高等数学学习笔记.

合集下载

(完整版)高等数学完全归纳笔记(全)

(完整版)高等数学完全归纳笔记(全)

一、函数与极限 (2)1、集合的概念 (2)2、常量与变量 (3)2、函数 (4)3、函数的简单性态 (4)4、反函数 (5)5、复合函数 (6)6、初等函数 (6)7、双曲函数及反双曲函数 (7)8、数列的极限 (9)9、函数的极限 (10)10、函数极限的运算规则 (12)一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。

集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。

比如“身材较高的人”不能构成集合,因为它的元素不是确定的。

我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。

如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。

⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。

记作N⑵、所有正整数组成的集合叫做正整数集。

记作N+或N+。

⑶、全体整数组成的集合叫做整数集。

记作Z。

⑷、全体有理数组成的集合叫做有理数集。

记作Q。

⑸、全体实数组成的集合叫做实数集。

记作R。

集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。

集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。

⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。

⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。

⑷、空集:我们把不含任何元素的集合叫做空集。

记作,并规定,空集是任何集合的子集。

⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。

高等数学a1_学习笔记

高等数学a1_学习笔记

第一章:函数与极限1.1函数的定义与性质1.2极限的概念与计算1.3右极限与左极限1.4极限的性质第二章:连续性2.1连续函数的定义2.2连续性的判别2.3连续函数的性质2.4介值定理第三章:导数与微分3.1导数的定义与几何意义3.2导数的计算法则3.3微分的概念与应用3.4逻辑与高阶导数第四章:应用导数4.1函数的单调性与极值4.2曲线的凹凸性与拐点4.3应用导数解决实际问题4.4L'Hôpital法则第五章:定积分5.1定积分的定义与性质5.2定积分的计算方法5.3牛顿莱布尼茨公式5.4定积分的应用第六章:不定积分6.1不定积分的基本概念6.2常见的不定积分公式6.3不定积分的计算技巧6.4分部积分法与换元积分法第1章:函数与极限函数的定义与性质函数的定义:一个函数是一个将每个输入(自变量)与一个唯一的输出(因变量)相对应的关系。

通常用f(x)表示,其中x是自变量。

定义域:函数的定义域是所有可能的自变量x的集合。

值域:函数的值域是所有可能的因变量f(x)的集合。

例子:f(x)=x^2,定义域为所有实数,值域为所有非负实数。

单调性:如果对于任意的x1<x2,有f(x1)<f(x2),则f(x)是单调递增的;反之则是单调递减的。

有界性:如果存在M,使得对所有x,|f(x)|≤M,则f(x)是有界的。

奇偶性:如果f(x)=f(x),则f(x)是奇函数;如果f(x)=f(x),则f(x)是偶函数。

周期性:如果存在T,使得f(x+T)=f(x),则f(x)是周期函数。

例子:正弦函数sin(x)是周期函数,其周期为2π。

复合函数:如果g(x)是另一个函数,则复合函数f(g(x))是将g(x)的输出作为f(x)的输入。

例子:若f(x)=x^2,g(x)=x+1,则复合函数f(g(x))=(x+1)^2。

反函数:若f(x)是单调函数,则存在反函数f^(1)(x),使得f(f^(1)(x))=x。

大一高数知识点手写笔记

大一高数知识点手写笔记

大一高数知识点手写笔记高等数学是一门关于连续变化与积分计算的数学学科。

对于大一的学生来说,高等数学是一个重要的学科,它为我们建立起了数学分析的基础。

为了帮助大家更好地掌握高等数学的知识,我将为大家整理并手写笔记。

下面是大一高数的几个重要知识点:一、极限与连续1. 极限的定义与性质- 函数的极限定义- 极限的唯一性、有界性和保号性- 四则运算与复合函数的极限性质2. 连续函数及其性质- 连续函数的定义与常用函数的连续性- 连续函数的四则运算与复合函数的连续性- 闭区间上连续函数的性质与介值定理二、导数与微分1. 导数的定义与性质- 导数的定义和几何意义- 导数的四则运算与复合函数的导数- 高阶导数与隐函数求导2. 微分的概念与应用- 微分的定义与微分近似计算- 高阶微分与泰勒公式- 函数的单调性与极值点判定三、积分与定积分1. 不定积分与定积分的概念- 原函数与不定积分的定义- 定积分的定义与性质2. 定积分的计算与应用- 牛顿-莱布尼茨公式与积分的基本性质- 定积分的上下限与换元积分法- 定积分在几何中的应用四、常微分方程1. 常微分方程的基本概念- 常微分方程的定义与初值问题- 一阶线性微分方程与可分离变量微分方程2. 高阶线性微分方程的解法- 齐次线性微分方程与非齐次线性微分方程- 常系数齐次线性微分方程与非齐次线性微分方程以上是大一高数的一些重要知识点的手写笔记。

希望这些笔记能够帮助大家更好地理解和掌握高等数学中的基础知识。

当然,学习数学最重要的还是多做题,通过实践来巩固所学的知识。

希望大家都能在高等数学中取得优异的成绩!。

高数学公式和知识点笔记

高数学公式和知识点笔记

高数学公式和知识点笔记高等数学是一门重要的基础学科,包含众多的公式和知识点。

以下是为您整理的一份较为全面的高数学公式和知识点笔记,希望能对您的学习有所帮助。

一、函数与极限1、函数的概念函数是一种对应关系,对于定义域内的每个自变量的值,都有唯一确定的因变量值与之对应。

2、基本初等函数包括幂函数、指数函数、对数函数、三角函数和反三角函数。

3、极限的定义当自变量趋近于某个值时,函数值趋近于一个确定的常数,这个常数就是极限。

4、极限的计算方法(1)代入法:直接将趋近的值代入函数。

(2)化简法:通过约分、通分等方法化简函数。

(3)等价无穷小替换:在求极限时,将一些无穷小量用与其等价的无穷小量替换。

5、两个重要极限(1)$\lim_{x\to 0} \frac{\sin x}{x} = 1$(2)$\lim_{x\to \infty} (1 +\frac{1}{x})^x = e$二、导数与微分1、导数的定义函数在某一点的导数是函数在该点的变化率。

2、导数的几何意义导数表示函数在某一点处的切线斜率。

3、基本函数的导数公式(1)$(x^n)'= nx^{n 1}$(2)$(\sin x)'=\cos x$(3)$(\cos x)'=\sin x$(4)$(e^x)'= e^x$(5)$(\ln x)'=\frac{1}{x}$4、导数的四则运算(1)$(u + v)'= u' + v'$(2)$(u v)'= u' v'$(3)$(uv)'= u'v + uv'$(4)$(\frac{u}{v})'=\frac{u'v uv'}{v^2}$5、复合函数求导法则设$y = f(g(x))$,则$y' = f'(g(x))\cdot g'(x)$6、微分的定义函数的微分等于函数的导数乘以自变量的增量。

三、中值定理与导数的应用1、罗尔定理如果函数$f(x)$满足:在闭区间$a, b$上连续,在开区间$(a, b)$内可导,且$f(a) =f(b)$,那么在$(a, b)$内至少存在一点$\xi$,使得$f'(\xi) = 0$。

高等数学学习笔记

高等数学学习笔记

(注意:符号、定义域、取指范围)函数与极限集合(集)、元素(元)、有限集、无限集、、N、N+、N*、Z、Q、R子集、相等、真子集、空集、Ø、、、A=B、、交集(交)、并集(并)、差集(差)、全集、基本集、补集、余集、、A-B、A\B、、集合的交、并、补运算定律:交换律、结合律、分配律、对偶律推出(蕴含)、、等价、直积、笛卡尔乘积、A×B开区间、(a,b)、闭区间、[a,b]、端点、半开区间、[a,b)、(a,b]、有限区间、无限区间邻域、U(a)、δ邻域、U(a,δ)、去心δ邻域、左δ邻域、右δ邻域内点、外点、边界点、聚点、开集、闭集、连通集、区域(开区域)、闭区域、有界集、无界集映射、、、像、原像、定义域、、值域、、满射、单射、一一映射(双射)、算子、泛函、变换、函数、逆映射、函数、自变量、因变量、定义域、值域、自然定义域、多值函数、上界、下界、有界、无界、单调增加、单调减少、单调函数、偶函数、奇函数、周期函数、周期、最小正周期、反函数、复合函数、中间变量多元函数、、自然定义域、基本初等函数(幂函数、指数函数、对数函数、三角函数、反三角函数)、初等函数反双曲函数双曲正弦双曲余弦双曲正切反双曲正弦反双曲余弦反双曲正切数列、极限、一般项、收敛、发散、子数列(子列)、、、函数的极限、、无穷大、无穷小、铅直渐近线夹逼定理、单调数列、柯西存在准则(柯西审敛原理)两个重要极限:、(β是关于α的)高阶无穷小:、低阶无穷小:同价无穷小:k阶无穷小:等价无穷小:、α~β函数的连续性、增量、、左连续、右连续、一致连续不连续点(间断点)、无穷间断点、振荡间断点、可去间断点、跳跃间断点、第一类间断点(间断点处的左右极限都存在)、第二类间断点常用等价无穷小导数与微分导数、左导数、右导数、对数求导法、偏导数、、、偏增量、偏微分、全增量、全微分、全导数微分、费马引理、罗尔定理、拉格朗日中值定理(微分中值定理)、柯西中值定理、洛必达法则、泰勒公式、拉格朗日型余项、皮亚诺(Peano)型余项、麦克劳林公式、利用展开式求极限驻点(稳定点、临界点)、凹、凸、拐点、极大值、极小值、极值点。

