗⃗ ,AC⃗⃗⃗⃗⃗ >=12×√2×√5×√10=32.20.(12分)已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点.(1)用向量法证明E ,F ,G ,H 四点共面; (2)用向量法证明:BD ∥平面EFGH ;(3)设M 是EG 和FH 的交点,求证:对空间任一点O ,有OM ⃗⃗⃗⃗⃗⃗ =14(OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ ).如图,连接BG ,BD ⃗⃗⃗⃗⃗⃗ =2EH ⃗⃗⃗⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ =2BF ⃗⃗⃗⃗⃗ ,则EG ⃗⃗⃗⃗⃗ =EB ⃗⃗⃗⃗⃗ +BG ⃗⃗⃗⃗⃗ =EB ⃗⃗⃗⃗⃗ +12(BC ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗⃗ )=EB ⃗⃗⃗⃗⃗ +BF ⃗⃗⃗⃗⃗ +EH ⃗⃗⃗⃗⃗⃗ =EF ⃗⃗⃗⃗⃗ +EH⃗⃗⃗⃗⃗⃗ , 由共面向量定理的推论知E 、F 、G 、H 四点共面.(2)因为EH ⃗⃗⃗⃗⃗⃗ =AH ⃗⃗⃗⃗⃗⃗ −AE ⃗⃗⃗⃗⃗ =12AD ⃗⃗⃗⃗⃗ −12AB ⃗⃗⃗⃗⃗=12(AD ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=12BD⃗⃗⃗⃗⃗⃗ . 所以EH ∥BD ,又EH ⊂平面EFGH ,BD ⊄平面EFGH , 所以BD ∥平面EFGH.(3)连接OM ,OA ,OB ,OC ,OD ,OE ,OG , 由(2)知EH ⃗⃗⃗⃗⃗⃗ =12BD⃗⃗⃗⃗⃗⃗ , 同理FG ⃗⃗⃗⃗⃗ =12BD ⃗⃗⃗⃗⃗⃗ ,所以EH ⃗⃗⃗⃗⃗⃗ =FG⃗⃗⃗⃗⃗ , EH ∥FG ,EH=FG ,所以EG 、FH 交于一点M 且被M 平分,所以OM ⃗⃗⃗⃗⃗⃗ =12(OE ⃗⃗⃗⃗⃗ +OG ⃗⃗⃗⃗⃗ )=1212(OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ )+12(OC ⃗⃗⃗⃗⃗ +OD⃗⃗⃗⃗⃗⃗ ) =14(OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ +OD⃗⃗⃗⃗⃗⃗ ).21.(12分)(2021全国甲,理19)已知直三棱柱ABC-A 1B 1C 1中,侧面AA 1B 1B 为正方形,AB=BC=2,E ,F 分别为AC 和CC 1的中点,D 为棱A 1B 1上的点,BF ⊥A 1B 1. (1)证明:BF ⊥DE ;(2)当B 1D 为何值时,平面BB 1C 1C 与平面DFE 所成的二面角的正弦值最小?如图,连接A 1E ,取BC 中点M ,连接B 1M ,EM.∵E ,M 分别为AC ,BC 中点, ∴EM ∥AB.又AB ∥A 1B 1,∴A 1B 1∥EM ,则点A 1,B 1,M ,E 四点共面,故DE ⊂平面A 1B 1ME.又在侧面BCC 1B 1中,△FCB ≌△MBB 1,∴∠FBM=∠MB 1B. 又∠MB 1B+∠B 1MB=90°,∴∠FBM+∠B 1MB=90°,∴BF ⊥MB 1.又BF ⊥A 1B 1,MB 1∩A 1B 1=B 1,MB 1,A 1B 1⊂平面A 1B 1ME ,∴BF ⊥平面A 1B 1ME ,∴BF ⊥DE.(2)∵BF ⊥A 1B 1,∴BF ⊥AB ,∴AF 2=BF 2+AB 2=CF 2+BC 2+AB 2=9. 又AF 2=FC 2+AC 2,∴AC 2=8,则AB ⊥BC.如图,以B 为原点,BC ,BA ,BB 1为x 轴、y 轴、z 轴建立空间直角坐标系,则B (0,0,0),C (2,0,0),A (0,2,0),E (1,1,0),F (2,0,1).则EF ⃗⃗⃗⃗⃗ =(1,-1,1),ED ⃗⃗⃗⃗⃗ =(-1,t-1,2),设DB 1=t ,则D (0,t ,2),0≤t ≤2.则平面BB 1C 1C 的法向量为m =(0,1,0),设平面DEF 的法向量为n =(x ,y ,z ),∴{EF⃗⃗⃗⃗⃗ ·n =0,ED ⃗⃗⃗⃗⃗ ·n =0,即{x -y +z =0,-x +(t -1)y +2z =0,∴n =(1+t ,3,2-t ). 则cos <m ,n >=√(1+t )+32+(2-t )=√2t 2-2t+14.要求最小正弦值,则求最大余弦值.当t=1时二面角的余弦值最大,2时二面角正弦值最小.则B1D=1222.(12分)如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平AD=1,CD=√3.面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=12(1)求证:平面PBC⊥平面PQB;(2)当PM的长为何值时,平面QMB与平面PDC所成的角的大小为60°?AD,AD∥BC,Q为AD的中点,BC=12∴BC∥QD,BC=QD,∴四边形BCDQ为平行四边形,∴BQ∥CD.∵∠ADC=90°,∴BC⊥BQ.∵PA=PD,AQ=QD,∴PQ⊥AD.又∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,∴PQ⊥平面ABCD,∴PQ ⊥BC.又∵PQ∩BQ=Q,∴BC⊥平面PQB.∵BC⊂平面PBC,∴平面PBC⊥平面PQB.(1)可知PQ⊥平面ABCD.如图,以Q为原点,分别以QA,QB,QP所在直线为x轴,y 轴,z轴,建立空间直角坐标系,则Q(0,0,0),D(-1,0,0),P(0,0,√3),B(0,√3,0),C(-1,√3,0),∴QB ⃗⃗⃗⃗⃗ =(0,√3,0),DC ⃗⃗⃗⃗⃗ =(0,√3,0),DP ⃗⃗⃗⃗⃗ =(1,0,√3),PC ⃗⃗⃗⃗⃗ =(-1,√3,-√3), PC=√(-1)2+(√3)2+(-√3)2=√7.设PM ⃗⃗⃗⃗⃗⃗ =λPC ⃗⃗⃗⃗⃗ ,则PM ⃗⃗⃗⃗⃗⃗ =(-λ,√3λ,-√3λ),且0≤λ≤1,得M (-λ,√3λ,√3−√3λ),∴QM ⃗⃗⃗⃗⃗⃗ =(-λ,√3λ,√3(1-λ)).设平面MBQ 的法向量为m =(x ,y ,z ),则{QM ⃗⃗⃗⃗⃗⃗ ·m =0,QB ⃗⃗⃗⃗⃗ ·m =0,即{-λx +√3λy +√3(1-λ)z =0,√3y =0.令x=√3,则y=0,z=λ1-λ,∴平面MBQ 的一个法向量为m =√3,0,λ1-λ. 设平面PDC 的法向量为n =(x',y',z'),则{DC ⃗⃗⃗⃗⃗ ·n =0,DP ⃗⃗⃗⃗⃗ ·n =0,即{√3y '=0,x '+√3z '=0.令x'=3,则y'=0,z'=-√3,∴平面PDC 的一个法向量为n =(3,0,-√3).∴平面QMB 与平面PDC 所成的锐二面角的大小为60°, ∴cos60°=|n ·m ||n ||m |=|3√3-√3·λ1-λ|√12·√3+(λ1-λ) 2=12,∴λ=12.∴PM=12PC=√72.即当PM=√72时,平面QMB 与平面PDC 所成的角大小为60°.第二章 平面解析几何一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线x-my-2=0的距离,当θ,m 变化时,d 的最大值为 ( ) A.1 B.2C.3D.4cos 2θ+sin 2θ=1,∴P 为单位圆上一点,而直线x-my-2=0过点A (2,0),∴d 的最大值为|OA|+1=2+1=3,故选C .2.已知点P (-2,4)在抛物线y 2=2px (p>0)的准线上,则该抛物线的焦点坐标是( ) A.(0,2) B.(0,4) C.(2,0) D.(4,0)P (-2,4)在抛物线y 2=2px 的准线上,所以-p2=-2,所以p=4,则该抛物线的焦点坐标是(2,0).3.已知直线l 1:x cos 2α+√3y+2=0,若l 1⊥l 2,则l 2倾斜角的取值范围是( ) A.[π3,π2) B.[0,π6] C.[π3,π2] D.[π3,5π6]l 1:x cos 2α+√3y+2=0的斜率k 1=-2√3∈[-√33,0],当cos α=0时,即k 1=0时,k 不存在,此时倾斜角为12π,由l 1⊥l 2,k 1≠0时,可知直线l 2的斜率k=-1k 1≥√3,此时倾斜角的取值范围为[π3,π2).综上可得l 2倾斜角的取值范围为[π3,π2].4.(2021全国乙,文11)设B 是椭圆C :x 25+y 2=1的上顶点,点P 在C 上,则|PB|的最大值为( ) A.52 B.√6 C.√5 D.2方法一)由椭圆方程可得a=√5,b=1,故椭圆的上顶点为B (0,1).设P (x ,y ),则有x 25+y 2=1, 故x 2=5(1-y 2),由椭圆的性质可得-1≤y ≤1.则|PB|2=x 2+(y-1)2=5(1-y 2)+(y-1)2=-4y 2-2y+6=-4y 2+y2+6=-4y+142+254.因为-1≤y ≤1,所以当y=-14时,|PB|2取得最大值,且最大值为254,所以|PB|的最大值为52. (方法二)由题意可设P (√5cos θ,sin θ)(θ∈R ),又B (0,1),则|PB|2=5cos 2θ+(sin θ-1)2=5cos 2θ+sin 2θ-2sin θ+1=-4sin 2θ-2sin θ+6,于是当sin θ=-14时,|PB|2最大,此时|PB|2=-4×116-2×(-14)+6=-14+12+6=254,故|PB|的最大值为52.5.在一个平面上,机器人到与点C (3,-3)的距离为8的地方绕C 点顺时针而行,它在行进过程中到经过点A (-10,0)与B (0,10)的直线的最近距离为( ) A.8√2-8 B.8√2+8C.8√2D.12√2C (3,-3)距离为8的地方绕C 点顺时针而行,在行进过程中保持与点C 的距离不变,∴机器人的运行轨迹方程为(x-3)2+(y+3)2=64,如图所示;∵A (-10,0)与B (0,10),∴直线AB 的方程为x-10+y10=1,即为x-y+10=0, 则圆心C 到直线AB 的距离为d=√1+1=8√2>8,∴最近距离为8√2-8.6.设P 是双曲线x 2a 2−y 2b 2=1(a>0,b>0)上的点,F 1,F 2是焦点,双曲线的离心率是43,且∠F 1PF 2=90°,△F 1PF 2的面积是7,则a+b 等于( ) A.3+√7 B.9+√7C.10D.16,不妨设点P 是右支上的一点,|PF 1|=m ,|PF 2|=n ,则{ 12mn =7,m -n =2a ,m 2+n 2=4c 2,c a =43,∴a=3,c=4.∴b=√c 2-a 2=√7.∴a+b=3+√7.7.位于德国东部萨克森州的莱科勃克桥(如图所示)有“仙境之桥”之称,它的桥形可近似地看成抛物线,该桥的高度为h ,跨径为a ,则桥形对应的抛物线的焦点到准线的距离为()A.a 28ℎ B.a 24ℎC.a 22ℎD.a 2ℎ,以桥顶为坐标原点,桥形的对称轴为y 轴建立如图所示的平面直角坐标系,该抛物线方程可写为x 2=-2py (p>0).∵该抛物线经过点(a2,-ℎ),代入抛物线方程可得a 24=2hp ,解得p=a 28ℎ.∴桥形对应的抛物线的焦点到准线的距离即为p=a 28ℎ.8.平面直角坐标系中,设A (-0.98,0.56),B (1.02,2.56),点M 在单位圆上,则使得△MAB 为直角三角形的点M 的个数是( ) A.1 B.2C.3D.4,如图,若△MAB为直角三角形,分3种情况讨论:①∠MAB=90°,则点M在过点A与AB垂直的直线上,设该直线为l1,又由A(-0.98,0.56),B(1.02,2.56),则k AB=2.56-0.561.02-(-0.98)=1,则k l1=-1,直线l1的方程为y-0.56=-(x+0.98),即x+y+0.42=0,此时原点O到直线l1的距离d=√2=21√2100<1,直线l1与单位圆相交,有2个公共点,即有2个符合题意的点M;②∠MBA=90°,则点M在过点B与AB垂直的直线上,设该直线为l2,同理可得,直线l2的方程为y-2.56=-(x-1.02),即x+y-3.58=0,此时原点O到直线l2的距离d=√2=179√2100>1,直线l2与单位圆相离,没有公共点,即没有符合题意的点M;③∠AMB=90°,此时点M在以AB为直径的圆上,又由A(-0.98,0.56),B(1.02,2.56),设AB的中点为C,则C的坐标为(0.02,1.56),|AB|=√4+4=2√2,则以AB为直径的圆的圆心C为(0.02,1.56),半径r=12|AB|=√2,此时|OC|=√(0.02)2+(1.56)2=√2.4340,则有√2-1<|OC|<√2+1,两圆相交,有2个公共点,即有2个符合题意的点M.综合可得,共有4个符合条件的点M.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对得3分.9.已知圆C1:x2+y2=r2,圆C2:(x-a)2+(y-b)2=r2(r>0)交于不同的A(x1,y1),B(x2,y2)两点,下列结论正确的有()A.a(x1-x2)+b(y1-y2)=0B.2ax1+2by1=a2+b2C.x1+x2=aD.y1+y2=2bAB的方程为a2+b2-2ax-2by=0,即2ax+2by=a2+b2,故B正确;分别把A(x1,y1),B(x2,y2)两点代入2ax+2by=a2+b2得2ax1+2by1=a2+b2,2ax2+2by2=a2+b2,两式相减得2a(x1-x2)+2b(y1-y2)=0,即a(x1-x2)+b(y1-y2)=0,故A正确;由圆的性质可知,线段AB与线段C1C2互相平分,∴x1+x2=a,y1+y2=b,故C正确,D错误.10.若P是圆C:(x+3)2+(y-3)2=1上任一点,则点P到直线y=kx-1距离的值可以为()A.4B.6C.3√2+1D.8y=kx-1恒过定点A(0,-1)点,当直线与AC垂直时,点P到直线y=kx-1距离最大,等于AC+r,圆心坐标为(-3,3),所以为√(-3)2+(3+1)2+1=6,当直线与圆有交点时,点P到直线的距离最小为0,所以点P到直线y=kx-1距离的范围为[0,6].11.在平面直角坐标系中,曲线C上任意点P与两个定点A(-2,0)和点B(2,0)连线的斜率之和等于2,则关于曲线C的结论正确的有()A.曲线C是轴对称图形B.曲线C上所有的点都在圆x2+y2=2外C.曲线C是中心对称图形D.曲线C上所有点的横坐标x满足|x|>2P(x,y),则k PA+k PB=2,即yx+2+yx-2=2(x≠±2),整理得x2-xy=4(x≠±2),所以曲线C 是中心对称图形,不是轴对称图形,故C 正确,A 错误;由x 2-xy=4>2=x 2+y 2,所以曲线C 上所有的点都在圆x 2+y 2=2外,故B 正确; 由x 2-xy=4可知,x ∈R 且x ≠0,x ≠±2,故D 错误. 12.已知P 是椭圆E :x 28+y 24=1上一点,F 1,F 2为其左右焦点,且△F 1PF 2的面积为3,则下列说法正确的是 ( )A.P 点纵坐标为3B.∠F 1PF 2>π2C.△F 1PF 2的周长为4(√2+1)D.△F 1PF 2的内切圆半径为32(√2-1)P 点坐标为(x ,y ),S=12×2c×|y|=12×4×|y|=3,得y=32或y=-32,故A 错误;椭圆中焦点三角形面积为S=b 2tan θ2(θ为焦点三角形的顶角),S=4tan θ2=3,得tan θ2=34,则θ2<π4,∠F 1PF 2<π2,故B 错误;C △F 1PF 2=2a+2c=4(√2+1),故C 正确;设△F 1PF 2的内切圆半径为R ,12R (4√2+4)=3,得R=32(√2-1),故D 正确. 三、填空题:本题共4小题,每小题5分,共20分.13.经过点P (1,4),且在两坐标轴上的截距相反的直线方程是 .4x 或y=x+3,分2种情况讨论:①直线经过原点,则直线l 的方程为y=4x ;②直线不经过原点,设直线方程为x-y=a ,把点P (1,4)代入可得1-4=a ,解得a=-3,即直线的方程为y=x+3.综上可得,直线的方程为y=4x 或y=x+3.14.若双曲线x 2m −y 2m -5=1的一个焦点到坐标原点的距离为3,则m 的值为 .或-2c=3,当双曲线的焦点在x 轴上时,m>5,c 2=m+m-5=9,所以m=7;当双曲线的焦点在y 轴上时,m<0,c 2=-m+5-m=9,所以m=-2.综上,m=7或m=-2.15.如图,过抛物线y 2=4x 的焦点F 作直线,与抛物线及其准线分别交于A ,B ,C 三点,若FC ⃗⃗⃗⃗⃗ =3FB ⃗⃗⃗⃗⃗ ,则直线AB 的方程为 ,|AB|= .