高等数学笔记

高等数学笔记

第1章函数§1 函数的概念一、区间、邻域自然数集N整数集Z有理数集Q实数集R建立数轴后:建立某一实数集A与数轴上某一区间对应区间:设有数a,b,a<b,则称实数集{x|a<x<b}为一个开区间,记为<a,b>即<a,b>={x|a<x<b}a称为<a,b>的左端点,b称为<a,b>的右端点.a∉<a,b>,b∉<a,b>闭区间:[a,b]={x|a≤x≤b}a∈[a,b],b∈[a,b]半开区间:[a,b>={x|a≤x≤b},a∈[a,b>,b∉[a,b><a,b]={x|a<x≤b},a∈<a,b],b∉<a,b]a,b都是确定的实数,称<a,b>,[a,b>,<a,b],[a,b]为有限区间,"b−a〞称为区间长度.记号:+∞——正无穷大−∞——负无穷大区间:[a,+∞>={x|a≤x}<a,+∞>={x|a<x}<−∞,b]={x|x≤b}<−∞,b>={x|x<b}称为无穷区间〔或无限区间〕邻域:设有两个实数a,δ<δ>0>,则称实数集{x|a−δ<x<a+δ}为点a的δ邻域,记为N<a,δ>a称为N<a,δ>的中心,δ>0称为邻域N<a,δ>的半径.去心邻域:把N<a,δ>的中心点a去掉,称为点a的去心邻域,记为N<a^,δ>={x|0<|x−a|<δ}=N<a,δ>∖{a}注:其中,∖{a}表示去掉由a这一个数组成的数集.二、函数概念例1. 设圆的半径为x<x>0>,它的面积A=πx2,当x在<0,+∞>内任取一个数值〔记为∀x∈<0,+∞>〕时,由关系式A=πx2就可以确定A的对应数值.例2. 设有半径为r的圆,作圆的内接正n边形,每一边对应的圆心角α=2πn,周长S n=n⋅2r sinπn,当边数n在自然数集N<n≥3>任取一个数,通过关系式S n=2nr sinπn就有一个S n对应确定数值.函数定义:设有数集X,Y,f是一个确定的对应法则,对∀x∈X,通过对应法则f都有唯一的y∈Y与x对应,记为x→f y,或f<x>=y,则称f为定义在X上的函数.其中X称为f的定义域,常记为D f.X——自变量,Y——因变量.当X遍取X中的一切数时,那么与之对应的y值构成一个数集V f={y|y=f<x>,x∈X},称V f为函数f的值域.注意:〔1〕一个函数是由x,y的对应法则f与x的取值X 围X所确定的.把"对应法则f〞、"定义域〞称为函数定义的两个要素.例如,y=arcsin<x2+2>这个式子,由于x2+2>2,而只有当|x2+2|≤1时,arcsin才有意义,因此这个式子不构成函数关系.又例如,y=ln x2与y=2ln x不是同一个函数,因为定义域不同.而y=ln x2与y=2ln|x|是同一个函数,因为定义域相同.〔2〕函数的值域是定义域和对应法则共同确定的.〔3〕确定函数定义域时,注意:若函数有实际意义,需依据实际问题是否有意义来确定.若函数不表示某实际问题,则定义域为自变量所能取得的使函数y=f<x>成立的一切实数所组成的数值.函数的几何意义:设函数y=f<x>定义域为D f,∀x∈D f,对应函数值y=f<x>在XOY平面上得到点<x,y>,当x遍取D f中一切实数时,就得到点集P={<x,y>|y=f<x>,x∈D f}.点集P称为函数y=f<x>的图形.三、函数的几个简单性质1. 函数的有界性若∃M>0,s.t.|f<x>|≤M,x∈I,则称y=f<x>在区间I上有界.否则称f<x>在I上无界.注:s.t.是"使得,满足于〞的意思,I表示某个区间.例如,y=sin x在I=<−∞,+∞>>上是有界的〔∵|sin x|≤1,x∈<−∞,+∞>〕.又如,y=1x2+1在<−∞,+∞>上有界.对任何正数M>0〔无论多么大〕,总∃x1∈I,s.t.|f<x1>|>M,则称f<x>在I上无界.例如,y=1x在<0,1>内无界.证明:对给定的M>0〔不妨设M>1〕,无论M多么大,必存在x1=12M∈<0,1>,使f<x1>=112M=2M>M函数的上界、下界:若∃M〔不局限于正数〕,s.t.f<x>≤M,∀x∈I,则称f<x>在区间I上有界.任何一个数N>M,N也是f<x>的一个上界.若∃P,s.t.f<x>≥P,∀x∈I,则称f<x>在区间I上有下界.若Q<P,则Q也是一个下界.f<x>在区间I上有界⇔f<x>在I上既有下界又有上界〔"⇔〞表示充分必要条件〕.证明:设f<x>在I上有界,根据定义,∃M>0,s.t.|f<x>|≤M,∀x∈I.|f<x>|≤M⇔−M≤f<x>≤M因此f<x>有下界−M,也有上界M〔对∀x∈I〕反之,设f<x>在I上既有下界m,又有上界N,即m≤f<x>≤N如果m=N=0,则f<x>≡0,∀x∈I∴f<x>在I上有界.如果m,N不同时为零,取M=max{|m|,|N|}>0,则−M≤−|m|≤m≤f<x>≤N≤|N|≤M即−M≤f<x>≤M⇒|f<x>|≤M,∀x∈I∴f<x>在I上有界.2. 函数的单调性若函数f<x>在区间I上,对任何x1,x2∈I,且x1<x2,恒有f<x1><f<x2>,则称f<x>在I上是严格单调增的.若x1<x2,恒有f<x1>≤f<x2>,则称f<x>在区间I上广义单调增〔或直接称为单调增,或称非减的〕.若x1<x2,恒有f<x1>>f<x2>,则称f<x>在I上严格单调减.类似地,也有广义单调减〔单调减,非增的〕的概念.例如,y=x2,D f=<−∞,+∞>在<0,+∞>上,y=x2严格单增.在<−∞,0>上,y=x2严格单减.又如,取整函数〔取一个数的整数部分〕:y=[x]=⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪−1,−1≤x<00,0≤x<11,1≤x<22,2≤x<3......其函数图形如下:取整函数是一个广义单增/单调增/非减函数.3. 函数的奇偶性若f<x>在关于原点对称的区间I上满足f<−x>=f<x>,则称f<x>为偶函数.若满足f<−x>=−f<x>,则称f<x>为奇函数.偶函数图形关于y轴对称〔例如:cos x,x2〕奇函数图形关于原点对称〔例如:sin x,x3〕4. 函数的周期性设f<x>的定义域为D f,如果存在非零的常数T,s.t.对任意的x∈D f,有<x±T>∈D f,且f<x+T>=f<x>,则称f<x>为周期函数,T称为f<x>的周期〔通常周期是指最小正周期〕.四、复合函数,反函数1. 复合函数设y=u√,u=1−x2,把u=1−x2代入y=u√中,得到y=1−x2−−−−−√,称为由y=u√与u=1−x2复合而成的复合函数.一般定义:设y=f<u>是数集Y上的函数〔Y是f<u>的定义域〕,u=φ<x>的定义域为X,值域为Yφ,且Yφ≠Φ〔Φ表示空集〕,Yφ⊆Y〔表示Yφ是Y的子集〕,这时,对∀x∈X,通过u都有唯一的y值与之对应,从而在X上产生一个新函数,用f⋅φ〔中间是一个实心的点〕表示,称f∘φ〔中间是一个空心的圈〕为X上的复合函数:f→f⋅φy,或y=f[φ<x>]y=f[φ<x>]的定义域:由u=φ<x>的定义域中使函数u=φ<x>的值域Yφ满足Yφ⊆Y的那一部分实数组成.1. 复合函数y=f<u>,u=φ<x>⇒y=f[φ<x>]注意:f[φ<x>]与φ<x>定义域不一定相同.例1. 设f<x>=x2+1x2−1,φ<x>=11+x,求f[φ<x>]并确定定义域.解:f[φ<x>]=[φ<x>]2+1[φ<x>]2−1=[11+x]2+1[11+x]2−1=−x2+2x+2x<x+2>当x≠−1〔由11+x可知〕且x≠0,x≠−2时f[φ<x>]有定义.即f[φ<x>]定义域为:<−∞,−2>∪<−2,−1>∪<−1,0>∪<0,+∞>2. 反函数设有函数y=f<x>,定义域D f,值域V f.∀y∈V f,至少可以确定一个x∈D f,s.t.f<x>=y,如果把y看作自变量,把x看作因变量,由函数概念,可以看到一个新函数,记为x=f−1<y>,称为y=f<x>的反函数.反函数的定义域为V f,值域为D f,把y=f<x>称为直接函数,x=f−1<y>称为反函数.注意:1.虽然直接函数y=f<x>是单值的,但反函数x=f−1<y>不一定是单值的.例如,函数y=x2,D f:<−∞,+∞>,V f:[0,+∞]反函数x=f−1<y>不是单值的〔因为对∀y∈[0,+∞],得到x=±y√,有两个值−y√,+y√,为双值函数〕.x=y√是一个单值支.2.