√3(x-1)163F (1,0),准线方程为x=-1,设C (-1,m ),B (a ,b ),∵FC ⃗⃗⃗⃗⃗ =3FB⃗⃗⃗⃗⃗ ,∴(-2,m )=3(a-1,b )=(3a-3,3b ),则3a-3=-2,m=3b ,即a=13,此时b 2=4×13,得b=-√43=-2√33,即m=-2√3,则C (-1,-2√3),则AB 的斜率k=2√32=√3,则直线方程为y=√3(x-1),代入y 2=4x ,得3x 2-10x+3=0,得x 1+x 2=103,即|AB|=x 1+x 2+2=103+2=163.16.已知点O (0,0),A (4,0),B (0,4).若从点P (1,0)射出的光线经直线AB 反射后过点Q (-2,0),则反射光线所在直线的方程为 ;若从点M (m ,0),m ∈(0,4)射出的光线经直线AB 反射,再经直线OB 反射后回到点M ,则光线所经过的路程是 (结果用m 表示).2y+2=0 √2m 2+32,设点P 1(a ,b )与点P (1,0)关于直线AB 对称,则P 1在反射光线所在直线上,又由A (4,0),B (0,4),则直线AB 的方程为x+y=4,则有{ba -1=1,a+12+b2=4,解得{a =4,b =3,即P 1(4,3), 反射光线所在直线的斜率k=3-04-(-2)=12, 则其方程为y-0=12(x+2),即x-2y+2=0;设点M 1(a 0,b 0)与点M 关于直线AB 对称,点M 2与M 关于y 轴对称,易得M 2(-m ,0); 线段M 1M 2的长度就是光线所经过的路程,则有{b 0a 0-m=1,m+a2+b 02=4,解得{a 0=4,b 0=4-m ,即M 1(4,4-m ),又由M 2(-m ,0),则|M 1M 2|=√(4+m )2+(4-m )2=√2m 2+32.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知△ABC 三个顶点的坐标分别为A (2,4),B (0,-5),C (10,0),线段AC 的垂直平分线为l.(1)求直线l 的方程;(2)点P 在直线l 上运动,当|AP|+|BP|最小时,求此时点P 的坐标.直线AC 的斜率为k AC =4-02-10=-12,所以直线l 的斜率为k 1=2,直线AC 的中点为(6,2),所以直线l 的方程为y-2=2(x-6),即2x-y-10=0.(2)由(1)得点A 关于直线l 的对称点为点C ,所以直线BC 与直线l 的交点即为|AP|+|BP|最小的点.由B (0,-5),C (10,0)得直线BC 的方程为x10+y-5=1,即x-2y-10=0,联立方程{x -2y -10=0,2x -y -10=0,解得{x =103,y =-103,所以点P 的坐标为(103,-103). 18.(12分)已知直线l :ax-y-3a+1=0恒过定点P ,过点P 引圆C :(x-1)2+y 2=4的两条切线,设切点分别为A ,B.(1)求直线AB 的一般式方程;(2)求四边形PACB 的外接圆的标准方程.∵直线l :y-1=a (x-3).∴直线l 恒过定点P (3,1).由题意可知直线x=3是其中一条切线,且切点为A (3,0). 由圆的性质可知AB ⊥PC ,∵k PC =1-03-1=12,∴k AB =-2,所以直线AB 的方程为y=-2(x-3),即2x+y-6=0. (2)由题意知|PC|=√(3-1)2+(1-0)2=√5.∵PA ⊥AC ,PB ⊥BC ,所以四边形PACB 的外接圆是以PC 为直径的圆,PC 的中点坐标为(2,12),所以四边形PACB 的外接圆为(x-2)2+(y -12)2=54.19.(12分)已知F 1,F 2分别是双曲线E :x 2a 2−y 2b 2=1(a>0,b>0)的左、右焦点,P 是双曲线上一点,F 2到左顶点的距离等于它到渐近线距离的2倍, (1)求双曲线的渐近线方程;(2)当∠F 1PF 2=60°时,△PF 1F 2的面积为48√3,求此双曲线的方程.因为双曲线的渐近线方程为bx ±ay=0,则点F 2到渐近线距离为√b 2+a 2=b (其中c 是双曲线的半焦距),所以由题意知c+a=2b.又因为a 2+b 2=c 2,解得b=43a ,故所求双曲线的渐近线方程是4x ±3y=0.(2)因为∠F 1PF 2=60°,由余弦定理得|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|cos60°=|F 1F 2|2,即|PF 1|2+|PF 2|2-|PF 1|·|PF 2|=4c 2. 又由双曲线的定义得||PF 1|-|PF 2||=2a ,平方得|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|=4a 2,相减得|PF 1|·|PF 2|=4c 2-4a 2=4b 2.根据三角形的面积公式得S=12|PF 1|·|PF 2|sin60°=√34·4b 2=√3b 2=48√3,得b 2=48. 由(1)得a 2=916b 2=27,故所求双曲线方程是x 227−y 248=1.20.(12分)已知过抛物线x 2=2py (p>0)的焦点,斜率为√24的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB|=9. (1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λOB ⃗⃗⃗⃗⃗ ,求λ的值.抛物线x 2=2py 的焦点为(0,p2),所以直线AB 的方程为y=√24x+p 2, 联立{y =√24x +p2,x 2=2py ,消去x ,得4y 2-5py+p 2=0,所以y 1+y 2=5p4,由抛物线定义得|AB|=y 1+y 2+p=9,即5p4+p=9,所以p=4.所以抛物线的方程为x 2=8y. (2)由p=4知,方程4y 2-5py+p 2=0, 可化为y 2-5y+4=0,解得y 1=1,y 2=4,故x 1=-2√2,x 2=4√2. 所以A (-2√2,1),B (4√2,4).则OC ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λOB ⃗⃗⃗⃗⃗ =(-2√2,1)+λ(4√2,4)=(-2√2+4√2λ,1+4λ).因为C 为抛物线上一点,所以(-2√2+4√2λ)2=8(1+4λ),整理得λ2-2λ=0,所以λ=0或λ=2.21.(12分)(2021全国乙,文20)已知抛物线C :y 2=2px (p>0)的焦点F 到准线的距离为2. (1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足PQ ⃗⃗⃗⃗⃗ =9QF ⃗⃗⃗⃗⃗ ,求直线OQ 斜率的最大值.在抛物线C 中,焦点F 到准线的距离为p ,故p=2,C 的方程为y 2=4x.(2)设点P (x 1,y 1),Q (x 2,y 2).又F (1,0),则PQ ⃗⃗⃗⃗⃗ =(x 2-x 1,y 2-y 1),QF ⃗⃗⃗⃗⃗ =(1-x 2,-y 2). 因为PQ ⃗⃗⃗⃗⃗ =9QF ⃗⃗⃗⃗⃗ ,所以x 2-x 1=9(1-x 2),y 2-y 1=-9y 2, 得x 1=10x 2-9,y 1=10y 2.又因为点P 在抛物线C 上,所以y 12=4x 1,所以(10y 2)2=4(10x 2-9), 则点Q 的轨迹方程为y 2=25x-925. 易知直线OQ 的斜率存在.设直线OQ 的方程为y=kx ,当直线OQ 和曲线y 2=25x-925相切时,斜率取得最大值、最小值.由{y =kx ,y 2=25x -925,得k 2x 2=25x-925,即k 2x 2-25x+925=0,(*)当直线OQ 和曲线y 2=25x-925相切时,方程(*)的判别式Δ=0,即(-25)2-4k 2·925=0,解得k=±13,所以直线OQ 斜率的最大值为13. 22.(12分)如图所示,取同离心率的两个椭圆成轴对称内外嵌套得一个标志,为美观考虑,要求图中标记的①,②,③三个区域面积彼此相等.已知椭圆面积为圆周率与长半轴、短半轴长度之积,即椭圆x 2a 2+y 2b 2=1(a>b>0)面积为S 椭圆=πab(1)求椭圆的离心率的值;(2)已知外椭圆长轴长为6,用直角角尺两条直角边内边缘与外椭圆相切,移动角尺绕外椭圆一周,得到由点M 生成的轨迹将两椭圆围起来,整个标志完成.请你建立合适的坐标系,求出点M 的轨迹方程.建立如图平面直角坐标系.设外椭圆的方程为x 2a 2+y 2b 2=1(a>b>0),∵内外椭圆有相同的离心率且共轴,可得内椭圆长轴为b ,设内椭圆短轴长为b',焦距长为c',得ca =c 'b ,c'=bca ,b'2=b 2-c'2=b 2-b 2c2a 2=b 2(a 2-c 2)a 2=b 4a 2.∴内椭圆的方程为y 2b 2+x 2b 4a 2=1.图中标记的①,②,③三个区域面积彼此相等,由对称性只需S 外=3S 内,即πab=3πb ·b 2a 得a 2=3b 2,即a 2=3(a 2-c 2),故e=√63.(2)同(1)建立如图平面直角坐标系,由于外椭圆长轴为6,∴a=3,又e=√63,∴c=√6,b 2=3. 则外椭圆方程为x 29+y 23=1.设点M (x 0,y 0),切线方程为y-y 0=k (x-x 0),代入椭圆方程得,(1+3k 2)x 2+6k (y 0-kx 0)x+3(y 0-kx 0)2-9=0.∴Δ=36k 2(y 0-kx 0)2-4(1+3k 2)[3(y 0-kx 0)2-9]=0.化简得(x 0-9)k 2-2x 0y 0k+y 02-3=0.∵两条切线互相垂直,∴k 1k 2=-1,即y 02-3x 02-9=-1,即x 02+y 02=12(x 0≠±3).当两切线与坐标轴垂直时,四点(3,±√3),(-3,±√3)也满足方程,∴轨迹方程为x 2+y 2=12.模块综合测验一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.“ab=4”是“直线2x+ay-1=0与直线bx+2y-2=0平行”的( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件两直线平行,∴斜率相等.即可得ab=4,又因为不能重合,当a=1,b=4时,满足ab=4,但是重合,故“ab=4”是“直线2x+ay-1=0与直线bx+2y-2=0平行”的必要不充分条件.2.如图,四面体S-ABC 中,D 为BC 中点,点E 在AD 上,AD=3AE ,则SE ⃗⃗⃗⃗⃗ =( ) A.13SA ⃗⃗⃗⃗⃗ +12SB ⃗⃗⃗⃗⃗ +13SC ⃗⃗⃗⃗B.23SA ⃗⃗⃗⃗⃗ +16SB ⃗⃗⃗⃗⃗ +16SC ⃗⃗⃗⃗ C.12SA ⃗⃗⃗⃗⃗ +14SB ⃗⃗⃗⃗⃗ +14SC ⃗⃗⃗⃗ D.12SA ⃗⃗⃗⃗⃗ +13SB ⃗⃗⃗⃗⃗ +16SC ⃗⃗⃗⃗S-ABC 中,D 为BC 中点,点E 在AD 上,AD=3AE ,∴SE ⃗⃗⃗⃗⃗ =SA ⃗⃗⃗⃗⃗ +13AD ⃗⃗⃗⃗⃗ =SA⃗⃗⃗⃗⃗ +13×12(AC ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ )=SA ⃗⃗⃗⃗⃗ +16AC ⃗⃗⃗⃗⃗ +16AB ⃗⃗⃗⃗⃗ =SA ⃗⃗⃗⃗⃗ +16(SC ⃗⃗⃗⃗ −SA ⃗⃗⃗⃗⃗ )+16(SB ⃗⃗⃗⃗⃗ −SA ⃗⃗⃗⃗⃗ )=23SA ⃗⃗⃗⃗⃗ +16SB ⃗⃗⃗⃗⃗ +16SC ⃗⃗⃗⃗ .3.圆P :(x+3)2+(y-4)2=1关于直线x+y-2=0对称的圆Q 的标准方程是( ) A.(x+2)2+(y-1)2=1 B.(x+2)2+(y-5)2=1 C.(x-2)2+(y+5)2=1 D.(x-4)2+(y+3)2=1P :(x+3)2+(y-4)2=1,圆心(-3,4),半径1,关于直线x+y-2=0对称的圆半径不变,设对称圆的圆心为(a ,b ),则{a -32+b+42-2=0,b -4a+3=1,解得{a =-2,b =5,所求圆Q 的标准方程为(x+2)2+(y-5)2=1.4.(2021新高考Ⅰ,5)已知F 1,F 2是椭圆C :x 29+y 24=1的两个焦点,点M 在C 上,则|MF 1|·|MF 2|的最大值为( ) A.13 B.12 C.9 D.6|MF 1|+|MF 2|=2a=6,则√|MF 1|·|MF 2|≤|MF 1|+|MF 2|2=3,则|MF 1|·|MF 2|≤9,当且仅当|MF 1|=|MF 2|=3时,等号成立. 故|MF 1|·|MF 2|的最大值为9.故选C .5.坐标原点O (0,0)在动直线mx+ny-2m-2n=0上的投影为点P ,若点Q (-1,-1),那么|PQ|的取值范围为( ) A.[√2,3√2] B.[√2,2√2] C.[2√2,3√2] D.[1,3√2]mx+ny-2m-2n=0,可化为m (x-2)+n (y-2)=0,故直线过定点M (2,2),坐标原点O (0,0)在动直线mx+ny-2m-2n=0上的投影为点P ,故∠OPM=90°,所以P 在以OM 为直径的圆上,圆的圆心N为(1,1),半径为√2,根据点与圆的关系,|NQ|=√(1+1)2+(1+1)2=2√2, 故√2=2√2−√2≤|PQ|≤√2+2√2=3√2.6.正确使用远光灯对于夜间行车很重要.已知某家用汽车远光灯(如图)的纵断面是抛物线的一部分,光源在抛物线的焦点处,若灯口直径是20 cm,灯深10 cm,则光源到反光镜顶点的距离是()A.2.5 cmB.3.5 cmC.4.5 cmD.5.5 cmxOy,如图所示,设对应抛物线的标准方程为y2=2px,由题意知抛物线过点(10,10),得100=2p×10,得p=5,=2.5,即焦点坐标为(2.5,0),则p2则光源到反光镜顶点的距离是2.5cm.7.如图,四棱锥S-ABCD 中,底面是正方形,各棱长都相等,记直线SA 与直线AD 所成角为α,直线SA 与平面ABCD 所成角为β,二面角S-AB-C 的平面角为γ,则( ) A.α>β>γ B.γ>α>β C.α>γ>β D.γ>β>αAC ,BD ,交于点O ,连接OS ,则OA ,OB ,OS 两两垂直,以O 为原点,OA 为x 轴,OB 为y 轴,OS 为z 轴,建立空间直角坐标系,设|AB|=2,则S (0,0,√2),A (√2,0,0),D (0,-√2,0),B (0,√2,0),SA ⃗⃗⃗⃗⃗ =(√2,0,-√2),AD ⃗⃗⃗⃗⃗ =(-√2,-√2,0),SB ⃗⃗⃗⃗⃗ =(0,√2,-√2),cos α=|SA ⃗⃗⃗⃗⃗ ·AD⃗⃗⃗⃗⃗⃗ ||SA⃗⃗⃗⃗⃗ |·|AD ⃗⃗⃗⃗⃗⃗ |=√4×√4=12,平面ABCD 的法向量n =(0,0,1),cos β=|n ·SA ⃗⃗⃗⃗⃗ ||n |·|SA⃗⃗⃗⃗⃗ |=√2√4=√22,设平面SAB 的法向量m =(x ,y ,z ),则{m ·SA ⃗⃗⃗⃗⃗ =√2x -√2z =0,m ·SB⃗⃗⃗⃗⃗ =√2y -√2z =0,取x=1,得m =(1,1,1),cos γ=|m ·n ||m |·|n |=√3=√33,∵cos α<cos γ<cos β,∴α>γ>β.8.设F 1,F 2是双曲线C :x 2a 2−y 2b 2=1(a>0,b>0)的左、右焦点,O 是坐标原点,过F 2作C 的一条渐近线的垂线,垂足为P.若|PF 1|=√6|OP|,则C 的离心率为( ) A.√5 B.√3 C.2 D.√2|PF 2|=b ,|OF 2|=c ,∴|PO|=a.在Rt △POF 2中,cos ∠PF 2O=|PF 2||OF 2|=bc ,∵在△PF 1F 2中,cos ∠PF 2F 1=|PF 2|2+|F 1F 2|2-|PF 1|22|PF 2||F 1F 2|=bc ,∴b 2+4c 2-(√6a )22b ·2c=bc ⇒c 2=3a 2,∴e=√3.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对得3分. 9.(2021新高考Ⅰ,11)已知点P 在圆(x-5)2+(y-5)2=16上,点A (4,0),B (0,2),则( ) A.点P 到直线AB 的距离小于10 B.点P 到直线AB 的距离大于2 C.当∠PBA 最小时,|PB|=3√2 D.当∠PBA 最大时,|PB|=3√2,记圆心为M ,半径为r ,则M (5,5),r=4.由条件得,直线AB 的方程为x4+y2=1,整理得x+2y-4=0,过点M 作MN 垂直于直线AB ,垂足为N ,直线MN 与圆M 分别交于点P 1,P 2,圆心M (5,5)到直线AB 的距离|MN|=√12+22=√5,于是点P 到直线AB 的距离最小值为|P 2N|=|MN|-r=√5-4,最大值为|P 1N|=|MN|+r=√5+4.又√5-4<2,√5+4<10,故A 正确,B 错误;过点B 分别作圆的两条切线BP 3,BP 4,切点分别为点P 3,P 4,则当点P 在P 3处时∠PBA 最大,在P 4处时∠PBA 最小.又|BP 3|=|BP 4|=√|BM |2-r 2=√52+(5-2)2-42=3√2,故C,D 正确.故选A,C,D .10.若a =(-1,λ,-2),b =(2,-1,1),a 与b 的夹角为120°,则λ的值为( ) A.17 B.-17 C.-1 D.1a =(-1,λ,-2),b =(2,-1,1),a 与b 的夹角为120°,∴cos120°=a ·b|a |·|b |=√5+λ2·√6,解得λ=-1或λ=17.11.已知P是椭圆C:x 26+y2=1上的动点,Q是圆D:(x+1)2+y2=15上的动点,则()A.C的焦距为√5B.C的离心率为√306C.圆D在C的内部D.|PQ|的最小值为2√55c=√6-1=√5,则C的焦距为2√5,e=√5√6=√306.设P(x,y)(-√6≤x≤√6),则|PD|2=(x+1)2+y2=(x+1)2+1-x 26=56(x+65)2+45≥45>15,所以圆D在C的内部,且|PQ|的最小值为√45−√15=√55.12.已知直线l过点P(1,0,-1),平行于向量a=(2,1,1),平面α过直线l与点M(1,2,3),则平面α的法向量可能是()A.(1,-4,2)B.(14,-1,12)C.(-14,1,-12) D.(0,-1,1),所研究平面的法向量垂直于向量a=(2,1,1)和向量PM⃗⃗⃗⃗⃗⃗ , 而PM⃗⃗⃗⃗⃗⃗ =(1,2,3)-(1,0,-1)=(0,2,4),选项A,(2,1,1)·(1,-4,2)=0,(0,2,4)·(1,-4,2)=0满足垂直,故正确;选项B,(2,1,1)·(14,-1,12)=0,(0,2,4)·(14,-1,12)=0满足垂直,故正确;选项C,(2,1,1)·(-14,1,-12)=0,(0,2,4)·(-14,1,-12)=0满足垂直,故正确;选项D,(2,1,1)·(0,-1,1)=0,但(0,2,4)·(0,-1,1)≠0,故错误.三、填空题:本题共4小题,每小题5分,共20分.13.过点(1,√2)的直线l将圆x2+y2-4x=0分成两段弧,当劣弧所对圆心角最小时,直线l的斜率k=.。