如果直接函数y=f<x>严格单调,则其反函数x=f−1<y>也是单值单调的.3.直接函数y=f<x>与反函数x=f−1<y>图形相同,习惯上以x表示自变量,y表示因变量,反函数记为y=f−1<x>.这时,y=f<x>与y=f−1<x>的图形关于直线y=x对称,如下图所示:例1. 设y=f<x>={x2,−2<x<1x2,1≤x≤2,求反函数y=f−1<x>解:当−2<x<1时,y=x2,−1<y<12⇒x=2y,定义域−1<y<12当1≤x≤2时,y=x2,−1≤y≤4⇒x=+y√〔因为x是正数〕,定义域−1≤y≤4综上所述,反函数为:x=f−1<y>={2y,−1<y<12y√,−1≤y≤4或:y=f−1<x>={2x,−1<x<12x√,−1≤x≤4ξ2初等函数一、基本初等函数6类函数:幂函数、指数函数、对数函数、三角函数、反三角函数、常量函数〔例如y=C〕称为基本初等函数.二、初等函数由基本初等函数经过有限次的四则运算和有限次的复合步骤所构成的、能够用一个数学式子表达的函数称为初等函数.例如:y=arcsin1−x2−−−−−√,y=ln<x+e x>初等函数结构分析例如:分析y=ln<1+x√>的结构解:y=ln u,u=1+x√=1+x12令u=1+x12,v=1,w=x12∴y=ln u,u=v+w,v=1,w=x12三、双曲函数双曲正弦函数shx=ex−e−x2双曲余弦函数chx=ex+e−x2双曲正切函数thx=shxchx=ex−e−xex+e−x以上函数与三角函数有类似性质:ch2x−sh2x=1sh2x=2shxchx类似于sin2x=2sin x cos xch2x=ch2x+sh2x三角函数有周期性,双曲函数没有周期性,这是最大的区别.反双曲正弦函数:arshx注意:不是arc反双曲余弦函数:archx反双曲正切函数:arthx求双曲函数的反函数的表达式:令y=arshx⇒x=shy=ey−e−y2令u=e y⇒2x=u−1u⇒u2−2xu−1=0由二次方程的求根公式,得:u=2x±4x2+4√2=x±x2+1−−−−−√即e y=x±x2+1−−−−−√∵e y>0∴e y=x+x2+1−−−−−√∴y=ln<x+x2+1−−−−−√>即arshx=ln<x+x2+1−−−−−√>用类似方法可推出:arshx=ln<x+x2+1−−−−−√>archx=ln<x+x2−1−−−−−√>arthx=12ln<1+x1−x>第2章极限主要内容:一、极限概念:数列概念、函数概念二、极限性质和运算,无穷小概念和比较三、函数的连续性ξ1数列的极限一、数列极限定义数列:设有定义在自然数集N上的函数u n=f<n>,称为整标函数〔标是指下标n〕.把函数值u n按照自然数n的顺序排列出来的无穷数串:u1,u2,u3,⋯,u n,⋯叫作数列〔序列〕,第n项u n称为一般项.数列简记为{u n},即{u n}表示u1,u2,⋯,u n,⋯例如:{nn+1}:12,23,34,⋯,nn+1,⋯{12n}:12,122,123,⋯,12n,⋯{1+<−1>n2}:0,1,0,1,⋯,1+<−1>n2,⋯{2n+<−1>n−1n}:3,32,73,74,115,116,⋯, 2n+<−1>n−1n,⋯要研究的问题:当n无限增大时〔记为n→∞〕,数列{u n}能否与某一常数A无限接近?如果{u n}能与A无限接近,在数学上如何描述?例如,设u n=2n+<−1>n−1n,当n→∞时{u n}的变化趋势如何?〔一般地说,两个常数a,b,用|a−b|来描述两数接近的程度〕u n=2n+<−1>n−1n=2+<−1>n−1n⇒u n−2=<−1>n−1n⇒|u n−2|=|<−1>n−1n|=1n∴当n越大,1n越小,u n与2越接近.给定一个很小的正数1100,则由|u n−2|=1n<1100⇒n>100,只要n>100,就有|u n−2|<1100|u n−2|<1100⇔2−1100<u n<2+1100开区间<2−1100,2+1100>=N<2,1100>〔此邻域以2为中心,以1100为半径〕当n>100时,|u n−2|<1100,说明u101,u102,⋯都落在N<2,1100>邻域内.同理给定正数11000,同理可推出:当n>1000时,|u n−2|<11000,u1001,u1002,⋯都落在N<2,1100>邻域内.无论给定多么小的正数ε,总存在正整数N,使得当n>N时的一切u n满足|u n−2|<ε从几何上看,给定邻域N<2,ε>,无论〔半径〕多么,总存在N,使得当n>N时,u n+1,u n+2,⋯都落在N<2,ε>内.数列极限定义:已知数列{u n}和常数A,如果对于任意给定的正数ε,都存在正整数N,使得对于n>N的一切u n,不等式|u n−A|<ε恒成立,则称当n→∞时,{u n}以A为极限,或{u n}收敛于A.记为:lim n→∞u n=A,或u n→A<n→∞>如果u n无极限,就说{u n}发散〔n→∞〕说明:1. 定义中的ε是任意给定的,只有任意给定ε>0,不等式|u n−A|<ε才能表达u n与A无限接近.2. 定义中的N与ε有关,记为N<ε>.随着ε的给定选定N,且N不唯一.3. 定义只描述了n→∞时u n→A,但未提供求A的方法.4. 定义的几何意义:任意给定邻域N<A,ε>,则必存在N,使u N+1,u N+2,⋯落在N<A,ε>内.例1. 证明lim n→∞2n+<−1>n−1n=2证:一般项u n=2n+<−1>n−1n=2+<−1>n−1n|u n−2|=|<−1>n−1n|对于任意给定的ε>0,为了使|u n−2|<ε,只需1n<ε即可〔这是由于|<−1>n−1|=1,而n>0,故1|n|=1n,即|<−1>n−1n|=1n〕或者说,n>1ε即可.所以,对于任意给定的ε>0,取正整数N=[1ε]〔注:[]表示取整符号〕当n>N时,,恒有不等式|u n−2|=|2n+<−1>n−1n−2|=1n<ε按数列极限定义,可知lim n→∞2n+<−1>n−1n=2注:有人可能不解——为什么N取[1ε]时,当n>N时有1n<ε?这里举一个实际的例子:假设ε=0.003,则N=[1ε]=[333.333333⋯]=333,当n>N时,n≥334,即1n=0.002994⋯<ε例2. 证明当n→∞时,<n−1><2n−1>6n2→13证:u n=<n−1><2n−1>6n2=13−12n+16n2⇒u n−13=−12n+16n2⇒|u n−13|=|12n−16n2|=12n|1−13n|<12n〔这是13n>0且13n<1⇒1−13n∈<0,1>对于任意给定的ε>0,只要12n<ε恒成立,即可证明成功.即,n>12ε时,便可得|u n−13|<12n<ε所以,对任意给定的ε>0,取正整数N=[12ε],则当n>N时,恒有|u n−13|<12n<ε按数列极限定义,有lim n→∞<n−1><2n−1>6n2=13注意:利用数列极限定义来验证lim n→∞u n=A时,关键步骤是指明定义中的N确实存在.由于N不是唯一的,所以不一定要找最小的N,只要找到一个N就可以了.例如,知道|u n−A|=φ<n>〔整标函数〕,那么由φ<n><ε,求出N,这时,n>N时φ<n><ε,从而知道|u n−A|<ε例3. 证明lim n→∞<−1>n<n+1>2=0证:|u n−0|=|<−1>n<n+1>2−0|=1<n+1>2<1n2<1n<φ<n>=1n>对任意给定的ε>0,只要φ<n>=1n<ε,即n>1ε时,恒有不等式|<−1>n<n+1>2−0|<ε所以,按照极限定义,lim n→∞<−1>n<n+1>2=0收敛数列的两个性质:1.定理1若{u n}的极限存在,则极限值是唯一的.证:〔用反证法来证明〕若{u n}收敛,且极限不唯一,即:同时有lim n→∞u n=a,lim n→∞u n=b,且a<b〔注:这是假设的〕由于lim n→∞u n存在,所以对于给定的ε=b−a4>0,有:必存在正整数N1,使得当n>N1时,恒有|u n−a|<b−a4;同理,必存在正整数N2,使得当n>N2时,恒有|u n−b|<b−a4.取N=max{N1,N2},则当n>N时,上面两个不等式同时成立.∴b−a=b−u n+u n−a≤|b−u n|+|u n−a|<b−a4+b−a4=b−a2而上式b−a<b−a2是不成立的∴lim n→∞u n是唯一的.例:证明数列{u n}={<−1>nnn+1}是发散的.证:{u n}:−12,23,−34,45,⋯当n取奇数2m−1<m<N>时,得到数列〔注:对应到原来的u1,u3,u5,⋯〕:−12,−34,−56,⋯,−2m−12m,⋯数列{u2m−1}从−12开始单调减.当n取偶数2m<m∈N>时,得到数列〔注:对应到原来的的u2,u4,u6,⋯〕:23,45,67,⋯,2m2m+1,⋯数列{u2m}从23开始单调增.如下图所示:下面,用反证法来证明.在这之前,要做一个准备工作〔进行一个"无厘头〞的推导〕,因为后后面的反证法会用到这个结论:u2−u1=23−<−12>=76>1这说明,距离最短的两个点u1,u2之间的距离大于1.这个无厘头的结论在后面会用到.假设u n→A<n→∞>〔A是唯一的〕由极限定义,给定正数ε=12>0,必存在一个正整数N,使得当n>N时,恒有不等式|u n−A|<12∴A−12<u n<A+12,即u n∈<A−12,A+12>,<n>N>∴u N+1,u N+2,u N+3,⋯∈<A−12,A+12>区间<A−12,A+12>长度为1而u N+1,u N+2落在长度为1的区间<A−12,A+12>内是不可能的〔由前面推导的"无厘头〞结论可知,距离最短的两个点都无法落在长度为1的区间内〕∴{<−1>nnn+1}是发散的.证毕.有界数列:对于数列{u n},如果存在一个正数M>0,使得一切u n都有|u n|≤M,则称{u n}有界.2.定理2如果{u n}收敛,则{u n}一定是有界的.证:∵{u n}收敛,可设lim n→∞u n=A由极限定义,对给定正数ε=1,必存在正整数N,使得n>N时,恒有|u n−A|<1⇔A−1<u n<A+1∴|u n|=|u n−A+A|≤|u n−A|+|A|≤1+|A|〔和的绝对值≤绝对值的和〕现取M=max{|u1|,⋯,|u n|,1+|A|}<n>N>〔有限个数,最大值一定存在〕于是|u n|≤M<n=1,2,⋯>∴{u n}是有界的.ξ2函数的极限讨论x为连续自变量时,函数y=f<x>的极限.1. 自变量x任意地接近于定值x0,或x趋向于x0〔记为x→x0〕,对应的函数值f<x>的变化趋势.2. 自变量x的绝对值|x|无限增大〔记为x→∞〕,对应的函数值f<x>的变化趋势.一、自变量x趋向于定值x0时,f<x>的极限假设函数f<x>在x0点的某邻域内有定义〔在x0点f<x>可以无定义,这并不影响我们讨论问题〕,问题:当x任意地趋近于x0时,即x→x0时,对应函数值f<x>是否无限接近于常数A?分析:当x→x0的过程中,对应函数值f<x>无限接近于常数A⇔当x→x0的过程中,|f<x>−A|能任意地小⇔当x→x0的过程中,对任意给定的整数ε>0,|f<x>−A|<ε当x→x0的过程中,只有充分接近x0的那些x,才能使|f<x>−A|<ε."充分接近x0的那些x〞这句话这样来定义:存在一个很小的正数δ>0,0<|x−x0|这样一个不等式就描述了x充分接近x0.定义:设有函数f<x>在x0点的某一去心邻域内有定义,A为一常数.如果对于任意给定的正数ε>0,都存在一个正数δ>0,使得适合不等式0<|x−x0|<δ的一切x所对应的函数值f<x>都满足:|f<x>−A|<ε则称x→x0时,f<x>以A为极限.记为:lim x→x0f<x>=A,或f<x>→A<x→x0>lim x→x0f<x>=A的几何意义〔如下图所示〕:对常数A,ε>0,在xOy平面上作直线y=A+ε,y=A−ε,对δ>0,得邻域N<x^0,δ>,当x∈N<x^0,δ><x≠x0>时,由定义可知,点M<x,f<x>>一定在y=A−ε与y=A+ε的区域内.下面用lim x→x0f<x>=A定义来证明一些函数极限等式.例1. lim x→x0C=C证:f<x>≡C,x0为一定值,A=Cf<x>−A=C−C≡0因此,对任意给定的δ>0,凡是适合0<|x−x0|<δ的一切x,都使|f<x>−A|=0<ε所以,按极限定义得lim x→x0C=C例2. 证明lim x→x0x=x0证:f<x>=x,A=x0,|f<x>−A|=|x−x0|因此,对任意给定的ε>0,取δ=ε,则当0<|x−x0|<δ=ε时,都能使|f<x>−A|=|x−x0|<ε按极限定义,有lim x→x0x=x0例3. 证明lim x→1<3x−5>=−2证:f<x>=3x−5,x0=1,A=−2|f<x>−A|=|<3x−5>−<−2>|=|3x−3|=3|x−1|对任意给定的ε>0,为了使3|x−1|<ε〔即|x−1|<ε3〕,可以取δ=ε3,则适合不等式0<|x−1|<δ的一切x都能使|f<x>−A|=3|x−1|=3⋅ε3=ε按照极限的定义,有lim x→1<3x−5>=−2例4. 证明lim x→111+x√=12证:f<x>=11+x√,x0=1,A=12|f<x>−A|=∣∣11+x√−12∣∣=∣∣1−x√2<1+x√>∣∣=∣∣∣<1−x√><1+x√>2<1+x√>2∣∣∣=∣∣x−1∣∣2<1+x√>2<∣∣x−1∣∣2<ε则当|x−1|<2ε时,就有|f<x>−A|<ε因此,对任意给定的ε>0,取δ=2ε,则适合0<|x−1|<δ的一切x,都使得|f<x>−A|=∣∣11+x√−12∣∣<ε按照极限的定义,有lim x→111+x√=12lim x→x0f<x>=Ax可以从x0的左侧趋于x0,也可以从右侧趋于x0.当从x0的左侧趋于x0<x<x0>时,记为x→x0−,或x→x0−0左极限:对于任意ε>0,都存在δ>0,凡适合x0−δ<x<x0的一切x,对应的函数值f<x>都满足|f<x>−A|<ε,则称A为f<x>的左极限.记为:lim x→x0−f<x>=A 或lim x→x0−0f<x>=A可统一表示为f<x0−0>=A右极限:把定义中0<|x−x0|<δ改为x0<x<x0+δ,其他不变,则得到右极限的定义.记为:lim x→x0+f<x>=A或lim x→x0+0f<x>=A可统一表示为f<x0+0>=Alim x→x0f<x>=A⇔f<x0−0>,f<x0+0>都存在且极限值都等于A〔注:⇔表示充分必要条件〕二、自变量x趋向于无穷大〔记为x→∞〕时函数f<x>的极限数列u n=f<n>,当n→∞时的极限,可以看作是f<x>当x→∞时的极限的特殊情形.依照数列极限定义,给出f<x>当x→∞时的极限定义:设函数f<x>在|x|充分大时有定义,A为常数,如果对于任意给定的ε>0,都存在正数N,使得凡是适合|x|>N的一切x,对应的函数值f<x>都满足|f<x>−A|<ε,则称当x→∞时,f<x>以A为极限.记为:lim x→∞f<x>=A或f<x>→A<x→∞>如果只考虑x>0,且|x|无限增大〔记为x→+∞〕,上面定义中把|x|>N改为x>N,就得到lim x→+∞f<x>=A的定义.如果只考虑x<0,且|x|无限增大〔记为x→−∞〕,上面定义中把|x|>N改为x<−N,就得到lim x→−∞f<x>=A的定义.lim x→∞f<x>=A⇔lim x→−∞f<x>和lim x→+∞f<x>都存在且等于A〔注:⇔表示充分必要条件〕例:证明lim x→∞11+x2=0证:f<x>=11+x2,A=0|f<x>−A|=∣∣11+x2−0∣∣=11+x2<1x2<ε对任意给定的ε>0,为了使|f<x>−A|<ε,只需1x2<ε,即x2>1ε⇒|x|>1ε√因此,对任意给定的ε>0,取N=1ε√,凡是适合不等式|x|>N的一切x,对应的函数值f<x>都满足:|f<x>−A|=∣∣11+x2−0∣∣<ε按定义,有lim x→∞11+x2=0三、无穷小量与无穷大量1.无穷小〔量〕如果lim x→x0f<x>=0〔或lim x→∞f<x>=0〕,则称当x→x0〔或x→∞〕时,f<x>是无穷小〔量〕.注意:①不能把一个很小的数看作无穷小.②常数0可以看作是无穷小的唯一一个常数.2.无穷大〔量〕如果当x→x0〔或x→∞〕时,对应的函数值f<x>的绝对值无限增大,则称当x→x0〔或x→∞〕时,f<x>是无穷大〔量〕.或者这样表述:若对于任意给定的正数M>0〔无论M多么大〕,总存在δ>0,凡是适合不等式0<|x−x0|<δ的一切x,对应的函数值f<x>都满足|f<x>|>M,则称当x→x0时,f<x>是无穷大,记为lim x→x0f<x>=∞注意:上式并不说明极限存在,只是说明其极限为无穷大量,无穷大不是一个常数.