2024-2025年北师大版数学必修第一册模块质量检测卷(带答案)

模块质量检测卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷 (选择题,共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合A =⎩⎨⎧⎭⎬⎫x∈Z ⎪⎪⎪-3<x <12 ,B ={-1,0,1,2},能正确表示图中阴影部分的集合是( )A .{-1,0,1}B .{1,2}C .{0,1,2}D .{2}2.已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方式估计该运动员三次投篮恰有两次命中的概率:先由计算机产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以三个随机数为一组,代表三次投篮结果,经随机模拟产生了如下12组随机数:137 960 197 925 271 815 952 683 829 436 730 257,据此估计,该运动员三次投篮恰有两次命中的概率为( )A .14B .38C .512D .583.函数f (x )=e x+2x -3的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2)4.某地甲、乙、丙三所学校举行高三联考,三所学校参加联考的人数分别为300,400,500,为了调查此次联考数学学科的成绩,现采用分层抽样的方法从这三所学校中抽取一个容量为120的样本,那么应从乙学校中抽取的数学成绩的份数为( )A .30B .40C .50D .805.a ,b ∈R ,记m ax {a ,b }=⎩⎪⎨⎪⎧a (a ≥b )b (a <b ) ,则函数f (x )=m ax {|x +1|,x 2}(x ∈R )的最小值是( )A .3-52B .3+52C .1+52D .1-526.复利是一种计算利息的方法,即把前一期的利息和本金加在一起算作本金,再计算下一期的利息,我国现行定期储蓄中的自动转存业务就是类似复利计算的储蓄.某人在银行存入本金5万元并办理了自动转存业务,已知每期利率为p ,若存m 期,本利和为5.4万元,若存n 期,本利和为5.5万元,若存m +n 期,则利息为( )A .5.94万元B .1.18万元C .6.18万元D .0.94万元7.现有四个函数:①y =x ·sin x ;②y =x ·cos x ;③y =x ·|cos x |;④y =x ·2x的图象(部分)如下,则按照从左到右图象对应的函数序号安排正确的一组是( )A .①④②③ B.①④③② C .④①②③ D.③④②①8.已知a 是方程x +lg x =3的解,b 是方程2x +100x=3的解,则a +2b 为( ) A .-32 B .32C .3D .-3二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对得5分,选对但不全的得2分,有选错的得0分)9.下列命题是真命题的是( )A .若幂函数f (x )=x α过点(12 ,4),则α=-12B .∃x ∈(0,1),(12 )x>log 12 xC .∀x ∈(0,+∞),log 12x >log 13xD .命题“∃x ∈R ,sin x +cos x <1”的否定是“∀x ∈R ,sin x +cos x ≥1” 10.PM2.5的监测值是用来评价环境空气质量的指标之一.划分等级为:PM2.5日均值在35μg/m 3以下,空气质量为一级:PM2.5日均值在35~75μg/m 3,空气质量为二级:PM2.5日均值超过75μg/m 3为超标.如图是某地12月1日至10日PM2.5的日均值(单位:μg/m 3)变化的折线图,关于PM2.5日均值说法正确的是( )A .这10天的日均值的80%分位数为60B .前5天的日均值的极差小于后5天的日均值的极差C .这10天的日均值的中位数为41D .前5天的日均值的方差小于后5天的日均值的方差 11.下列选项正确的是( ) A .若a ≠0,则a +4a的最小值为4B .若x ∈R ,则x 2+3x 2+2的最小值是2C .若ab <0,则a b +b a的最大值为-2D .若正实数x ,y 满足x +2y =1,则2x +xy的最小值为612.已知函数f (x )=⎩⎪⎨⎪⎧2a -x,x ≥12x -a ,x <1 的图象如图所示,则下列说法正确的是( )A .a =1B .a =-1C .函数y =f (x +1)是偶函数D .关于x 的不等式f (x )>12的解集为(0,2)第Ⅱ卷 (非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分,请把正确答案填在题中横线上)13.已知一组样本数据x 1,x 2,…,x 10,且x 21 +x 22 +…+x 210 =2 022,平均数x -=12,则该组数据的方差为________.14.某电子商务公司对10 000名网络购物者2022年度的消费情况进行了统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.(1)直方图中的a =________;(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为________. 15.已知a >0,且a ≠1,log a 2=x ,则a 2x+a -2x=________.16.三个元件a ,b ,c 独立正常工作的概率分别是13 ,12 ,23 ,把它们随意接入如图所示电路的三个接线盒T 1,T 2,T 3中(一盒接一个元件),各种连接方法中,此电路正常工作的最大概率是________.四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明,证明过程或演算步骤)17.(本小题满分12分)甲、乙两名战士在相同条件下各射靶10次,每次命中的环数如下:甲:8 6 7 8 6 5 9 10 4 7 乙:6 7 7 8 6 7 8 7 9 5 (1)分别计算以上两组数据的平均数; (2)分别求出以上两组数据的方差;(3)根据计算结果,评价这两名战士的射击情况.18.(本小题满分10分)已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,求m 的取值范围.19.(本小题满分12分)某工厂为了检验某产品的质量,随机抽取100件产品,测量其某一质量指数,根据所得数据,按[10,12),[12,14),[14,16),[16,18),[18,20]分成5组,得到如图所示的频率分布直方图.(1)估计该产品这一质量指数的中位数;(2)若采用分层抽样的方法从这一质量指数在[16,18)和[18,20]内的该产品中抽取6件,再从这6件产品中随机抽取2件,求这2件产品不是取自同一组的概率.20.(本小题满分12分)某企业开发生产了一种大型电子产品,生产这种产品的年固定成本为2 500万元,每生产x 百件,需另投入成本c (x )(单位:万元),当年产量不足30百件时,c (x )=10x 2+100x ;当年产量不小于30百件时,c (x )=501x +10 000x-4 500;若每件电子产品的售价为5万元,通过市场分析,该企业生产的电子产品能全部销售完.(1)求年利润y (万元)关于年产量x (百件)的函数关系式;(2)年产量为多少百件时,该企业在这一电子产品的生产中获利最大?21.(本小题满分12分)甲、乙、丙三人进行摔跤比赛,比赛规则如下:①每场比赛有两人参加,另一人当裁判,没有平局;②每场比赛结束时,负的一方在下一场当裁判;③累计负两场者被淘汰;④当一人被淘汰后,剩余的两人继续比赛,直至其中一人累计负两场被淘汰,另一人最终获得冠军,比赛结束.已知在每场比赛中,甲胜乙和甲胜丙的概率均为23 ,乙胜丙的概率为12,各局比赛的结果相互独立.经抽签,第一场比赛甲当裁判.(1)求前三场比赛结束后,丙被淘汰的概率; (2)求只需四场比赛就决出冠军的概率; (3)求甲最终获胜的概率.22.(本小题满分12分)已知f (x )=log 3(3x+1)+12 kx (x ∈R )是偶函数.(1)求k 的值;(2)若函数y =f (x )的图象与直线y =12 x +a 有公共点,求a 的取值范围.模块质量检测卷1.答案:B解析:由题意,集合A ={x∈Z ⎪⎪⎪-3<x <12 }={-2,-1,0}, 根据图中阴影部分表示集合B 中元素除去集合A 中的元素,即为{1,2}. 故选B. 2.答案:A解析:由题意可知经随机模拟产生的12组随机数中,137,271,436这三组表示三次投篮恰有两次命中,故该运动员三次投篮恰有两次命中的概率为P =312 =14 ,故选A. 3.答案:C解析:f (x )=e x+2x -3,函数单调递增,计算得到f (0)=-2<0,f (1)=e -1>0,故函数在(0,1)有唯一零点.4.答案:B解析:由题意知,应从乙学校抽取120×400300+400+500 =40(份)数学成绩.5.答案:A解析:当|x +1|≥x 2,即x +1≥x 2或x +1≤-x 2,解得1-52 ≤x ≤1+52时,f (x )=max{|x +1|,x 2}=|x +1|=x +1,函数单调递增,所以f (x )min =1-52 +1=3-52;当x <1-52 时,f (x )=max{|x +1|,x 2}=x 2,函数单调递减,f (x )>f (1-52 )=3-52 ;当x >1+52 时,f (x )=max{|x +1|,x 2}=x 2,函数单调递增,f (x )>f (1+52 )=3+52 ;综上,f (x )min =3-52.故选A. 6.答案:D解析:由题意可得⎩⎪⎨⎪⎧5(1+p )m=5.45(1+p )n=5.5,则5(1+p )m ·5(1+p )n=5.4×5.5, 即存m +n 期,本利和为5(1+p )m +n=5.4×1.1=5.94,则存m +n 期,则利息为5.94-5=0.94万元.故选D. 7.答案:A解析:①y =x ·sin x 为偶函数,它的图象关于y 轴对称,故第一个图象即是;②y =x ·cosx 为奇函数,它的图象关于原点对称,它在⎝⎛⎭⎪⎫0,π2 上的值为正数,在⎝⎛⎭⎪⎫π2,π 上的值为负数,故第三个图象满足;③y =x ·|cos x |为奇函数,当x >0时,f (x )≥0,故第四个图象满足;④y =x ·2x,为非奇非偶函数,故它的图象没有对称性,故第二个图象满足,故选A.8.答案:C解析:因为a 是方程x +lg x =3的解,所以a +lg a =3,令t =lg a ,则有a =10t, 所以10t+t =3, ①因为b 是方程2x +100x =3的解,所以2b +100b =3,即2b +102b=3, ② 设f (x )=10x+x ,易知f (x )在R 上单调递增, 由①②得,t =2b ,所以lg a =2b , 代入a +lg a =3得,a +2b =3.故选C. 9.答案:BD解析:f (12 )=(12 )α=4,∴α=-2,A 错误;在同一平面直角坐标系上画出y =(12 )x与y =log 12x 两函数图象,如图1所示.图1 图2由图可知∃x ∈(0,1),(12 )x>log 12 x ,故B 正确;在同一平面直角坐标系上画出y =log 13x 与y =log 12x 两函数图象,如图2所示.由图可知,当x ∈(0,1)时,log 12x >log 13x ,当x =1时,log 12x =log 13x ,当x ∈(1,+∞)时,log 12x <log 13x ,故C 错误;根据存在量词命题的否定为全称量词命题可知,命题“∃x∈R ,sin x +cos x <1”的否定是“∀x ∈R ,sin x +cos x ≥1”,故D 正确.故选BD.10.答案:BD解析:10个数据为:30,32,34,40,41,45,48,60,78,80, 10×0.8=8,故80%分位数为60+782=69,A 选项错误.5天的日均值的极差为41-30=11,后5天的日均值的极差为80-45=35,B 选项正确. 中位数是41+452=43,C 选项错误.根据折线图可知,前5天数据波动性小于后5天数据波动性,所以D 选项正确. 故选BD.11.答案:CD解析:当a <0时,a +4a =-(-a -4a)≤-2-a ·(-4a) =-4,当且仅当-a =-4a,即a =-2时取等号,则a +4a 有最大值为-4,当a >0时,a +4a≥2a ·4a =4,当且仅当a =4a,即a =2时取等号,则a +4a的最小值为4,故A 错误;因为x 2+2 ≥2 ,1x 2+2>0,所以x 2+2 +1x 2+2≥2x 2+2·1x 2+2=2, 等号成立的条件是x 2+2 =1x 2+2,即x 2+2=1,方程无解,即最小值不为2,B 错误;若ab <0,故b a <0,a b <0,则a b +b a =-[(-a b )+(-b a)]≤-2-a b ·-ba=-2,当且仅当-ba =-a b即a =-b 时取等号,此时取得最大值-2,C 正确; 正实数x ,y 满足x +2y =1,则2x +x y =2x +4y x +x y =2+4y x +xy ≥2+24y x·x y=6,当且仅当4y x =x y ,即x =2y =12 时取等号,则2x +xy 的最小值为6,D 正确.故选CD.12.答案:ACD解析:由函数图象可知x =1为函数f (x )的对称轴,即函数满足f (2-x )=f (x ), 则当x >1时,2-x <1,故22-x -a=2a -x,∴2-x -a =a -x ,则a =1, 同理当x <1时,2-x >1,故2a -2+x=2x -a,∴a -2+x =x -a ,则a =1,综合可知a =1,A 正确;B 错误.将f (x )=⎩⎪⎨⎪⎧2a -x,x ≥12x -a ,x <1 的图象向左平移1个单位,即得函数y =f (x +1),x ∈R 的图象,则y =f (x +1)的图象关于y 轴对称,故y =f (x +1)为偶函数,C 正确; 当x ≥1时,f (x )=21-x,令21-x>12,解得x <2,故1≤x <2; 当x <1时,f (x )=2x -1,令2x -1>12,解得x >0,故0<x <1,综合可得0<x <2,即不等式f (x )>12 的解集为(0,2),D 正确.故选ACD. 13.答案:58.2解析:因为一组样本数据x 1,x 2,…,x 10,且x 21 +x 22 +…+x 210 =2 022,平均数x -=12,所以该组数据的方差为110[(x 1-12)2+(x 2-12)2+…+(x 10-12)2]=110 [(x 21 +x 22 +…+x 210 )-24(x 1+x 2+…+x 10)+10×122] =110 (2 022-24×10×12+10×122) =58.2.14.