把上面定义中的"总存在δ>0,凡是适合不等式0<|x−x0|<δ的一切x〞改为"总存在正数N,凡是适合不等式|x|>N的一切x〞,其余表述不变,则得到lim x→∞f<x>=∞注意:1.不能把无穷大与一个很大的常数混为一谈;2.无穷大一定是无界函数,但无界函数不一定是无穷大.我们来证明一下结论2.先证明无穷大一定是无界函数.证:设lim x→x0f<x>=∞〔或lim x→∞f<x>=∞〕,即f<x>是无穷大对任意给定的正数M>0〔无论多么大〕,一定存在δ>0〔存在N>0〕,使得:|f<x>|>M〔对∀x∈N<x^0,δ>,或|x|>N〕所以,在N<x^0,δ>内〔或|x|>N〕,f<x>无界.证毕.再证明无界函数不一定是无穷大.证:此处举一个实例即可证明这一点.证明f<x>=x sin x在<0,+∞>内是无界函数;但是当x→+∞时,f<x>不是无穷大.先证f<x>=x sin x在<0,+∞>内是无界函数.对任何M>0〔无论多么大〕,现取足够大的正整数n,使x n=2nπ+π2>M,则:f<x n>=x n sin x n=<2nπ+π2>sin<2nπ+π2>=<2nπ+π2>⋅1>M可见,f<x>在<0,+∞>内是无界的.再证x→+∞时,f<x>=x sin x不是无穷大.给定M=1,则无论多么大的正整数N,当n>N时,x n=nπ>Nf<x n>=x n sin x n=nπsin nπ=0<1=M所以f<x>不是无穷大.即,当x→+∞时,f<x>不是无穷大.证毕.3. 无穷小与无穷大的关系定理:如果当x→x0〔或x→∞〕时f<x>是无穷大,则1f<x>是无穷小,如果当x→x0〔或x→∞〕时f<x>是无穷小,且f<x>≠0,则1f<x>是无穷大.证:下面只证x→x0的情形,x→∞的情形可类推.①设x→x0时,f<x>是无穷大,即lim x→x0f<x>=∞任意给定ε>0,因lim x→x0f<x>=∞,对于正数M=1ε,一定存在δ>0,使适合不等式0<|x−x0|<δ的一切x所对应的f<x>满足|f<x>|>M=1ε∴∣∣1f<x>∣∣<ε,即lim x→x01f<x>=0即当x→x0时,1f<x>是无穷小.②设当x→x0时,f<x>是无穷小,且f<x>≠0任意给定正数M>0〔无论多么大〕,因lim x→x0f<x>=0对ε=1M,一定存在δ>0,使适合不等式0<|x−x0|<δ的一切x所对应的f<x>满足|f<x>|<ε=1M⇒∣∣1f<x>∣∣>M即当x→x0时,1f<x>是无穷小.证毕.四、海涅定理/Heine定理连续自变量x的函数f<x>的极限lim x→x0f<x>〔或lim x→∞f<x>〕存在的充分必要条件:对任选的数列{x n|x n→x0,x n≠x0}〔或x n→∞〕,其所对应的数列{f<x n>}有同一极限.例. 〔用海涅定理〕证明当x→0时,f<x>=sin1x的极限不存在.证:取x n=1nπ,lim n→∞x n=lim n→∞1nπ=0f<x n>=sin1xn=sin nπ=0,{f<x n>}={0}〔即数列的每一项都为0〕∴lim n→∞f<x n>=0取x n′=12nπ+π2→0f<x n′>=sin<2nπ+π2>=1,{f<x n′>}={1}〔即数列的每一项都为1〕∴lim n→∞f<x n′>=1∵lim n→∞f<x n>≠lim n→∞f<x n′>∴lim x→0f<x>不存在〔由海涅定理可知〕ξ3函数极限的性质和极限的运算一、极限值与函数值的关系1. 〔极限值的唯一性〕如果lim x→x0f<x>存在,则其极限值是唯一的下面证明这个结论.证:用反证法来证明.设lim x→x0f<x>存在且不唯一:lim x→x0f<x>=A,lim x→x0f<x>=B,且A<B即B−A>0,这个假设后面要用到.对给定正数ε=B−A4>0,由于lim x→x0f<x>=A,故由极限定义,对正数ε=B−A4,一定存在δ1>0,使得适合不等式0<|x−x0|<δ1的一切x,所对应的函数值f<x>恒有|f<x>−A|<B−A4.同理,对给定正数ε=B−A4>0,由于lim x→x0f<x>=B,故由极限定义,对正数ε=B−A4,一定存在δ2>0,使得适合不等式0<|x−x0|<δ2的一切x,所对应的函数值f<x>恒有|f<x>−B|<B−A4.取δ=min{δ1,δ2},则凡是适合不等式0<|x−x0|<δ的一切x,可以使以下两个不等式同时成立:|f<x>−A|<B−A4,|f<x>−B|<B−A4从而有:B−A=|B−f<x>+f<x>−A|≤|B−f<x>|+|f<x>−A|<B−A4+B−A4=B−A2即B−A<B−A2,而在B−A>0的情况下,这是不可能成立的.∴lim x→x0f<x>=A是唯一的.2. 极限值与函数值的同号性<1>设lim x→x0f<x>=A,且A>0〔或A<0〕,则必存在N<x^0>,s.t.∀x∈N<x^0>,都有f<x>>0〔或f<x><0〕.证:设A>0,由lim x→x0f<x>=A和极限定义,可知:对正数0<ε≤A,一定存在δ>0,s.t.适合不等式0<|x−x0|<δ〔即x ∈N<x^0,δ>〕的一切x,恒有|f<x>−A|<ε,即A−ε<f<x><A+ε∵0<ε≤A∴A−ε≥0即0≤A−ε<f<x>,其中x∈N<x^0,δ>证毕.<2>设lim x→x0f<x>=A,且在N<x^0>内f<x>≥0,则A≥0.证:用反证法来证明.假如A<0,又lim x→x0f<x>=A由已证的<1>,可知存在N<x^0>,使f<x><0,x∈N<x^0>这与f<x>≥0的假设矛盾,所以<2>成立.例1. 设f<x>在x0点的某邻域N<x0>内有定义,且lim x→x0f<x>−f<x0><x−x0>2=−1,则必存在某邻域N<x0,δ>,使:<A>f<x>>f<x0><B>f<x><f<x0>〔此项为正确答案〕<C>f<x>=f<x0><D>不能判断f<x>与f<x0>的大小关系解:令F<x>=f<x>−f<x0><x−x0>2,则lim x→x0F<x>=−1<0由前面所证的结论<1>可知:一定存在N<x0,δ>,使F<x><0,x∈N<x0,δ>由F<x>=f<x>−f<x0><x−x0>2<0⇒f<x>−f<x0><0⇒f<x><f<x0>〔分母为正数〕3.〔有界性〕如果当x→x0〔或x→∞〕时f<x>→A〔常数〕,则一定存在x0的某个邻域N<x^0>〔或存在N>0,|x|>N〕,使得f<x>是有界的.证:已知lim x→x0f<x>=A,由极限定义,对给定正数ε=1>0,必定存在δ>0,使得适合不等式0<|x−x0|<δ〔即x∈N<x^0,δ>〕的一切x所对应的f<x>,恒有:|f<x>−A|<1⇔A−1<f<x><A+1即f<x>在N<x^0,δ>内既有上界,又有下界⇒f<x>在N<x^0,δ>内有界.证毕.二、函数极限与无穷小的关系设lim x→x0f<x>=A〔或lim x→∞f<x>=A〕,讨论f<x>,A之间有何关系?<定理> lim x→x0f<x>=A〔或lim x→∞f<x>=A〕,A为常数⇔f<x>=A+α<x>,且lim x→x0α<x>=0〔或lim x→∞α<x>=0〕证:左推右:设lim x→x0f<x>=A〔或lim x→∞f<x>=A,下面只证前一种情况〕,根据函数极限定义,对任意给定的ε>0,一定存在δ>0,使得适合不等式0<|x−x0|<δ的一切x所对应的f<x>,恒有|f<x>−A|<ε.令α<x>=f<x>−A,就有|α<x>|<ε从而有f<x>=A+α<x>,lim x→x0α<x>=0右推左:设f<x>=A+α<x>,lim x→x0α<x>=0根据极限定义,对任意给定的ε>0,一定存在δ>0,使得凡是适合不等式0<|x−x0|<δ的一切x所对应的f<x>,恒有|α<x>|<ε由f<x>=A+α<x>⇒α<x>=f<x>−A由|α<x>|<ε⇒|f<x>−A|<ε,即lim x→x0f<x>=A证毕.三、无穷小的性质1. 有限个无穷小的代数和仍是无穷小证:只证两个无穷小的情形〔更多个的情形,用数学归纳法便可得结果〕.设有lim x→x0α<x>=0,lim x→x0β<x>=0,需要证明:lim x→x0[α<x>+β<x>]=0由极限定义可知:任意给定正数ε>0,对正数ε2>0,一定存在δ1>0,使得凡是适合不等式0<|x−x0|<δ1的一切x所对应的α<x>,恒有|α<x>|<ε2同理,对正数ε2>0,一定存在δ2>0,使得凡是适合不等式0<|x−x0|<δ2的一切x所对应的β<x>,恒有|β<x>|<ε2取δ=min{δ1,δ2}>0,当0<|x−x0|<δ时,这些x所对应的α<x>,β<x>同时满足:|α<x>|<ε2,|β<x>|<ε2从而有:|α<x>+β<x>|≤|α<x>|+|β<x>|<ε2+ε2=ε∴lim x→x0[α<x>+β<x>]=0,即当x→x0时,α<x>+β<x>是无穷小.证毕.2. 有界函数与无穷小的乘积仍是无穷小证:设f<x>在N<x^0,δ1>,δ1>0内有界,即存在M>0,δ1>0,使得f<x>≤M,x∈N<x^0,δ1>又设lim x→x0α<x>=0〔即当x→x0时,α<x>是无穷小〕要证明的是:当x→x0时,f<x>α<x>是无穷小.即要证:lim x→x0[f<x>α<x>]=0根据极限,任意给定ε>0,对εM>0,一定存在δ2>0,使得适合不等式0<|x−x0|<δ2的一切x所对应的α<x>恒有|α<x>|<εM现取δ=min{δ1,δ2}>0,则凡是适合不等式0<|x−x0|<δ的一切x,都会使|f<x>|≤M,且|α<x>|<εM从而有|f<x>α<x>|=|f<x>||α<x>|<M⋅εM=ε即lim x→x0[f<x>α<x>]=0证毕.对一个常数C,f<x>≡C为有界函数;对lim x→x0γ<x>=0,在N<x^0>内γ<x>是有界函数,所以有:1∘常数与无穷小的乘积仍是无穷小2∘两个无穷小的乘积仍是无穷小〔有限个无穷小的乘积仍是无穷小〕3∘设lim x→x0f<x>=A≠0,lim x→x0α<x>=0〔或x→∞〕,则lim x→x0α<x>f<x>=0〔或x→∞〕证:α<x>f<x>=1f<x>⋅α<x>要证lim x→x0α<x>f<x>=0〔即α<x>f<x>是无穷小〕,只需证1f<x>是有界的,再由性质2∘就可得到性质3∘的结论.∵lim x→x0f<x>=A≠0,由极限定义,对给定正数ε=∣∣A∣∣2>0,必定存在δ>0,使得凡是适合不等式0<|x−x0|<δ的一切x所对应的f<x>,恒有|f<x>−A|<∣∣A∣∣2又由|A|−|f<x>|≤|f<x>−A|<∣∣A∣∣2⇒|A|−|f<x>|<∣∣A∣∣2⇒|A|−∣∣A∣∣2<|f<x>|〔注:两个数差的绝对值一定≥它们绝对值的差〕∴0<∣∣A∣∣2<|f<x>|∴∣∣1f<x>∣∣<2∣∣A∣∣〔2∣∣A∣∣相当于有界函数定义中的M〕∴1f<x>在N<x^0,δ>内是有界的.所以结论成立.证毕.四、极限的四则运算公式以下公式中,自变量都是x→x0,或者都是x→∞设lim f<x>=A,lim g<x>=B,则有:1. lim[f<x>±g<x>]=A±B=lim f<x>±lim g<x>2. lim[f<x>g<x>]=AB=lim f<x>lim g<x>若C是常数,则lim[Cf<x>]=CA=C lim f<x>若n是正整数,lim[f<x>]n=lim[f<x>⋅f<x>⋯f<x>]=A n=[lim f<x>]n证明:由函数极限与无穷小的关系:lim f<x>=A⇔f<x>=A+α<x>,limα<x>=0lim g<x>=B⇔g<x>=B+β<x>,limβ<x>=0f<x>g<x>=[A+α<x>][B+β<x>]= AB+[Aβ<x>+Bα<x>+α<x>β<x>]=AB+γ<x>其中γ<x>=Aβ<x>+Bα<x>+α<x>β<x>由无穷小的性质,可知γ<x>是无穷小,即f<x>g<x>=AB+γ<x>,limγ<x>=0lim[f<x>g<x>]=AB=lim f<x>⋅lim g<x>证毕.3. 若B≠0,则lim f<x>g<x>=AB=lim f<x>lim g<x>证:f<x>g<x>−AB=A+α<x>B+β<x>−AB=Bα<x>−Aβ<x>B[B+β<x>]f<x>g<x>=AB+γ<x>,γ<x>=Bα<x>−Aβ<x>B[B+β<x>]∵Bα<x>,Aβ<x>都是无穷小∴lim[Bα<x>−Aβ<x>]=0,即分子为无穷小又∵lim B[B+β<x>]=lim[B2+Bβ<x>]=B2≠0由无穷小性质3可知limγ<x>=0证毕.4. 设f<x>≥g<x>,而lim f<x>=A,lim g<x>=B,则必有A≥B证:令F<x>=f<x>−g<x>≥0,则权限的四则运算公式得:lim F<x>=lim[f<x>−g<x>]=lim f<x>−lim g<x>=A−B根据函数值与极限值的同号性定理,可知:lim F<x>=A−B≥0⇒A≥B证毕.例1. 求lim x→−12x2+x−43x2+2解:lim x→−1<3x2+2>=lim x→−1<3x2>+lim x→−12=3lim x→−1x2+2=3<lim x→−1x>2+2=3⋅<−1>2+2=5lim x→−1<2x2+x−4>=lim x→−1<2x2>+lim x→−1x−lim x→−14=2<lim x→−1x>2−1−4=2⋅<−1>2−5=−3∴lim x→−12x2+x−43x2+2=lim x→−1<2x2+x−4>lim x→−1<3x2+2>=−35一般地,有:R<x>=a0xn+a1xn−1+⋯+an−1x+anb0xm+b1xm−1+⋯+bm−1x+bm分母的极限:lim x→x0<b0x m+b1x m−1+⋯+b m−1x+b m>=lim x→x0∑j=0m b j x m−j=∑j=0m<lim x→x0b j x m−j>=∑j=0m b j x0m−j分子的极限:lim x→x0<a0x n+a1x n−1+⋯+a n−1x+a n>=lim x→x0∑i=0m a i x n−i=⋯=∑i=0n a i x0n−i若分母极限∑j=0m b j x0m−j≠0,则:lim x→x0R<x>=∑i=0naix0n−i∑j=0mbjx0m−j=R<x0>例2. 求lim x→2x2−3x+2x2−5x+6解:由于lim x→2<x2−5x+6>=4−10+6=0,所以不能用极限的四则运算公式.原式=lim x→2<x−1><x−2><x−3><x−2>=lim x→2x−1x−3=1−1=−1例3. 求lim x→1x2+1x−1解:lim x→1<x−1>=lim x→1x−1=1−1=0lim x→1<x2+1>=[lim x→1x]2+1=2≠0∵lim x→11x2+1x−1=lim x→1x−1x2+1=lim x→1<x−1>lim x→1<x2+1>=02=0∴当x→1时,1x2+1x−1是无穷小由无穷小与无穷大的关系〔无穷小的倒数是无穷大〕,可知lim x→1x2+1x−1=∞例4. 求lim x→1<1x−1−2x2−1>解:当x→1时,1x−1→∞,2x2−1→∞∴不能直接用极限的四则运算公式来计算.lim x→1<1x−1−2x2−1>=lim x→1x+1−2x2−1=lim x→1x−1x2−1=lim x→1x−1<x−1><x+1>=lim x→11x+1=12例5. 求lim x→∞2x2+5x+1x2−4x−8解:分子、分母同时除以x2〔选分子多项式与分母多项式中最高的次数〕,得:原式=lim x→∞2+5x+1x21−4x−8x2=lim x→∞2+5lim x→∞1x+<lim x→∞1x>2lim x→∞1−4lim x→∞1x−8<lim x→∞1x>2=2+0+01−0−0=2ξ4极限存在准则,两个重要极限一、准则1:夹挤准则若在N<x0,δ0>内〔δ0>0〕,有F<x>≤f<x>≤G<x>成立,而且lim x→x0F<x>=lim x→x0G<x>=A,则lim x→x0f<x>>存在,且极限值为A.以上结论对x→∞也成立.证:∵lim x→x0F<x>=A∴对∀ε>0,必∃δ1>0,使得适合不等式0<|x−x0|<δ1的一切x所对应的F<x>,恒有|F<x>−A|<ε∵lim x→x0G<x>=A∴对∀ε>0,必∃δ2>0,使得适合不等式0<|x−x0|<δ2的一切x所对应的G<x>,恒有|G<x>−A|<ε现取δ=min{δ0,δ1,δ2},则适合不等式0<|x−x0|<δ的一切x所对应的F<x>,f<x>,G<x>都满足F<x>≤f<x>≤G<x>由上面推导出来的:。