答案:(1)3.0 (2)6 000解析:(1)0.1×1.5+0.1×2.5+0.1×a +0.1×2.0+0.1×0.8+0.1×0.2=1,解得a =3.0.(2)消费金额在区间[0.5,0.9]内的频率为1-0.1×1.5-0.1×2.5=0.6, 则该区间内购物者的人数为10 000×0.6=6 000. 15.答案:174解析:由指对数的互化,log a 2=x ⇒a x=2,∴a 2x+a -2x=(a x )2+1(a x )2 =22+122 =174.16.答案:49解析:若T 1接入a ,T 2,T 3分别接入b ,c ,则该电路正常工作的概率为13 ×(1-12 ×13 )=518; 若T 1接入b ,T 2,T 3分别接入a ,c ,则该电路正常工作的概率为12 ×(1-23 ×13 )=718 ;若T 1接入c ,T 2,T 3分别接入a ,b ,则该电路正常工作的概率为23 ×(1-23 ×12 )=49 ;∵49 >718 >518 ,∴此电路正常工作的最大概率为49. 17.解析:(1)x -甲=110 ×(8+6+7+8+6+5+9+10+4+7)=7,x -乙=110×(6+7+7+8+6+7+8+7+9+5)=7.(2)s 2甲 =110×[(8-7)2+(6-7)2+…+(7-7)2]=3,s 2乙 =110×[(6-7)2+(7-7)2+…+(5-7)2]=1.2.(3)x - 甲=x -乙,说明甲、乙两战士的平均水平相当;s 2甲 >s 2乙 ,说明甲战士的射击情况波动大,因此乙战士比甲战士射击情况稳定.18.解析:由x 2-8x -20≤0,得-2≤x ≤10, ∴P ={x |-2≤x ≤10},由x ∈P 是x ∈S 的必要条件,知S ⊆P . 则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2,1+m ≤10,∴0≤m ≤3. ∴当0≤m ≤3时,x ∈P 是x ∈S 的必要条件,即所求m 的取值范围是[0,3]. 19.解析:(1)因为(0.025+0.125)×2=0.3<0.5,0.3+0.200×2=0.7>0.5, 所以该产品这一质量指数的中位数在[14,16)内,设该产品这一质量指数的中位数为m ,则(m -14)×0.2+0.3=0.5, 解得m =15.(2)由频率分布直方图可得100×0.100×2=20,100×0.050×2=10, 即在[16,18)和[18,20]的产品分别有20,10件,采用分层抽样的方法抽取的6件产品中这一质量指数在[16,18)内的有4件,记为a ,b ,c ,d ,这一质量指数在[18,20]内的有2件,记为e ,f ,从这6件产品中随机抽取2件的情况有ab ,ac ,ad ,ae ,af ,bc ,bd ,be ,bf ,cd ,ce ,cf ,de ,df ,ef ,共15种;其中符合条件的情况有ae ,af ,be ,bf ,ce ,cf ,de ,df ,共8种,故所求概率P =815.20.解析:(1)当0<x <30时,y =500x -10x 2-100x -2 500=-10x 2+400x -2 500; 当x ≥30时,y =500x -501x -10 000x+4 500-2 500=2 000-⎝⎛⎭⎪⎫x +10 000x;∴y =⎩⎪⎨⎪⎧-10x 2+400x -2 500,0<x <30,2 000-⎝ ⎛⎭⎪⎫x +10 000x ,x ≥30.(2)当0<x <30时,y =-10(x -20)2+1 500,∴当x =20时,y max =1 500;当x ≥30时,y =2 000-⎝⎛⎭⎪⎫x +10 000x≤2000-2 x ·10 000x=2 000-200=1 800,当且仅当x =10 000x,即x =100时,y max =1 800>1 500,∴年产量为100百件时,该企业获得利润最大,最大利润为1 800万元. 21.解析:(1)记事件A 为甲胜乙,则P (A )=23 ,P (A -)=13 ,事件B 为甲胜丙,则P (B )=23 ,P (B -)=13 ,事件C 为乙胜丙,则P (C )=12 ,P (C -)=12 ,前三场比赛结束后,丙被淘汰的概率为P 1=P (C A -C )+P (CAB )=12 ×13 ×12 +12 ×23 ×23 =1136.(2)只需四场比赛就决出冠军的概率为P 2=P (C A - C A - )+P (C - B - C - B - )+P (CABA )+P (C -BAB )=12 ×13 ×12 ×13 +12 ×13 ×12 ×13 +12 ×23 ×23 ×23 +12 ×23 ×23 ×23 =1954 . (3)由于甲胜乙和甲胜丙的概率均为23 ,且乙胜丙和丙胜乙的概率也相等,均为12 ,第一场比赛甲当裁判,以后的比赛相对于甲,可视乙丙为同一人,设甲胜为事件D ,甲当裁判为事件E ,P 3=P (EDDD )+P (EDD D - D )+P (ED D - ED )+P (E D -EDD )=23 ×23 ×23 +23 ×23 ×13 ×23 +23 ×13 ×23 +13 ×23 ×23 =5681 . 22.解析:(1)∵y =f (x )是偶函数,∴f (-x )=f (x ), ∴log 3(3-x +1)-12 kx =log 3(3x+1)+12kx ,化简得log 3⎝ ⎛⎭⎪⎫3-x+13x +1 =kx ,即log 313x =kx ,∴log 33-x =kx ,∴-x =kx ,即(k +1)x =0对任意的x ∈R 都成立,∴k =-1; (2)由题意知,方程log 3(3x+1)-12 x =12x +a 有解,亦即log 3(3x+1)-x =a ,即log 3⎝ ⎛⎭⎪⎫3x+13x =a 有解, ∴log 3⎝ ⎛⎭⎪⎫1+13x =a 有解, 由13x >0,得1+13x >1,∴log 3⎝ ⎛⎭⎪⎫1+13x >0,故a >0,即a 的取值范围是(0,+∞).。
新教材2024年秋高中数学模块综合测评新人教A版必修第一册

模块综合测评(时间:120分钟满分:150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={x|-2<x<1},B={x|x<-1 或x>3},则A∩B=( )A.{x|-2<x<-1} B.{x|-2<x<3}C.{x|-1<x<1} D.{x|1<x<3}2.(2024·河北辛集中学月考)若幂函数f(x)]=xα的图象经过点,则α的值为( )A.2 B.-2C.D.-3.(2024·湖北武汉期末)已知函数f(x)]=x-e-x的部分函数值如表所示:x 10.50.750.6250.562 5f(x)0.632 1-0.106 50.277 60.089 7-0.007那么函数f(x)]的一个零点的近似值(精确度为0.01)为( )A.0.55 B.0.57C.0.65 D.0.74.(2024·浙江高考)设x∈R,则“sin x=1”是“cos x=0”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.(2024·福建厦门双十中学月考)将y=图象上每一个点的横坐标变为原来的3倍(纵坐标不变),得到y=g(x)] 的图象,再将y=g(x)]图象向左平移,得到y=φ(x)]的图象,则y=φ(x)]的解析式为( )A.y=sin x B.y=cos xC.y=sin 9x D.y=sin6.(2024·山东青岛期末)在直角坐标系中,已知圆C的圆心在原点,半径等于1 ,点P从初始位置(0,1)起先,在圆C上按逆时针方向,以角速度rad/s均速旋转3 s后到达P′点,则P′的坐标为( )A.B.C.D.7.(2024·浙江杭州四中期末)已知实数x,y,z满意x=40.5,y=log53,z=sin ,则( )A.z<x<y B.y<z<xC.z<y<x D.x<z<y8.(2024·北京高考)已知函数f(x)=cos2x-sin2x,则( )A.f(x)在上单调递减B.f(x)在上单调递增C.f(x)在上单调递减D.f(x)在上单调递增二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.(2024·山东新泰一中期末)下列结论中正确的是( )A.若a,b为正实数,且a≠b,则a3+b3>a2b+ab2B.若a,b,m为正实数,且a<b,则<C.若>,则a>bD.当x>0时,x+的最小值为210.(2024·新高考Ⅰ卷)如图是函数y=sin (ωx+φ)的部分图象,则sin (ωx+φ)=( )A.sin B.sinC.cos D.cos11.(2024·浙江省杭州七中期末)已知函数f(x)]=sin ,则fA.是奇函数B.是偶函数C.关于点(π,0)成中心对称D.关于点成中心对称12.(2024·山东泰安期末)已知f(x)]是定义在R上的偶函数,且在(-∞,0)上单调递增,则下列结论正确的是( )A.f(x)]在(0,+∞)上单调递减B.f(x)]最多有两个零点C.f(log0.53)>f(log25)D.若实数a满意f(2a)>f,则a<三、填空题:本题共4小题,每小题5分,共20分.13.若2a=3b=,则+的值为________.14.的值为________.15.(2024·山东青岛期末)已知函数f(x)]=ax2+bx+c,满意不等式f(x)]<0的解集为(-∞,-2)∪(t,+∞),且f(x-1)为偶函数,则实数t=________.16.某化工厂产生的废气必需经过过滤后排放,规定排放时污染物的残留含量不得超过原污染物总量的0.25%.已知在过滤过程中的污染物的残留数量P(单位:毫克/升)与过滤时间t(单位:时)之间的函数关系为P=P0·e t ln k(其中e是自然对数的底数,k为常数,P0为原污染物总量).若前4个小时废气中的污染物被过滤掉了96%,则k=________;要能够按规定排放废气,还须要过滤n小时,则正整数n的最小值为________(参考数据:log52≈0.43).四、解答题:本题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)(2024·浙江高校附属中学期末)(1)计算:+log23·log34+lg 2+lg 50;(2)已知tan α=2,求cos ·cos(π-α)的值.18.(本小题满分12分)(2024·山东临沂期末)已知集合A={x|log2(x-1)<2},B={x|x2-2ax+a2-1<0}.(1)若a=1,求A∪B;(2)求实数a的取值范围,使________成立.从①A⊆∁R B,②B⊆∁R A,③(∁R A)∩B=∅中选择一个填入横线处求解.注:假如选择多个条件分别解答,按第一个解答计分.19.(本小题满分12分)已知函数f(x)=2sin2x+cos x-2.(1)求函数f(x)的零点;(2)当x∈时,函数f(x)的最小值为-1,求α的取值范围.20.(本小题满分12分)(2024·湖北华中师大一附中期末)函数f(x)]=-sin2x+sin x cos x.(1)若f=-+,α∈(0,π),求sin α;(2)若函数y=f(ω)(0<ω<3)的图象在区间有且仅有一条经过最高点的对称轴,求ω的取值范围(不须要证明唯一性).21.(本小题满分12分)(2024·湖北沙市中学期末)某地某路无人驾驶公交车发车时间间隔t(单位:分钟)满意5≤t≤20,t∈N.经测算,该路无人驾驶公交车载客量p(t)与发车时间间隔t满意:p(t)=其中t∈N.(1)求p(5),并说明p(5)的实际意义;(2)若该路公交车每分钟的净收益y=-10(元),问当发车时间间隔为多少时,该路公交车每分钟的净收益最大?并求每分钟的最大净收益.22.(本小题满分12分)(2024·山东烟台期末)已知函数f(x)=4log2x+,g(x)=m·4x +2x+1-m,m<0.(1)求函数f(x)在区间(1,+∞)上的最小值;(2)求函数g(x)在区间[1,2]上的最大值;(3)若对∀x1∈(1,+∞),∃x2∈[1,2],使得f(x1)+g(x2)>7成立,求实数m的取值范围.模块综合测评1.A [在数轴上表示出集合A,B,如图所示.由图知A∩B={x|-2x-1}.]2.C [由已知可得f (3)=3α=,解得α=.故选C.]3.B [函数f (x)=x-在R上单调递增,由数表知:f (0.5) f (0.562 5)0 f (0.625) f (0.75) f (1),由函数零点存在定理知,函数f (x)的零点在区间(0.562 5,0.625)内,所以函数f (x)的一个零点的近似值为0.57.故选B.]4.A [sin x=1,x=+2kπ,k∈Z,cos x=0,x=+kπ,k∈Z;sin x=1可推出cos x=0,充分性成立;反之不成立,必要性不成立,故为充分不必要条件,故选A.]5.A [将y=sin 图象上每一个点的横坐标变为原来的3倍(纵坐标不变),得到g(x)=sin 的图象,再将y=g(x)图象向左平移,得到φ(x)=sin=sin x的图象,故选A.]6.D [点P(0,1)为角α=的终边上一点,3 s后点P按逆时针方向旋转到达P′点,点P′落在角β=+3×的终边上,cos β=cos =-cos =-,sin β=sin =-sin =-,故P′的坐标为.故选D.]7.C [x=40.5=>1,0=log51y=log53log55=1,z=sin 0,综上所述,故z y x.故选C.]8.C [f (x)=cos2x-sin2x=cos 2x.选项A中:2x∈,此时f (x)单调递增,A错误;选项B中:2x∈,此时f (x)先递增后递减,B错误;选项C中:2x∈,此时f (x)单调递减,C正确;选项D中:2x∈,此时f (x)先递减后递增,D错误.故选C.]9.AC[对于A,若a,b为正实数,且a≠b,则a3+b3-=(A+B)-ab(A+B)=(A+B)(a-b)2>0,所以a3+b3>a2b+ab2,故A正确;对于B,若a,b,m为正实数,且a<b,则-=>0,所以>,故B错误;对于C,因为>,又c2>0,故a>b,故C正确;对于D,当x>0时,x+≥2=2,当且仅当x=时取等号,故D错误.故选AC.] 10.BC[由题图可知,函数的最小正周期T=2=π,∴=π,ω=±2.当ω=2时,y=sin (2x+φ),将点代入得,sin =0,∴2×+φ=2kπ+π,k∈Z,即φ=2kπ+,k∈Z,故y=sin .由于y=sin =sin =sin ,故选项B正确;y=sin =cos=cos ,选项C正确;对于选项A,当x=时,sin =1≠0,错误;对于选项D,当x==时,cos =1≠-1,错误.当ω=-2时,y=sin (-2x+φ),将代入,得sin =0,结合函数图象,知-2×+φ=π+2kπ,k∈Z,得φ=+2kπ,k∈Z,∴y=sin ,但当x=0时,y=sin =-<0,与图象不符合,舍去.综上,选BC.]11.BD[因为f =sin =sin =cos x,故函数f 为偶函数,因为函数f 的对称中心坐标为,所以函数f 的图象关于点成中心对称.故选BD.]12.ACD[因为f (x)是定义在R上的偶函数,且在(-∞,0)上单调递增,所以f (x)在(0,+∞)上单调递减,故A正确;函数零点个数无法确定,故B错误;f =f (log23),因为log23<log25,所以f (log23)>f (log25),故C正确;若实数a满意f (2a)>f ,即f (2a)>f ,则2a<=,解得a<,故D正确.故选ACD.]13.2 [因为2a=3b=,所以a=log2,b=log3,所以+=+=+==2.]14.1 [原式====1.]15.0 [依据解集易知:a<0 ,由f (x-1)为偶函数,可得f (x)关于直线x=-1对称,即b-2a=0.易知ax2+bx+c=0的两根为t,-2,则依据根与系数的关系可得t-2=-=-2,解得t =0.]16. 4 [明显,当t=0时,P=P0,当t=4时,P=4%P0,则有P0=P0·e4ln k,于是得k4=,而k>0,解得k=,设经过m小时后能够按规定排放废气,则有P0·e m ln k≤0.25%P0⇔k m≤,即≤⇔≥400⇔m≥log5400⇔m≥4+8log52≈4+8×0.43=7.44,于是得还须要过滤时间n=m-4≥3.44,则正整数n的最小值为4.所以k=,正整数n的最小值为4.]17.解:(1)+log23·log34+lg 2+lg 50=+log23×2log32+lg 100=+2+2=.(2)cos ·cos (π-α)=sin α·(-cos α)===-.18.解:(1) A={x|log2(x-1)<2}={x|0<x-1<4}={x|1<x<5},B={x|x2-2ax+a2-1<0}={x|[x-(a-1)][x-(a+1)]<0}={x|a-1<x<a+1},当a=1时,B={x|0<x<2},所以A∪B={x|0<x<5}.(2)由(1)知,A={x|1<x<5},B={x|a-1<x<a+1},所以∁R A={x|x≤1或x≥5},∁R B={x|x≤a-1或x≥a+1}.若选①,A⊆∁R B,则a+1≤1或a-1≥5,解得a≤0或a≥6,所以a的取值范围为a≤0或a≥6.若选②,B⊆∁R A,则a+1≤1或a-1≥5,解得a≤0或a≥6,所以a的取值范围为a≤0或a≥6.若选③,(∁R A)∩B=∅,则解得2≤a≤4,所以a的取值范围为2≤a≤4.19.解:(1)由sin2x+cos2x=1得:f (x)=-2cos2x+cos x,令f (x)=0,解得cos x=0或cos x=,当cos x=0时,x=+kπ,k∈Z;当cos x=时,x=2kπ±,k∈Z.所以函数f (x)的零点为+kπ,2kπ±,k∈Z.(2)因为f (x)=-2cos2x+cos x,令cos x=t,则f (x)=g(t)=-2t2+t,因为f (x)的最小值为-1,所以-2t2+t≥-1(等号可取),解得-≤t≤1(等号可取),即-≤cos x≤1(等号可取),因为x∈,且cos =-,由-≤cos x≤1(等号可取),x∈可得-≤α<.所以α的取值范围为.20.解: f (x)=-sin2x+sin x cos x=-+=sin -.(1)由f =-+,∴sin =,∵α∈(0,π),∴<α+<π.又sin =<=sin ,∴<α+<π,∴cos =-.故sin α=sin =sin cos -cos sin =.(2) y=f (ωx)=sin -,设t=2ωx+,由x∈,则t∈,由0<ω<3,则<+<,<ωπ+<,由题意y=sin t-,在t∈时,有且仅有一条经过最高点的对称轴,即y=sin t-的对称轴x=或x=仅有一条在定义域内.所以或解得<ω<或<ω<.又0<ω<3,故ω的取值范围为∪.21.解:(1)p(5)=60-(5-10)2=35,实际意义为:发车时间间隔为5分钟时,载客量为35.(2)∵y=-10,∴当5≤t<10时,y=-10=110-,任取5≤t1<t2≤6,则y1-y2=-=6(t2-t1)+-=6(t2-t1)+=,∵5≤t1<t2≤6,∴t2-t1>0,25<t1t2<36,∴y1-y2<0,∴函数y=110-在区间[5,6]上单调递增,同理可证该函数在区间[6,10)上单调递减,∴当t=6时,y取得最大值38;当10≤t≤20时,y=-10=-10,该函数在区间[10,20]上单调递减,则当t=10时,y取得最大值28.4.综上,当发车时间间隔为6分钟时,该路公交车每分钟的净收益最大,最大净收益为38元.22.解:(1)当x∈(1,+∞)时,log2x>0,所以4log2x +≥ 2=4,当且仅当4log2x =,即x =时,等号成立,所以,函数f (x)在区间(1,+∞)上的最小值为4.(2)g(x)=m·4x+2x+1-m=m(2x)2+2·2x-m,x∈[1,2],令2x=t,则上述函数化为y(t)=mt2+2t-m,t∈[2,4].因为m<0,所以对称轴t =->0,当-≤2,即m ≤-时,函数y(t)在[2,4]上单调递减,所以当t=2时,y max=3m+4;当2<-<4,即-<m<-时,函数g(t)在上单调递增,在上单调递减,所以y max=y=-m -;当-≥4,即-≤m<0时,函数g(t)在[2,4]上单调递增,所以y max=y(4)=15m+8.综上,当-≤m<0时,g(x)的最大值为15m+8;当-<m<-时,g(x)的最大值为-m -;当m ≤-时,g(x)的最大值为3m+4.(3)对∀x1∈(1,+∞),∃x2∈[1,2],使得f (x1)+g(x2)>7成立,等价于g(x2)>7-f (x1)成立,即g(x)max>[7-f (x)]max,由(1)可知,当x∈(1,+∞)时,[7-f (x)]max=7-f (x)min,因此,只须要g(x)max>3.所以当-≤m<0时,15m+8>3,解得m>-,所以-≤m<0;当-<m<-时,-m ->3,解得m <或<m<0,所以,<m<-;当m ≤-时,3m+4>3,解得m>-,此时解集为空集.综上,实数m 的取值范围为<m<0.。
2024-2025年北师大版数学选择性必修第一册第一章达标检测(带答案)

第二部分阶段测试 第一章达标检测时间:120分钟 分数:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线ax +by +c =0同时经过第一、二、四象限,则a ,b ,c 应满足( ) A .ab>0,bc<0 B .ab>0,bc>0 C .ab<0,bc>0 D .ab<0,bc<0 2.已知点M(0,-1),点N 在直线x -y +1=0上,若直线MN 垂直于直线x +2y -3=0,则点N 的坐标是( )A .(-2,-3)B .(2,1)C .(2,3)D .(-2,-1) 3.若直线l 1:x +(1+m)y +m -2=0和直线l 2:mx +2y +8=0平行,则m 的值为( )A .1B .-2C .1或-2D .-234.直线x -2y +1=0关于直线x =1对称的直线方程是( )A .x +2y -1=0B .2x +y -1=0C .2x +y -3=0D .x +2y -3=05.若圆x 2+y 2-2ax +3by =0的圆心位于第三象限,那么直线x +ay +b =0一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限6.经过点(1,0)且圆心是两直线x =1与x +y =2的交点的圆的方程为( ) A .(x -1)2+y 2=1 B .(x -1)2+(y -1)2=1 C .x 2+(y -1)2=1 D .(x -1)2+(y -1)2=2 7.直线y =kx +1与圆(x -2)2+(y -1)2=4相交于P ,Q 两点.若|PQ|≥2 2 ,则k 的取值范围是( )A .⎣⎢⎡⎦⎥⎤-34,0 B .⎣⎢⎡⎦⎥⎤-33,33 C .[-1,1] D .[- 3 , 3 ]8.设有一组圆C k :(x -1)2+(y -k)2=k 4(k∈N +),给出下列四个命题:①存在k ,使圆与x 轴相切;②存在一条直线与所有的圆均相交;③存在一条直线与所有的圆均不相交;④所有的圆均不经过原点.其中正确的命题序号是( )A.①②③ B.②③④ C.①②④ D.①③④二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.如图,直线l 1,l 2相交于点O ,点P 是平面内的任意一点,若x ,y 分别表示点P 到l 1,l 2的距离,则称(x ,y )为点P 的“距离坐标”.下列说法正确的是( )A.距离坐标为(0,0)的点有1个B.距离坐标为(0,1)的点有2个C.距离坐标为(1,2)的点有4个D.距离坐标为(x ,x )的点在一条直线上10.已知圆M 与直线x +y +2=0相切于点A (0,-2),圆M 被x 轴所截得的弦长为2,则下列结论正确的是( )A .圆M 的圆心在定直线x -y -2=0上B .圆M 的面积的最大值为50πC .圆M 的半径的最小值为1D .满足条件的所有圆M 的半径之积为1011.已知圆O :x 2+y 2=9和圆M :x 2+y 2+6x -4y +9=0交于P ,Q 两点,下列说法正确的是( )A.两圆有两条公切线B.直线PQ 的方程为3x -2y +9=0C.线段PQ 的长为61313D.所有过点P ,Q 的圆的方程可以记为x 2+y 2-9+λ(x 2+y 2+6x -4y +9)=0(λ∈R ,λ≠-1)三、填空题:本题共3小题,每小题5分,共15分.12.过圆x 2+y 2-2y -4=0与x 2+y 2-4x +2y =0的交点,且圆心在直线l :2x +4y -1=0上的圆的方程是________________.13.已知直线l 1:3x -2y -1=0和l 2:3x -2y -13=0,直线l 与l 1,l 2的距离分别是d 1,d 2,若d 1∶d 2=2∶1,则直线l 的方程为________________.14.[双空题]已知圆C :x 2+y 2+2(a -1)x -12y +2a 2=0.当圆C 的面积最大时,实数a 的值为________;若此时圆C 关于直线l :mx +ny -6=0(m >0,n >0)对称,则mn3m +n 的最大值为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤. 15.(本小题满分13分)在平面直角坐标系xOy 中,已知△ABC 的三个顶点的坐标分别为A (-3,2),B (4,3),C (-1,-2).(1)求△ABC 中,BC 边上的高线所在直线的方程; (2)求△ABC 的面积.16.(本小题满分15分)已知圆C :x 2+y 2-2y -4=0,直线l :mx -y +1-m =0. (1)判断直线l 与圆C 的位置关系; (2)若直线l 与圆C 交于不同两点A ,B ,且|AB |=32 ,求直线l 的方程.17.(本小题满分15分)已知半径为5的动圆C 的圆心在直线l :x -y +10=0上. (1)若动圆C 过点(-5,0),求圆C 的方程; (2)是否存在正实数r ,使得动圆C 中满足与圆O :x 2+y 2=r 2相外切的圆有且仅有一个?若存在,请求出r 的值;若不存在,请说明理由.18.(本小题满分17分)①圆心C在直线l:2x-7y+8=0上,且B(1,5)是圆上的点;②圆心C在直线x-2y=0上,但圆C不经过点(4,2),并且直线4x-3y=0与圆C相交所得的弦长为4;③圆C过直线l:2x+y+4=0和圆x2+y2+2x-4y-16=0的交点.在以上三个条件中任选一个,补充在下面问题中,问题:平面直角坐标系xOy中,圆C过点A(6,0),且________.(1)求圆C的标准方程;(2)求过点A的圆C的切线方程.19.(本小题满分17分)已知P是直线3x+4y+8=0上的动点,PA,PB是圆C:x2+y2-2x-2y+1=0的两条切线,A、B是切点.(1)求四边形PACB面积的最小值;(2)直线上是否存在点P,使得∠BPA=60°?若存在,求出点P的坐标;若不存在,请说明理由.第一章达标检测1.解析:由题意,令x =0,得y =-cb >0;令y =0,得x =-c a>0.即bc <0,ac <0,从而ab >0.答案:A2.解析:由点N 在直线x -y +1=0上,排除A ,B.由k MN =2,排除D.故选C. 答案:C 3.解析:∵直线l 1:x +(m +1)y +m -2=0与l 2:mx +2y +8=0平行,∴m (m +1)=1×2,解得m =1或m =-2.当m =-2时,直线l 1:x -y -4=0,l 2:x -y -4=0,l 1与l 2重合,故舍去;当m =1时,l 1∥l 2.∴m =1.故选A.答案:A4.解析:将“关于直线对称的两条直线”转化为“关于直线对称的两点”,在直线x -2y +1=0上取一点P (3,2),点P 关于直线x =1的对称点P ′(-1,2)必在所求直线上,只有选项D 满足.答案:D5.解析:圆x 2+y 2-2ax +3by =0的圆心为⎝ ⎛⎭⎪⎫a ,-32b ,由于圆心位于第三象限,所以a <0,b >0.直线方程x +ay +b =0可化为y =-1a x -b a .因为-1a >0,-ba >0,所以直线不经过第四象限.答案:D6.解析:由⎩⎪⎨⎪⎧x =1,x +y =2, 得⎩⎪⎨⎪⎧x =1,y =1,即所求圆的圆心坐标为(1,1).由该圆过点(1,0),得其半径为1,故圆的方程为(x -1)2+(y -1)2=1.答案:B7.解析:若|PQ |≥22 ,则圆心(2,1)到直线y =kx +1的距离d ≤ 4-⎝ ⎛⎭⎪⎫2222 =2 ,即|2k |1+k 2≤2 ,解得-1≤k ≤1. 答案:C8.解析:命题①中,当k =1时,圆心(1,1),半径r =1,满足与x 轴相切,故①正确;命题②③中,圆心(1,k )恒在直线kx -y =0上,该线与圆一定相交,故②正确,只要k 足够大,对任意直线,总有直线与圆相交,故③错误;命题④中,若(0,0)在圆上,则1+k 2=k 4,而k ∈N +,若k 是奇数,则左式是偶数,右式是奇数,方程无解,若k 是偶数,则左式是奇数,右式是偶数,方程无解,故所有的圆均不经过原点,故④正确.故选C.答案:C9.解析:对于A ,若距离坐标为(0,0),即P 到两条直线的距离都为0,P 为两直线的交点,即距离坐标为(0,0)的点只有1个,A 正确;对于B ,若距离坐标为(0,1),即P 到直线l 1的距离为0,到直线l 2的距离为1,P 在直线l 1上,到直线l 2的距离为1,符合条件的点有2个,B 正确;对于C ,若距离坐标为(1,2),即P 到直线l 1的距离为1,到直线l 2的距离为2,有4个符合条件的点,即与直线l 1相距为2的两条平行线和与直线l 2相距为1的两条平行线的交点,C 正确;对于D ,若距离坐标为(x ,x ),即P 到两条直线的距离相等,则距离坐标为(x ,x )的点在2条相互垂直的直线上,D 错误.故选ABC.答案:ABC10.解析:∵圆M 与直线x +y +2=0相切于点A (0,-2),∴直线AM 与直线x +y +2=0垂直,∴直线AM 的斜率为1,则点M 在直线y =x -2,即x -y -2=0上,A 正确;设M (a ,a -2),∴圆M 的半径r =|AM |=a 2+(a -2+2)2 =2 |a |,∴圆M 被x 轴截得的弦长为2r 2-(a -2)2 =2a 2+4a -4 =2,解得a =-5或a =1,当a =-5时,圆M 的面积最大,为πr 2=50π,B 正确;当a =1时,圆M 的半径最小,为2 ,C 错误;满足条件的所有圆M 的半径之积为52 ×2 =10,D 正确.故选ABD.答案:ABD11.解析:A ,因为圆O :x 2+y 2=9和圆M :x 2+y 2+6x -4y +9=0相交于P ,Q 两点,所以两圆有两条公切线,故正确;B ,圆O :x 2+y 2=9和圆M :x 2+y 2+6x -4y +9=0的方程相减得3x -2y +9=0,所以直线PQ 的方程为3x -2y +9=0,故正确;C ,圆心O 到直线PQ 的距离为d =99+4=91313,所以线段PQ 的长|PQ |=2r 2-d 2=2 9-8113 =121313,故错误;D ,因为λ∈R ,λ≠-1,所以⎩⎪⎨⎪⎧x 2+y 2=9,x 2+y 2+6x -4y +9=0, 可知该圆恒过P ,Q 两点,方程可化为x 2+y 2+6λx 1+λ -4λy 1+λ +9λ-91+λ =0,而(6λ1+λ )2+(4λ1+λ )2-49λ-91+λ =16λ2+36(1+λ)2 >0,所以方程x 2+y 2-9+λ(x 2+y 2+6x -4y +9)=0(λ∈R ,λ≠-1)表示圆,但不包括圆M ,故错误.故选AB.答案:AB12.解析:设圆的方程为x 2+y 2-4x +2y +λ(x 2+y 2-2y -4)=0(λ≠-1),则(1+λ)x 2-4x +(1+λ)y 2+(2-2λ)y -4λ=0,把圆心⎝⎛⎭⎪⎫21+λ,λ-11+λ 代入2x +4y -1=0,可得λ=13,所以所求圆的方程为x 2+y 2-3x +y -1=0.答案:x 2+y 2-3x +y -1=013.解析:由直线l 1,l 2的方程知l 1∥l 2,又由题意知,直线l 与l 1,l 2均平行. 设直线l :3x -2y +m =0(m ≠-1且m ≠-13),由两平行直线间的距离公式,得d 1=|m +1|13 ,d 2=|m +13|13 ,又d 1∶d 2=2∶1,所以|m +1|=2|m +13|,解得m =-25或m =-9.故所求直线l 的方程为3x -2y -25=0或3x -2y -9=0. 答案:3x -2y -25=0或3x -2y -9=014.解析:圆C 的方程可化为[x +(a -1)]2+(y -6)2=-a 2-2a +37,当a =-1时,-a 2-2a +37取得最大值38,此时圆C 的半径最大,面积也最大;当a =-1时,圆心坐标为(2,6),圆C 关于直线l :mx +ny -6=0(m >0,n >0)对称,则点(2,6)在直线上,所以2m+6n -6=0,即m +3n =3,由题得mn 3m +n =11m +3n,所以1m +3n =13 (m +3n )(1m +3n )=13(10+3n m +3m n )≥13(10+2 3n m ×3m n )=163 ,当且仅当3n m =3m n ,即m =n =34时取等号,所以mn 3m +n =11m +3n≤316.答案:-131615.解析:(1)∵直线BC 的斜率k BC =3+24+1 =1,∴BC 边上的高线所在直线的斜率k =-1.∴BC 边上的高线所在直线的方程为y -2=-(x +3), 即x +y +1=0.(2)∵B (4,3),C (-1,-2),∴|BC |=(-2-3)2+(-1-4)2=52 .