高等数学笔记(含数一内容)

高等数学笔记(含数一内容)

隐函数求导
参数方程确定的函数求导
分段函数求导
先讨论关键点是否连续,确定连续后再判断函数各个部分是否可导。
求函数高阶导
一般使用数学归纳法解决。
微分
可微
定义:设y=f(x) (x∈D),x₀∈D。若∆y=A∆x+৹(∆x),则称f(x)在x=x₀处可微。
性质
可微一定可导,可导一定可微(充要条件)
若∆y=A∆x+৹(∆x),则A=f'(x₀),即dy∣₍x=x₀₎=f'(x₀)dx
二阶线性微分方程解的结构 齐+齐=齐 齐 + 非齐 = 非齐 非齐 + 非齐 = 齐 (拆解性质)对于方程**,若f(x)=f1(x)+f2(x)(即可拆成两部分),则分别构造两个二阶非齐次线性微分方程,且φ1(x),φ2(x)分别为它们的特解,则 有原方程特解为:
y=φ1(x)+φ2(x) (系数和的特点)设φ1(x),φ2(x),...,φn(x),为方程**的解,则通解的组合形式为y=k1φ1(x)+k2φ2(x)+...+knφn(x) 若y为方程*的通解,则k1+k2+...+kn=0(系数和为0) 若y为方程**的通解,则k1+k2+...+kn=1(系数和为1) (二阶常系数线性微分方程通解形式推导定理)
函数f(x)∈ c【a,b】的性质(函数在区间内恒连续)
性质1:∃最大值 M 和最小值 m (最值); 性质2:∃M₀>0,使得∣f(x)∣≤M₀(有界);
性质3: ∀η ∈【m,M】,∃ξ∈【a,b】,使得f(ξ)=η(介值定理);
性质4:若 f(a)*f(b)<0,则∃c∈(a,b),使得f(c)=0(零点定理)。 连续函数的运算

高等数学笔记整理

高等数学笔记整理

高等数学笔记整理
知识点框架:
- 极限理论
- 导数与微分
- 积分学
- 微分方程
思维要点:
- 极限定义的推导思路
- 导数公式的推导过程及应用思路
- 积分的计算思路与方法变换
重难点与易错点:
- 极限存在的判定(用不同颜色笔标注)
- 复合函数求导易错点(特殊颜色标注)
补充点:
- 一些特殊函数的极限性质补充
- 实际问题中导数的应用举例
自己的总结和思考:
总结各部分知识点之间的联系,如导数与积分的互逆关系。

思考不同方法在不同问题中的适用性,以及如何巧妙运用知识点解决复杂问题。

对一些易错点进行反思,加深理解,避免再次犯错。

同时,对老师补充的内容进行深入分析,拓展知识面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《代数学》辅导纲要第一章代数运算与自然数主要内容:1、集合与映射的概念2、映射及其运算3、代数系统4、自然数及其他相关定义5、归纳法原理与反归纳法的运用重点掌握1、由A→B的单映射σ的定义为:设σ:A→B,若由a1∈A,a2∈A,a1≠a2,就推出σ(a1)≠σ(a2),则称σ为从A到B的单映射。

2、由A→B的满映射σ的定义为:设σ:A→B,若ran(σ)=B,则称σ为从A到B的满映射。

3、给出一个由整数集合Z到自然数集合N的双射:可考虑分段映射,即将定义域分为小于0、等于0、大于0的整数三部分分别给出其象4、若集合|A|=n,则集合A→A的映射共有nn种。

5、皮阿罗公理中没有前元的元素为1。

6、自然数a与b加法的定义中两个条件为①:a+1=a'②:a+b'=(a+b)'.7、自然数a与b相乘的定义中两个条件为: ①:a⨯1=a;②:a⨯b'=a⨯b+a8、自然数a>b的定义为:如果给定的两个自然数a与b存在一个数k,使得a=b+k,则称a大于b,b小于a,记为a>b或b<a.9、皮阿罗公理中的归纳公式为:具有下面性质的自然数的任何集合M若满足:(1)1∈M;(2)如果a属于M,则它后面的数a’也属于M.则集合M含有一切自然数,即M=N.10、在整数集合中求两个数的最大公因数是代数运算。