由B (4,3),C (-1,-2),得直线BC 的方程为x -y -1=0,∴点A 到直线BC 的距离d =|-3-2-1|2 =32 ,∴S △ABC =12×52 ×32 =15.16.解析:(1)圆C 的标准方程为x 2+(y -1)2=5,所以圆C 的圆心为C (0,1),半径r=5 ,圆心C (0,1)到直线l :mx -y +1-m =0的距离d =|0-1+1-m |m 2+1 =|m |m 2+1 <1<5 ,因此直线l 与圆C 相交.(2)圆心C 到直线l 的距离d =(5)2-⎝ ⎛⎭⎪⎫3222=22 .又d =|m |m 2+1 ,|m |m 2+1=22,解得m =±1,∴直线l 的方程为x -y =0或x +y -2=0. 17.解析:(1)依题意,可设动圆C 的方程为(x -a )2+(y -b )2=25, 其中圆心(a ,b )满足a -b +10=0. 又因为动圆过点(-5,0),所以(-5-a )2+(0-b )2=25,联立⎩⎪⎨⎪⎧a -b +10=0,(-5-a )2+(0-b )2=25, 解得⎩⎪⎨⎪⎧a =-10,b =0, 或⎩⎪⎨⎪⎧a =-5,b =5.故所求圆C 的方程为(x +10)2+y 2=25或(x +5)2+(y -5)2=25.(2)圆O 的圆心(0,0)到直线l 的距离d =|10|1+1=52 .当r 满足r +5<d 时,动圆C 中不存在与圆O :x 2+y 2=r 2相外切的圆; 当r 满足r +5>d 时,r 每取一个数值,动圆C 中存在两个圆与圆O :x 2+y 2=r 2相外切; 当r 满足r +5=d ,即r =52 -5时,动圆C 中有且仅有1个圆与圆O :x 2+y 2=r 2相外切. 故当动圆C 中与圆O 相外切的圆仅有一个时,r =52 -5. 18.解析:选①条件.(1)方法一:设所求圆的方程为(x -a )2+(y -b )2=r 2, 由题意得⎩⎪⎨⎪⎧(6-a )2+(0-b )2=r 2,(1-a )2+(5-b )2=r 2,2a -7b +8=0,解得a =3,b =2,r 2=13,∴所求圆的方程是(x -3)2+(y -2)2=13. 方法二:设线段AB 的垂直平分线为m ,则圆心C 在直线m 上且在直线l 上,即C 是m 与l 的交点, 直线AB 的斜率是-1,直线m 的斜率是1,AB 中点为(72 ,52 ),∴直线m :x -y -1=0,由⎩⎪⎨⎪⎧x -y -1=0,2x -7y +8=0, 解得⎩⎪⎨⎪⎧x =3,y =2, ∴圆心C (3,2)且|CA |=13 ,∴所求圆的方程是(x -3)2+(y -2)2=13.(2)∵A 在圆C 上,k AC =-23 ,过点A 的切线斜率为32 ,∴过点A 的切线方程是y =32 (x -6),即3x -2y -18=0.选②条件.(1)设所求圆的方程为(x -a )2+(y -b )2=r 2,由题意得a =2b ,设圆心C 到直线4x -3y =0的距离为d ,r 2=(a -6)2+b 2, 由垂径定理可知r 2=d 2+22,即(|4a -3b |5 )2+4=(a -6)2+b 2,将a =2b 代入得,b 1=2,b 2=4, 又∵圆C 不经过点(4,2),∴a =8,b =4,r 2=20,∴所求圆的方程是(x -8)2+(y -4)2=20.(2)∵A 在圆C 上,k AC =2,过点A 的切线斜率为-12 ,∴过点A 的切线方程是y =-12(x -6),即x +2y -6=0.选③条件.(1)方法一:设所求圆C 的方程为x 2+y 2+2x -4y -16+λ(2x +y +4)=0, 代入点A (6,0)得λ=-2,∴所求圆的方程为x 2+y 2-2x -6y -24=0,即(x -1)2+(y -3)2=34.方法二:设直线l :2x +y +4=0与圆x 2+y 2+2x -4y -16=0的交点E (x 1,y 1),F (x 2,y 2),则⎩⎪⎨⎪⎧2x +y +4=0,x 2+y 2+2x -4y -16=0, 即5x 2+26x +16=0,解得x 1=-13+895 ,x 2=-13-895,∴E (-13+895 ,6-2895 ),F (-13-895 ,6+2895),设所求圆C 的方程为(x -a )2+(y -b )2=r 2,将A ,E ,F 代入,得所求圆的方程为(x -1)2+(y -3)2=34.(2)∵A 在圆C 上,k AC =-35 ,过点A 的切线斜率为53 ,∴过点A 的切线方程是y =53(x -6),即5x -3y -30=0.19.解析:(1)如图,连接PC ,由点P 在直线3x +4y +8=0上,可设点P 的坐标为⎝ ⎛⎭⎪⎫x ,-2-34x .圆C 的标准方程为(x -1)2+(y -1)2=1,所以圆心C (1,1),半径为1.所以S 四边形PACB =2S △PAC =2×12 ×|AP |×|AC |=|AP |.因为|AP |2=|PC |2-|CA |2=|PC |2-1,所以当|PC |2最小时,|AP |最小.因为|PC |2=(1-x )2+⎝ ⎛⎭⎪⎫1+2+34x 2 =⎝ ⎛⎭⎪⎫54x +1 2+9,所以当x =-45 时,|PC |2min =9,所以|AP |min =9-1 =22 ,即四边形PACB 面积的最小值为22 .(2)假设直线上存在点P 满足题意.因为∠BPA =60°,|AC |=1,所以|PC |=2.设P (x ,y ),则⎩⎪⎨⎪⎧(x -1)2+(y -1)2=4,3x +4y +8=0,整理可得25x 2+40x +96=0,所以Δ=402-4×25×96<0.所以这样的点P 是不存在的.。
新教材高中数学模块综合测评一含解析新人教B版选择性必修第一册

模块综合测评(一)(时间:120分钟 满分:150分)一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若向量a =(1,0,z )与向量b =(2,1,2)的夹角的余弦值为23,则z =( )A .0B .1C .-1D .2 A 〖由题意可知cos 〈a ,b 〉=a·b|a||b|=2+2z 1+z 2×4+1+4=23,解得z =0,故选A .〗 2.已知四面体ABCD 的所有棱长都是2,点E ,F 分别是AD ,DC 的中点,则EF →·BA →=( ) A .1 B .-1 C .3 D .-3 B 〖如图所示,EF →=12AC →,所以EF →·BA →=12AC →·(-AB →)=-12×2×2×cos 60°=-1,故选B .〗3.若A (-2,3),B (3,-2),C ⎝⎛⎭⎫12,m 三点共线,则m 的值为( ) A .12 B .-12 C .-2 D .2A 〖由-2-33-(-2)=m +212-3,解得m =12.〗4.若P (2,-1)为圆C :(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程是( ) A .2x -y -5=0 B .2x +y -3=0 C .x +y -1=0D .x -y -3=0D 〖圆心C (1,0),k PC =0-(-1)1-2=-1,则k AB =1,AB 的方程为y +1=x -2, 即x -y -3=0,故选D .〗5.双曲线x 2m -y 2n=1(mn ≠0)的离心率为2,有一个焦点与抛物线y 2=4x 的焦点重合,则mn 的值为( )A .316B .38C .163D .83A 〖抛物线y 2=4x 的焦点为(1,0), 故双曲线的一个焦点是(1,0), 所以m +n =1,且1m=2,解得m =14,n =34,故mn =316.〗6.阿基米德出生于希腊西西里岛叙拉古,享有“力学之父”的美称,和高斯、牛顿并列为世界三大数学家,他利用“逼近法”得到椭圆的面积等于圆周率、椭圆的半长轴长、椭圆的半短轴长三者的乘积.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的面积为8π,直线l 过椭圆C 的两个顶点,且椭圆的中心到直线l 的距离为43417,则椭圆C 的方程为( )A .x 216+y 24=1B .x 220+y 214=1C .x 264+y 2=1D .x 232+y 22=1D 〖依题意,8π=ab ·π,故ab =8. ① 不妨设直线l :x a +yb =1,即bx +ay -ab =0,则椭圆的中心到直线l 的距离为ab a 2+b2=43417,解得a 2+b 2=34, ②联立①②,解得a =42,b =2,故椭圆C 的方程为x 232+y 22=1.故选D .〗7.如图所示,在长方体ABCD -A 1B 1C 1D 1中,B 1C 和C 1D 与底面所成的角分别为60°和45°,则异面直线B 1C 和C 1D 所成角的余弦值为( )A .64 B .63 C .26D .23A 〖∵B 1B ⊥平面ABCD ,∴∠BCB 1是B 1C 与底面所成角, ∴∠BCB 1=60°. ∵C 1C ⊥底面ABCD ,∴∠CDC 1是C 1D 与底面所成的角, ∴∠CDC 1=45°.连接A 1D ,A 1C 1(图略),则A 1D ∥B 1C .∴∠A 1DC 1或其补角为异面直线B 1C 与C 1D 所成的角. 不妨设BC =1,则CB 1=DA 1=2, BB 1=CC 1=3=CD , ∴C 1D =6,A 1C 1=2.在等腰△A 1C 1D 中,cos ∠A 1DC 1=12C 1D A 1D =64.〗8.在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,M 是AA 1的中点,则点A 1到平面MBD 的距离是 ( )A .6a 6 B .3a 6 C .3a 4 D .6a3A 〖建立如图所示的空间直角坐标系,则D (0,0,0),M ⎝⎛⎭⎫a ,0,a2, B (a ,a ,0),A 1(a ,0,a ),∴DM →=⎝⎛⎭⎫a ,0,a2, DB →=(a ,a ,0),DA 1→=(a ,0,a ). 设平面MBD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ax +a 2z =0,ax +ay =0,令x =1,则可得n =(1,-1,-2). ∴d =|DA 1→·n ||n |=|a -2a |6=66a .〗二、选择题:本题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.已知直线l 1:x +my -1=0,l 2:(m -2)x +3y +3=0,则下列说法正确的是( ) A .若l 1∥l 2,则m =-1或m =3 B .若l 1∥l 2,则m =3 C .若l 1⊥l 2,则m =-12D .若l 1⊥l 2,则m =12BD 〖直线l 1∥l 2,则3-m (m -2)=0,解得m =3或m =-1,但m =-1时,两直线方程分别为x -y -1=0,-3x +3y +3=0即x -y -1=0,两直线重合,只有m =3时两直线平行,A 错,B 正确;l 1⊥l 2,则m -2+3m =0,m =12,C 错,D 正确.故选BD .〗10.在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-4x =0.若直线y =k (x +1)上存在一点P ,使过P 点所作的圆的两条切线相互垂直,则实数k 的取值可以是( )A .1B .2C .3D .4AB 〖圆C 的方程为x 2+y 2-4x =0,则圆心为C (2,0),半径r =2.设两个切点分别为A ,B ,则由题意可得四边形P ACB 为正方形,故有PC =2r =22, ∴圆心到直线y =k (x +1)的距离小于或等于PC , 即|2k -0+k |k 2+1≤22,解得k 2≤8,可得-22≤k ≤22,∴结合选项,实数k 的取值可以是1,2.〗11.将正方形ABCD 沿对角线BD 折成直二面角A -BD -C ,则下列结论正确的是( ) A .AC ⊥BDB .△ACD 是等边三角形C .AB 与平面BCD 所成的角为90° D .AB 与CD 所成的角为60°ABD 〖如图,取BD 的中点O ,连接AO ,CO ,AC ,则AO ⊥BD ,CO ⊥BD ,又AO ∩CO =O ,∴BD ⊥平面AOC ,又AC ⊂平面AOC ,∴AC ⊥BD ,A 正确;∵AC =2AO =AD =CD ,∴△ACD 是等边三角形,B 正确;易知AO ⊥平面BCD ,∴∠ABD 是AB 与平面BCD 所成的角,为45°,C 错误;∵AC →=AB →+BD →+DC →,不妨设AB =1,则AC 2→=(AB →+BD →+DC →)2=AB 2→+BD 2→+DC 2→+2AB →·BD →+2BD →·DC →+2AB →·DC →,∴1=1+2+1+22×⎝⎛⎭⎫-22+22×⎝⎛⎭⎫-22+2cos 〈AB →,DC →〉,∴cos 〈AB →,DC →〉=12,∴AB 与CD 所成的角为60°,D 正确.故选ABD .〗12.设抛物线C :y 2=2px (p >0)的焦点为F ,准线为l ,A 为C 上一点,以F 为圆心,|F A |为半径的圆交l 于B ,D 两点.若∠ABD =90°,且△ABF 的面积为93,则( )A .|BF |=3B .△ABF 是等边三角形C .点F 到准线的距离为3D .抛物线C 的方程为y 2=6xBCD 〖因为|F A |为半径的圆交l 于B ,D 两点,所以F A =FB ,若∠ABD =90°,可得F A =AB ,所以可得△ABF 为等边三角形,所以B 正确;过F 作FC ⊥AB 交AB 于C ,则C 为AB 的中点,C 的横坐标为p 2,B 的横坐标为-p 2,所以A 的横坐标为3p2,代入抛物线可得y 2=3p 2,|y A |=3p ,△ABF 的面积为93,即12(x A -x B )·|y A |=12×⎝⎛⎭⎫3p 2+p 2×3p =93,解得p =3,所以抛物线的方程为y 2=6x ,所以D 正确;焦点坐标为⎝⎛⎭⎫32,0,所以焦点到准线的距离为32×2=3,所以C 正确; 此时A 点的横坐标为92,所以BF =AF =AB =92+32=6,所以A 不正确.〗三、填空题:本题共4小题,每小题5分,共20分.把答案填在题中横线上.13.经过两条直线2x +y +2=0和3x +4y -2=0的交点,且垂直于直线3x -2y +4=0的直线方程为________.2x +3y -2=0 〖由方程组⎩⎪⎨⎪⎧3x +4y -2=0,2x +y +2=0,得交点A (-2,2),因为所求直线垂直于直线3x -2y +4=0,故所求直线的斜率k =-23,由点斜式得所求直线方程为y -2=-23(x +2),即2x +3y -2=0.〗14.从原点向圆x 2+y 2-12y +27=0作两条切线,则该圆夹在两条切线间的劣弧长为________.2π 〖(数形结合法)如图,圆x 2+y 2-12y +27=0可化为x 2+(y -6)2=9,圆心坐标为(0,6),半径为3. 在Rt △OBC 中可得∠OCB =π3,∴∠ACB =2π3,∴所求劣弧长为2π.〗15.已知三棱锥A -BCD 的所有棱长均相等,E 为DC 的中点,若点P 为AC 的中点,则直线PE 与平面BCD 所成角的正弦值为________,若点Q 在棱AC 所在直线上运动,则直线QE 与平面BCD 所成角正弦值的最大值为________________________________________________________________________________. (本题第一空2分,第二空3分)63 223 〖连接BE ,AE ,过A 作AO ⊥底面BCD ,垂足为O ,连接OD ,则∠ADO 是直线PE 与平面BCD 所成角(图略),因三棱锥A -BCD 的所有棱长均相等,设棱长为2, 则DO =BO =23BE =234-1=233,AO =4-⎝⎛⎭⎫2332=263,∴sin ∠ADO =AO AD =2632=63.∴直线PE 与平面BCD 所成角的正弦值为63. 当Q 与A 重合时,直线QE 与平面BCD 所成角正弦值取最大值,此时直线QE 与平面BCD 所成角为∠AEO ,AE =4-1=3,∴直线QE 与平面BCD 所成角正弦值的最大值为sin ∠AEO =AO AE =2633=223.〗16.已知点F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,|F 1F 2|=4,点Q (2,2)在椭圆C 上,P 是椭圆C 上的动点,则PQ →·PF 1→的最大值为________.92 〖由题意可得c =2,4a 2+2b 2=1,a 2=b 2+c 2,解得a 2=8,b 2=4, 所以椭圆C 的方程为x 28+y 24=1,可得F 1(-2,0),设P (x ,y ),由x 28+y 24=1,可得x 2=8-2y 2,则PQ →·PF 1→=(2-x ,2-y )(-2-x ,-y )=x 2-4+y 2-2y =-y 2-2y +4=-⎝⎛⎭⎫y +222+12+4,当且仅当y =-22∈〖-2,2〗时, PQ →·PF 1→取得最大值为92.〗四、解答题:本题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)如图,已知点A (2,3),B (4,1),△ABC 是以AB 为底边的等腰三角形,点C 在直线l :x -2y +2=0上.(1)求AB 边上的高CE 所在直线的方程; (2)求△ABC 的面积.〖解〗 (1)由题意可知,E 为AB 的中点, ∴E (3,2),且k CE =-1k AB=1,∴CE 所在直线方程为y -2=x -3,即x -y -1=0.(2)由⎩⎪⎨⎪⎧x -2y +2=0,x -y -1=0,得C (4,3),∴|AC |=|BC |=2,AC ⊥BC , ∴S △ABC =12|AC |·|BC |=2.18.(本小题满分12分)如图所示,平行四边形ABCD 的对角线AC 与BD 交于E 点,定点A ,C 的坐标分别是A (-2,3),C (2,1).(1)求以线段AC 为直径的圆E 的方程;(2)若B 点的坐标为(-2,-2),求直线BC 截圆E 所得的弦长. 〖解〗 (1)AC 的中点E (0,2)即为圆心, 半径r =12|AC |=1242+(-2)2=5,所以圆E 的方程为x 2+(y -2)2=5.(2)直线BC 的斜率k =1-(-2)2-(-2)=34,其方程为y -1=34(x -2),即3x -4y -2=0.点E 到直线BC 的距离为d =|-8-2|5=2,所以BC 截圆E 所得的弦长为25-22=2.19.(本小题满分12分)在①(DE →+CF →)⊥(DE →-CF →),②|DE →|=172,③0<cos 〈EF →,DB →〉<1这三个条件中任选一个,补充在下面的问题中.问题:如图,在正方体ABCD -A 1B 1C 1D 1中,以D 为坐标原点,建立空间直角坐标系Dxyz .已知点D 1的坐标为(0,0,2),E 为棱D 1C 1上的动点,F 为棱B 1C 1上的动点,________,试问是否存在点E ,F 满足EF →·A 1C →=0?若存在,求AE →·BF →的值;若不存在,请说明理由.注:如果选择多个条件分别解答,按第一个解答计分. 〖解〗 由题意,正方体ABCD -A 1B 1C 1D 1的棱长为2.则A (2,0,0),B (2,2,0),A 1(2,0,2),D (0,0,0),C (0,2,0), 设E (0,a ,2)(0≤a ≤2),F (b ,2,2)(0≤b ≤2),则EF →=(b ,2-a ,0),A 1C →=(-2,2,-2),AE →=(-2,a ,2),BF →=(b -2,0,2), 所以EF →·A 1C →=4-2(a +b ),AE →·BF →=8-2b .选择①,因为(DE →+CF →)⊥(DE →-CF →),所以(DE →+CF →)·(DE →-CF →)=DE →2-CF →2=0,即DE →2=CF →2,即0+(a -0)2+(2-0)2=(b -0)2+(2-2)2+(2-0)2,所以a =b . 因为EF →·A 1C →=4-2×(a +b )=0,所以a =b =1,故存在点E (0,1,2),F (1,2,2),满足EF →·A 1C →=0,且AE →·BF →=8-2b =6.选择②,|DE →|=172,即a 2+22=172,a =12, 因为EF →·A 1C →=4-2(a +b )=0,所以b =32,故存在点E ⎝⎛⎭⎫0,12,2,F ⎝⎛⎭⎫32,2,2, 满足EF →·A 1C →=0,且AE →·BF →=8-2b =5. 选择③,EF →=(b ,2-a ,0),DB →=(2,2,0), 因为0<cos 〈EF →,DB →〉<1,所以EF →与DB →不共线, 所以b ≠2-a ,即a +b ≠2,则EF →·A 1C →=4-2(a +b )≠0, 故不存在点E ,F 满足EF →·A 1C →=0.20.(本小题满分12分)已知椭圆C 的左、右焦点坐标分别是(-2,0),(2,0),离心率是63,直线y =t 与椭圆C 交于不同的两点M ,N ,以线段MN 为直径作圆P ,圆心为P . (1)求椭圆C 的方程;(2)若圆P 与x 轴相切,求圆心P 的坐标. 〖解〗 (1)因为c a =63,且c =2,所以a =3,b =a 2-c 2=1,所以椭圆C 的方程为x 23+y 2=1.(2)由题意知P (0,t )(-1<t <1).由⎩⎪⎨⎪⎧y =t ,x 23+y 2=1得x =±3(1-t 2),所以圆P 的半径为3(1-t 2).当圆P 与x 轴相切时, |t |=3(1-t 2),解得t =±32.所以点P 的坐标是⎝⎛⎭⎫0,±32.21.(本小题满分12分)如图所示,在四棱锥P -ABCD 中,底面ABCD 为直角梯形,AD ∥BC ,AD ⊥DC ,平面P AD ⊥底面ABCD ,Q 为AD 的中点,M 为PC 的中点,P A =PD =2,BC =12AD =1,CD =3.(1)求证:PQ ⊥AB ;(2)求二面角P -QB -M 的余弦值.〖解〗 (1)证明:在△P AD 中,P A =PD ,Q 为AD 的中点,所以PQ ⊥AD .因为平面P AD ⊥底面ABCD ,且平面P AD ∩底面ABCD =AD ,所以PQ ⊥底面ABCD . 又AB ⊂平面ABCD ,所以PQ ⊥AB .(2)在直角梯形ABCD 中,AD ∥BC ,BC =12AD ,Q 为AD 的中点,所以四边形BCDQ 为平行四边形.因为AD ⊥DC ,所以AD ⊥QB .由(1),可知PQ ⊥平面ABCD ,故以Q 为坐标原点,建立空间直角坐标系Qxyz 如图所示,则Q (0,0,0),A (1,0,0),P (0,0,3),C (-1,3,0),B (0,3,0),QB →=(0,3,0).因为AQ ⊥PQ ,AQ ⊥BQ ,所以AQ ⊥平面PQB ,即QA →为平面PQB 的一个法向量,且QA →=(1,0,0).因为M 是棱PC 的中点,所以点M 的坐标为⎝⎛⎭⎫-12,32,32,所以QM →=⎝⎛⎭⎫-12,32,32. 设平面MQB 的法向量为m =(x ,y ,z ),则⎩⎨⎧ m ·QB →=0,m ·QM →=0,即⎩⎪⎨⎪⎧ 3y =0,-12x +32y +32z =0,令z =1,得x =3,y =0,所以m =(3,0,1),所以cos 〈QA →,m 〉=QA →·m |QA →||m |=32. 由题意知,二面角P -QB -M 为锐角,所以二面角P -QB -M 的余弦值为32. 22.(本小题满分12分)已知圆C :x 2+y 2+2x -2y +1=0和抛物线E :y 2=2px (p >0),圆心C 到抛物线焦点F 的距离为17.(1)求抛物线E 的方程;(2)不过原点的动直线l 交抛物线E 于A ,B 两点,且满足OA ⊥OB .①求证:直线l 过定点;②设点M 为圆C 上任意一动点,求当动点M 到直线l 的距离最大时直线l 的方程. 〖解〗 (1)圆C :x 2+y 2+2x -2y +1=0,可得圆心C (-1,1),半径r =1,抛物线E :y 2=2px (p >0)的焦点F ⎝⎛⎭⎫p 2,0,准线方程为x =-p 2,圆心C 到抛物线焦点F 的距离为17, 即有⎝⎛⎭⎫-1-p 22+12=17, 解得p =6,即抛物线方程为y 2=12x .(2)①证明:设直线l 的方程为x =my +t ,A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧y 2=12x ,x =my +t , 整理得:y 2-12my -12t =0,所以y 1+y 2=12m ,y 1y 2=-12t .由于OA ⊥OB ,则x 1x 2+y 1y 2=0.即(m 2+1)y 1y 2+mt (y 1+y 2)+t 2=0.整理得t2-12t=0,由于t≠0,解得t=12.故直线的方程为x=my+12,直线经过定点P(12,0).②当CP⊥l且动点M经过PC的延长线时,动点M到动直线l的距离取得最大值.k MP=k CP=-113,则m=113.此时直线l的方程为x=113y+12,即13x-y-156=0.。
2024新教材高中数学本册综合测评新人教B版选择性必修第一册

时间:120 分钟
满分:150 分
一、单项选择题(本题共 8 小题,每小题 5 分,共 40 分.在每小题给出
的四个选项中,只有一项是符合题目要求的)
1.若向量 a=(1,x,2),b=(2,-1,2),a,b 夹角的余弦值为89,则实
数 x 的值为( )
A.2
B.-2
C.-2 或525
32 B. 2 D.3 2
答案
解析 双曲线x42-y22=1 的右焦点坐标为( 6,0),一条渐近线的方程为 y= 22x,不妨设点 P 在第一象限,由于|PO|=|PF|,则点 P 的横坐标为 26, 纵坐标为 22× 26= 23,即△PFO 的底边长为 6,高为 23,所以它的面积 为12× 6× 23=342.故选 A.
解析
11.已知圆 M 与直线 x+y+2=0 相切于点 A(0,-2),圆 M 被 x 轴所 截得的弦长为 2,则下列结论正确的是( )
A.圆 M 的圆心在定直线 x-y-2=0 上 B.圆 M 的面积的最大值为 50π C.圆 M 的半径的最小值为 1 D.满足条件的所有圆 M 的半径之积为 10
∴∠F1BF2=90°.
∴OF2=OB,
∴∠OBF2=∠OF2B.
又∠F1OA=∠BOF2,∠F1OA=∠OF2B,
∴∠BOF2=∠OF2B=∠OBF2,
解析
∴△OBF2 为等边三角形. 如图 1 所示,不妨设 B 的坐标为2c,- 23c. ∵点 B 在直线 y=-bax 上,∴ba= 3, ∴渐近线方程为 y=± 3x, 离心率 e=ac= 1+ba2=2.
D.2 或-525
解析 cos〈a,b〉=|aa|·|bb|=3×6-5+x x2=89,解得 x=-2 或 x=525.故选
高一数学必修1综合能力测评卷及答案详解

必修一模块综合能力测评卷说明:本试题分第 I 卷和第II 卷两部分,满分 150分,时间120 分钟一、选择题:本大题共12小题,每题 5 分合计 60 分。
1.以下五个写法:①{ 0}{1,2,3} ;②{0} ;③{0,1,2}{1,2,0} ;④0;⑤ 0,此中错误写法的个数为()..A.1B.2 C .3 D. 42 已知 M ={ x|y=x 2-1} , N={y|y=x2-1}, M N 等于()A. NB. MC.RD.3.设a22.5, b 2.50 , c( 1) 2.5,则a,b,c大小关系()2A. a>c>bB. c>a>bC. a>b>cD.b>a>c4.以下图像表示的函数能用二分法求零点的是()y y y y 1o x o x o x o xA B C D5.已知f ( x6)log 2 x ,则f (8)()4B. 8C. 181A . D .326.已知f (x)是定义在(0,) 上的单一增函数,若 f ( x) f (2x) ,则x的范围是()A x>1 B. x<1 C.0<x<2 D. 1<x<27.若函数f ( x)x 2bx c 对随意实数都有 f (2x) f (2x) ,则()A f ( 2) f (1) f (4) B. f (1) f (2) f (4) C. f (2) f (4) f (1) D. f (4) f (2) f (1)8.给出函数 f (x), g( x) 以下表,则f〔 g( x)〕的值域为()x1234x1234g(x)1133f(x)4321A.{4,2}B.{1,3}C.{1,2,3,4}D. 以上状况都有可能9.设函数f ( x)log a| x |, (a 0且 a 1)在(上单一递加,则 f (a1)与 f (2)的大小关系为(),0)A f (a 1) f (2)B f (a 1) f (2) C. f (a 1) f (2) D.不确立10.函数f(x)=x 2-4x+5 在区间 [0,m]上的最大值为 5,最小值为1,则 m 的取值范围是()A. [2,) B .[2,4] C .(,2] D 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模块综合检测(时间:120分钟,满分:150分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果AB <0,BC <0,那么直线Ax +By +C =0不经过( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选D.Ax +By +C =0可化为y =-A B x -C B ,由AB <0,BC <0,得-AB >0,-CB >0,故直线Ax +By +C =0经过第一、二、三象限,不经过第四象限.2.已知直线mx +ny +1=0平行于直线4x +3y +5=0,且在y 轴上的截距为13,则m ,n 的值分别为( )A .4和3B .-4和3C .-4和-3D .4和-3解析:选C.由题意知:-m n =-43,即3m =4n ,且有-1n =13,所以n =-3,m =-4.3.如图,在平行六面体ABCD -A 1B 1C 1D 1中,点M 在AC 上,且AM =12MC ,点N 在A 1D 上,且A 1N =2ND .设AB →=a ,AD →=b ,AA 1→=c ,则MN →=( ) A .-13a +13b +13c B .a +13b -13c C.13a -13b -23c D .-13a +b +13c解析:选A.因为M 在AC 上,且AM =12MC ,N 在A 1D 上,且A 1N =2ND ,所以AM →=13AC →,A 1N →=23A 1D →.又ABCD -A 1B 1C 1D 1为平行六面体,且AB →=a ,AD →=b ,AA 1→=c ,所以AC →=a +b ,A 1D →=b -c ,所以MN →=MA →+AA 1→+A 1N →=-13AC →+AA 1→+23A 1D →=-13(a +b )+c +23(b -c )=-13a +13b +13c . 4.已知直线l 的倾斜角为135°,直线l 1经过点A (3,2),B (a ,-1),且l 1与l 垂直,直线l 2:2x +by +1=0与直线l 1平行,则a +b 等于( )A .-4B .-2C .0D .2解析:选B.因为直线l 的斜率为tan 135°=-1,所以l 1的斜率为1,所以k AB =2-(-1)3-a=1,解得a =0.又l 1∥l 2,所以-2b =1,解得b =-2,所以a +b =-2.5.已知a ,b 是两异面直线,A ,B ∈a ,C ,D ∈b ,AC ⊥b ,BD ⊥b 且AB =2,CD =1,则直线a ,b 所成的角为( )A .30°B .60°C .90°D .45°解析:选B.由于AB →=AC →+CD →+DB →,则AB →·CD →=(AC →+CD →+DB →)·CD→=CD →2=1,由cos 〈AB →,CD →〉=AB →·CD →|AB →|·|CD →|=12,得〈AB→,CD →〉=60°,故直线a ,b 所成的角为60°.6.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线被圆x 2+y 2-6x =0截得的弦长为25,则双曲线的离心率为( )A. 3B.62C.355D. 5解析:选 C.依题意可得渐近线方程为bx ±ay =0,而圆的标准方程为(x -3)2+y 2=9.由弦长为25,可得圆心(3,0)到渐近线的距离为2,故3b a 2+b2=2,即b 2a 2=45,所以离心率e =c a =a 2+b 2a 2=355.故选C.7.设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线的方程为( )A .y 2=±4xB .y 2=±8xC .y 2=4xD .y 2=8x解析:选B.由已知可得,抛物线的焦点坐标为⎝ ⎛⎭⎪⎫a 4,0.又直线l 的斜率为2,故直线l 的方程为y =2⎝ ⎛⎭⎪⎫x -a 4,则|OA |=|a |2,故S △OAF =12·|a |4·|a |2=4,解得a =±8,故抛物线的方程为y 2=±8x .8.已知椭圆x 225+y 2m 2=1(m >0)的左焦点为F 1(-4,0),右焦点为F 2,点P 为其上的动点,当∠F 1PF 2为钝角时,点P 的横坐标的取值范围是( )A.⎝ ⎛⎭⎪⎫-35,35B.⎝⎛⎭⎪⎫-355,355 C.⎝ ⎛⎭⎪⎫-54,54 D.⎝⎛⎭⎪⎫-574,574 解析:选D.依题意,得m =3,所以x 225+y 29=1.以原点为圆心,c =4为半径作圆,则F 1F 2是圆的直径.若P 在圆外,则∠F 1PF 2为锐角;若P 在圆上,则∠F 1PF 2为直角;若P 在圆内,则∠F 1PF 2为钝角.联立⎩⎨⎧x 225+y 29=1,x 2+y 2=16,消去y ,得x =±574.故结合图形(图略)可知-574<x <574.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.在同一平面直角坐标系中,直线y =ax +a 2与圆(x +a )2+y 2=a 2的位置不可能是( )解析:选ABD.圆(x +a )2+y 2=a 2的可知a ≠0,圆的圆心(-a ,0),半径为|a |,直线y =ax +a 2的斜率为a ,在y 轴上的焦距为a 2>0,所以在同一直角坐标系中,直线y =ax +a 2与圆(x +a )2+y 2=a 2的位置不可能是ABD.故选ABD.10.已知双曲线C 过点(3,2)且渐近线为y =±33x ,则下列结论正确的是( )A .C 的方程为x 23-y 2=1 B .C 的离心率为 3C .曲线y =e x -2-1经过C 的一个焦点D .直线x -2y -1=0与C 有两个公共点解析:选AC.设双曲线C 的方程为x 2a 2-y 2b 2=1,根据条件可知b a =33,所以方程可化为x 23b 2-y 2b 2=1,将点(3,2)代入得b 2=1,所以a 2=3,所以双曲线C 的方程为x 23-y 2=1,故A 对;离心率e =ca =a 2+b 2a 2=3+13=233,故B 错;双曲线C 的焦点为(2,0),(-2,0),将x =2代入得y =e 0-1=0,所以C对;联立⎩⎨⎧x 23-y 2=1x -2y -1=0,整理得y 2-22y +2=0,则Δ=8-8=0,故只有一个公共点,故D 错,故选AC.11.已知椭圆C 的中心为坐标原点,焦点F 1,F 2在y 轴上,短轴长等于2,离心率为63,过焦点F 1作y 轴的垂线交椭圆C 于P 、Q 两点,则下列说法正确的是( )A .椭圆C 的方程为y 23+x 2=1 B .椭圆C 的方程为x 23+y 2=1 C .|PQ |=233D .△PF 2Q 的周长为4 3解析:选ACD.由已知得,2b =2,b =1,c a =63, 又a 2=b 2+c 2,解得a 2=3. 所以椭圆C 的方程为x 2+y 23=1.如图:所以|PQ |=2b 2a =23=233,△PF 2Q 的周长为4a =4 3.故选ACD.12.已知点F 是抛物线y 2=2px (p >0)的焦点,AB ,CD 是经过点F 的弦且AB ⊥CD ,AB 的斜率为k ,且k >0,C ,A 两点在x 轴上方,则下列结论中成立的是( )A.OC→·OD →=-34p 2 B .四边形ACBD 面积最小值为16p 2 C.1|AB |+1|CD |=12pD .若|AF |·|BF |=4p 2,则直线CD 的斜率为- 3 解析:选ACD.如图所示:F (p2,0),设直线AB 的方程为x =my +p2,设直线AB 的倾斜角为θ(θ≠0).设A (x 1,y 1),B (x 2,y 2),联立直线AB 与抛物线的方程整理得: y 2-2pmy -p 2=0.所以y 1y 2=-p 2,x 1x 2=y 212p ·y 222p =p 24,y 1+y 2=2pm . |AB |=1+m 2·(y 1+y 2)2-4y 1y 2=2p (1+m 2)=2p ·(1+cos 2θsin 2θ)=2psin 2θ.设C (x 3,y 3),D (x 4,y 4), 同理可得y 3y 4=-p 2,x 3x 4=p 24,|CD |=2pcos 2θ, 对于A ,OC →·OD →=x 3x 4+y 3y 4=p 24-p 2=-3p 24,故正确;对于B ,四边形ACBD 面积S =12CD ·AB =4p 22sin 2θ·cos 2θ=8p 2sin 22θ,故其最小值为8p 2,故错;对于C ,1|AB |+1|CD |=sin 2θ2p +cos 2 θ2p =12p ,故正确;对于D ,|AF |·|BF |=(x 1+p 2)(x 2+p 2)=x 1x 2+p 2(x 1+x 2)+p 24=4p 2,则p 2(x 1+x 2)=7p 2⇒x 1+x 2=7p .⇒2pm 2=6p ⇒m =3(m >0),θ=π6.则直线CD 的倾斜角为2π3,其斜率为- 3. 故选ACD.三、填空题:本题共4小题,每小题5分,共20分.13.设点P 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)与圆x 2+y 2=a 2+b 2在第一象限的交点,F 1,F 2分别是双曲线的左、右焦点,且|PF 1|=3|PF 2|,则此双曲线的离心率为________.解析:由题知PF 1⊥PF 2, 则⎩⎪⎨⎪⎧|PF 1|-|PF 2|=2a ,|PF 1|2+|PF 2|2=4c 2,|PF 1|=3|PF 2|, 得ca =3+1. 答案:3+114.已知圆C 1:x 2+y 2+2x -6y +1=0,圆C 2:x 2+y 2-4x +2y -11=0,则两圆的公共弦所在的直线方程为________,公共弦长为________.解析:设两圆交点为A (x 1,y 1),B (x 2,y 2),则A ,B 两点坐标是方程组⎩⎪⎨⎪⎧x 2+y 2+2x -6y +1=0, ①x 2+y 2-4x +2y -11=0 ②的解, ①-②得:3x -4y +6=0.因为A ,B 两点坐标都满足此方程,所以3x -4y +6=0即为两圆公共弦所在的直线方程. 易知圆C 1的圆心(-1,3),半径r 1=3. 又C 1到直线AB 的距离为 d =|-1×3-4×3+6|32+(-4)2=95.所以|AB |=2r 21-d 2=232-⎝ ⎛⎭⎪⎫952=245.即两圆的公共弦长为245. 答案:3x -4y +6=0 24515.如图,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,2AC =AA 1=BC =2,D 为AA 1上一点.若二面角B 1DC C 1的大小为60°,则AD 的长为________.解析:如图,以C 为坐标原点,CA ,CB ,CC 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系Cxyz ,则C (0,0,0),B 1(0,2,2).设AD =a (0≤a ≤2),则点D 的坐标为(1,0,a ),CD →=(1,0,a ),CB 1→=(0,2,2). 设平面B 1CD 的法向量为m =(x ,y ,z ),则⎩⎨⎧m ·CB 1→=0m ·CD →=0⇒⎩⎪⎨⎪⎧2y +2z =0,x +az =0,令z =-1,得m =(a ,1,-1).又平面C 1DC 的一个法向量为(0,1,0),记为n ,则由cos 60°=|m ·n ||m ||n |,得1a 2+2=12,即a =2,故AD = 2. 答案: 216.已知直线l :x =my +1(m ≠0)恒过椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点F ,椭圆C 的上顶点为抛物线x 2=43y 的焦点,则椭圆C 的方程为________.解析:根据题意,直线l :x =my +1(m ≠0)恒过椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点F ,所以F (1,0),所以c =1.又因为椭圆C 的上顶点为抛物线x 2=43y 的焦点, 所以b =3,b 2=3, 所以a 2=b 2+c 2=4,所以椭圆C 的方程为x 24+y 23=1. 答案:x 24+y 23=1四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知两直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值.(1)l 1⊥l 2,且直线l 1过点(-3,-1);(2)l 1∥l 2,且坐标原点到这两条直线的距离相等. 解:(1)因为l 1⊥l 2, 所以a (a -1)-b =0.又因为直线l 1过点(-3,-1), 所以-3a +b +4=0. 故a =2,b =2.(2)因为直线l 2的斜率存在,l 1∥l 2, 所以直线l 1的斜率存在. 所以ab =1-a .①又因为坐标原点到这两条直线的距离相等, 所以l 1,l 2在y 轴上的截距互为相反数,即4b =b .② 联立①②可得a =2,b =-2或a =23,b =2.18.(本小题满分12分)设抛物线C :y 2=4x 的焦点为F ,过F 且斜率为k (k >0)的直线l 与C 交于A ,B 两点,|AB |=8.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程. 解:(1)由题意得F (1,0),l 的方程为 y =k (x -1)(k >0). 设A (x 1,y 1),B (x 2,y 2). 由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x得k 2x 2-(2k 2+4)x +k 2=0.Δ=16k 2+16>0,故x 1+x 2=2k 2+4k 2.所以|AB |=|AF |+|BF |=(x 1+1)+(x 2+1)=4k 2+4k 2. 由题设知4k 2+4k 2=8,解得k =-1(舍去),k =1.因此l 的方程为y =x -1.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为y -2=-(x -3),即y =-x +5.设所求圆的圆心坐标为(x 0,y 0),则⎩⎪⎨⎪⎧y 0=-x 0+5,(x 0+1)2=(y 0-x 0+1)22+16, 解得⎩⎪⎨⎪⎧x 0=3,y 0=2或⎩⎪⎨⎪⎧x 0=11,y 0=-6.因此所求圆的方程为(x -3)2+(y -2)2=16或(x -11)2+(y +6)2=144.19.(本小题满分12分)如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,底面ABCD 是菱形,AB =2,∠BAD =60°.(1)求证:BD ⊥平面P AC ;(2)若P A =4,求平面PBC 与平面PDC 所成角的余弦值.解:(1)证明:因为底面ABCD 是菱形,所以BD ⊥AC .又P A ⊥平面ABCD ,所以BD ⊥P A .又P A ∩AC =A ,所以BD ⊥平面P AC .(2)以BD 与AC 的交点O 为坐标原点,OB ,OC 所在直线为x 轴,y 轴,过点O 且垂直于平面ABCD 的直线为z 轴,建立如图所示的空间直角坐标系.由已知可得,AO =OC =3,OD =OB =1,所以P (0,-3,4),B (1,0,0),C (0,3,0),D (-1,0,0),PC→=(0,23,-4),BC →=(-1,3,0),CD→=(-1,-3,0). 设平面PBC 的法向量为n 1=(x 1,y 1,z 1),平面PDC 的法向量为n 2=(x 2,y 2,z 2),由⎩⎨⎧n 1·PC →=0,n 1·BC →=0,可得⎩⎪⎨⎪⎧23y 1-4z 1=0,-x 1+3y 1=0,令x 1=3,可得n 1=⎝⎛⎭⎪⎫3,1,32. 同理,由⎩⎨⎧n 2·PC →=0,n 2·CD →=0,可得n 2=⎝ ⎛⎭⎪⎫-3,1,32, 所以cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=-519,又平面PBC 与平面PDC 所成的角为锐角,所以平面PBC 与平面PDC 所成角的余弦值为519.20.(本小题满分12分)如图,已知抛物线C :y 2=4x的焦点为F ,过点F 的直线l 与抛物线C 交于A (x 1,y 1)(y 1>0),B (x 2,y 2)两点,T 为抛物线的准线与x 轴的交点.(1)若TA→·TB →=1,求直线l 的斜率; (2)求∠ATF 的最大值.解:(1)由题意得F (1,0),T (-1,0),当直线l 与x 轴垂直时,A (1,2),B (1,-2),此时TA →·TB →=(2,2)·(2,-2)=0,这与TA→·TB →=1矛盾. 故直线l 与x 轴不垂直.设直线l 的方程为y =k (x -1).①将①代入y 2=4x 整理得k 2x 2-(2k 2+4)x +k 2=0.所以x 1+x 2=2k 2+4k 2,x 1x 2=1. 所以y 1y 2=k 2(x 1-1)(x 2-1)=k 2[x 1x 2-(x 1+x 2)+1]=-4,所以TA →·TB →=(x 1+1,y 1)·(x 2+1,y 2)=x 1x 2+(x 1+x 2)+1+y 1y 2=1+2k 2+4k 2+1-4=4k 2=1.解得k =±2.故直线l 的斜率为±2.(2)因为y 1>0,所以tan ∠ATF =y 1x 1+1=y 1y 214+1=4y 1+4y 1≤1. 当且仅当y 1=4y 1,即y 1=2时取等号. 故∠ATF 的最大值为π4.21.(本小题满分12分)如图,在三棱锥P -ABC 中,平面P AB ⊥平面ABC ,AB =6,BC =23,AC =26,D ,E 分别为线段AB ,BC 上的点,且AD =2DB ,CE =2EB ,PD ⊥AC .(1)求证:PD ⊥平面ABC ;(2)若直线P A 与平面ABC 所成的角为π4,求平面P AC 与平面PDE 的夹角.解:(1)证明:由题意知AC =26,BC =23,AB =6,所以AC 2+BC 2=AB 2,所以∠ACB =π2, 所以cos ∠ABC =236=33.又易知BD =2,所以CD 2=22+(23)2-2×2×23cos ∠ABC =8, 所以CD =22,又AD =4,所以CD 2+AD 2=AC 2,所以CD ⊥AB .因为平面P AB ⊥平面ABC ,交线为AB ,所以CD ⊥平面P AB ,所以CD ⊥PD ,因为PD ⊥AC ,AC ∩CD =C ,所以PD ⊥平面ABC .(2)由(1)知PD ,CD ,AB 两两互相垂直,所以可建立如图所示的直角坐标系D -xyz ,因为直线P A 与平面ABC 所成的角为π4,即∠P AD =π4,所以PD =AD =4,则A (0,-4,0),C (22,0,0),B (0,2,0),P (0,0,4),所以CB →=(-22,2,0),AC →=(22,4,0),P A →=(0,-4,-4). 因为AD =2DB ,CE =2EB ,所以DE ∥AC ,由(1)知AC ⊥BC ,所以DE ⊥BC ,又PD ⊥平面ABC ,所以PD ⊥BC ,因为PD ∩DE =D ,所以CB ⊥平面PDE ,所以CB→=(-22,2,0)为平面PDE 的一个法向量. 设平面P AC 的法向量为n =(x ,y ,z ),则⎩⎨⎧n ⊥AC →,n ⊥P A →,所以⎩⎪⎨⎪⎧22x +4y =0,-4y -4z =0,令z =1,得x =2,y =-1,所以n =(2,-1,1)为平面P AC 的一个法向量.所以cos 〈n ,CB →〉=-4-24×12=-32, 所以平面P AC 与平面PDE 所成的锐二面角的余弦值为32,故平面P AC 与平面PDE 的夹角为30°.22.(本小题满分12分)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)过点(0,1),且离心率为32.(1)求椭圆E 的标准方程;(2)设直线l :y =12x +m 与椭圆E 交于A ,C 两点,以AC 为对角线作正方形ABCD ,记直线l 与x 轴的交点为N ,求证|BN |为定值.解:(1)由题意,可知椭圆的焦点在x 轴上,且b =1,由椭圆的离心率e =c a =1-b 2a 2=32,得a =2,所以椭圆E 的标准方程为x 24+y 2=1.(2)证明:设A (x 1,y 1),C (x 2,y 2),线段AC 的中点为M ,由⎩⎪⎨⎪⎧y =12x +m ,x 24+y 2=1, 整理得x 2+2mx +2m 2-2=0,由Δ=(2m )2-4(2m 2-2)=8-4m 2>0,解得-2<m <2,则x 1+x 2=-2m ,x 1x 2=2m 2-2,y 1+y 2=12(x 1+x 2)+2m =m ,则M ⎝ ⎛⎭⎪⎫-m ,12m .|AC |=1+k 2·|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2 =1+⎝ ⎛⎭⎪⎫122·4m 2-4×(2m 2-2)=10-5m 2. 由l 与x 轴的交点N (-2m ,0), 得|MN |=(-m +2m )2+⎝ ⎛⎭⎪⎫12m 2=54m 2.所以|BN |2=|BM |2+|MN |2=14|AC |2+|MN |2=5 2,所以|BN |为定值.。