11、若|A|=m,|B|=n,则A→B的所有不同映射的个数为nm。

12、若A是有限集合,则A→A的不同映射个数为:|A||A|。

13、从整数集合Z到自然数集合N存在一个单映射。

14、若A是有限集合,则不存在A到其真子集合的单映射。

15、若A为无限集合,则存在A的真子集合B使其与A等价。

16、存在从自然数集合N到整数集合Z的一个满映射,但不是单映射。

可考虑将定义域分成奇数、偶数两部分,定义一个与(-1)n有关的映射17、存在从自然数N到整数集合Z的双射。

可考虑分段映射18、代数系统(R+,⨯)与代数系统(R,+)是同构的,其中R+表示正实数集合,R表示实数集合,⨯与+就是通常的实数乘法与加法。

根据同构定义,只需找到一个从(R+,⨯)到(R,+)的一一映射,例如lgx就可以证明上述论述。

19、令Q+为正有理数集合,若规定 a⊕b=a+b,a∙b=ab 则: 2(1){Q+,⊕}构成代数体系,但不满足结合律。

(2){Q+,∙}不构成代数体系,但满足结合律。

根据代数体系和结合律的定义可得上述论述成立。

20、若在实数集合中规定a⊕b=a+b-a×b,其中+与×是通常的加法与乘法,则⊕满足结合律。

只需证明等式(a⊕b)⊕c=a⊕(b⊕c)成立21、分别利用归纳法与反归纳法可以证明n个数的算术平均值大于等于这n个数的几何平均值。

归纳法根据定义易证,在运用反归纳法证明时可先证n=2,4,…,2n都成立,假设命题对n=k成立,令Sk=-1Skk-1≥a1a2...ak-1证之成立 a+a2+...+ak-1a1+a2+...+ak,Sk-1=1,利用k-1k第二章不等式主要内容:1、一些初等不等式的证明2、几个著名不等式:柯西不等式、赫勒德尔不等式、明可夫斯基不等式的证明3、均值不等式、柯西不等式等常用不等式的应用4、凸函数的性质与应用重点掌握:1、a1+a2+⋯⋯+ann≥a1a2⋯⋯an等号成立的条件为:a1=a2=...=an nn2n2in2、柯西不等式(∑aibi)≤(∑a)(∑bi2)等号成立的条件为:111aa1a2==...=n bnb1b2x1,x23、f(x)为上凸函数的定义为:对任意的有:f(q1x1+q2x2)≥q1f(x1)+q2f(x2),其中q1≥0,q2≥0,q1+q2=1,则称f(x)为上凸函数。

4、f(x)=x0..3(x>0),g(x)=sin x(0<x<π),k(x)=㏑x 中,上凸函数为:f(x)=x0..3,g(x)=sin x, k(x)=㏑(x)5、f(x)=xk(其中x>0),则当0<k<1时,f(x)为下凸函数。

6、y=lg x则y是上凸函数 .7、函数f1(x)=sinx(其中0<x<π)和f1=㏑x为上凸函数,f1=xk(其中x>0,k>1)为下凸函数。

118、sin(x1+x2)≥(sinx1+sinx2) 229、不等式(a1+a2+⋯⋯+an)(2,……n成立。

111++……)≥n2,其中ai≥0,i=1,ana1a2可利用柯西不等式(∑aibi)≤(∑a)(∑bi2)证之成立 22i111nnn10、若a>b>c>0且a+b+c=1,则2abc存在极大值,为2;若已知a×b×c=1,27则2a+b+4c存在极小值,为6。

利用均值不等式(算术平均值大于等于几何平均值)可算得2abc极大值为2,2a+b+4c的极小值为6. 2711、若x>0,y>0,z>0且满足9x2+12y2+5z2=9 ,则3x+6y+5z存在极大值,为9。

利用柯西不等式(∑aibi)≤(∑a)(∑bi2)易知3x+6y+5z的极大值为9,其22i111nnn中a1=3x,b1=1,a2=2y,b2=,a3=z,b3=。

12、若x>0,y>0,z>0且满足3x2+y2+z2=15,则2x+3y+4z存在极大值,395。

利用柯西不等式(∑aibi)≤(∑a)(∑bi2)易知2x+3y+4z的极大值为,22i111nnn其中a1=3x,b1=23,a2=y,b2=3,a3=z,b3=4。

13、若x>0,y>0,z>0且满足3x2+4y2+5z2=20 ,则9x+16y+7z存在极大值,为:。

利用柯西不等式(∑aibi)≤(∑a)(∑bi2)易知9x+16y+7z的极大值为22i111nnn,其中a1=3x,b1=3,a2=2y,b2=8,a3=5z,b3=75。

14、若x>0,y>0,z>0。

且满足2x2+3y2+4z2=10,则5x+6y+7z存在极大值,为:7。

2利用柯西不等式(∑aibi)≤(∑a)(∑bi2)易知5x+6y+7z的极大值为22i111nnn757,其中a1=2x,b1=,a2=3y,b2=23,a3=2z,b3=。

22215、若x>0,y>0,z>0。

且满足x2+2y2+3z2=15,则2x+3y+4z存在极大值,为:415。

2利用柯西不等式(∑aibi)≤(∑a)(∑bi2)易知2x+3y+4z的极大值为22i111nnn415,2其中a1=x,b1=2,a2=2y,b2=32,a3=z,b3=43。

16、若x>0,y>0,z>0,且满足2x2+3y2+4z2=10,则3x+4y+5z存在极大值,为965。

6利用柯西不等式(∑aibi)≤(∑a)(∑bi2)易知3x+4y+5z的极大值为22i111nnn965,6其中a1=2x,b1=32,a2=y,b2=43,a3=2z,b3=5。

2αn1α217、不等式α1a1+α2a2+…+αnan≥aα1成立,其中α1+α2+…+αn=1 a2...anαi≥0,ai≥0, i=1,2…n。

可令f(x)=lgx,则易知f(x)为上凸函数,利用上凸函数的定义可知上面不等式成立。

18、若0<k<1,则有(q1x1+q2x2+...+qnxn)≥∑qixik其中q1+q2+...+qn=1,且ki=1nqi>0,xi>0,i=1,2,…n。

可令f(x)=xk,易证f(x)在为上凸函数,利用上凸函数的定义可知上面不等式成立。

19、半径为R的圆内接n边形中,以正n边形的面积最大。

设其内接n边形的面积为S,n边形各边所对应的圆心角为θ1,θ2,...,θn,则S=12R(sinθ1+sinθ2+...+sinθn),再根据sinx在(0,π)上是上凸函数可知上面2论述成立。

第三章多项式与环主要内容:1、不可约因式与素因式的概念2、因式分解唯一环的概念及实例3、多项式的代数定义与分析定义4、对称多项式5、基本定理证明6、一元三次方程与一元四次方程的根7、多项式的零点估计8、重因式与结式9、施斗姆定理重点掌握:1、举出一个交换环的例子:如剩余类环Z5。

2、环的理想定义为:如果R是一个整环,N⊂R,为R的子环,若对任意的r∈R,a∈N,均有r⋅a∈N,则称N为R的理想。

3、剩余类环Z12中可逆元素为:1,5,7,11。

4、剩余类环Z12中非可逆元素为: 0,2,3,4,6,89,10。

5、Z8中的可逆元素为:1,3,5,7。

6、在剩余类环Z8中不可逆的元素为:0,2,4,6 。

7、整环中因式分解不是唯一的例子是:例如:在整环R=a+b-3|a∈Z,b∈Z中,4=2⨯2=(1+-3)(1--3)。

____________________{}⎛10⎫⎛00⎫8、在二阶方阵环(实数域上)中找出两个零因子,如: 00⎪⎪,01⎪⎪。

⎝⎭⎝⎭9、剩余类环Z12中的真零因子有2,3,4,6。

10、素元素的定义为:设R为整环,若p∈R,p≠θ,p也不是可逆元素。

若由p|a⨯b 就可推出p|a或p|b,这时我们称p为素元素。

11、不可约元素的定义为:设R为整环,c∈R,c≠θ,c也不是可逆元素,且若____ c=a⨯b就可推出a是可逆元素或者b是可逆元素,这时我们称c是不可约元素。

12、整数环Z上的代数元与超越元分别举出二例:例如1,2是Z上的代数元,e,π是Z上的超越元。

13、π为有理数域上的超越元。

14、2是有理数域上的代数元。

15、Z[x](Z是整数环)是因式分解唯一环。

16、在整环R={a+b3 | a∈Z,b∈Z }中2是不可约元素。

因为在R中,2⨯2=(1+-3)(1--3)17、有理系数n次多项式在有理数域内最多有n个根。

18、在环R={a+b整环。

根据定义以及反例:2⨯2=(1+-3)(1--3)可知2是不可约元素,但不是素元素。

19、若数域F含有无穷多个元素,则域F上的两个多项式f(x)与g(x)相等的代数定义与分析定义是一致的。

从代数观点出发推得其相对应系数也应该相等,即从函数论观点得证;反之,若从函数论观点出发,将两函数相减所得为一个次数不超过这两个函数次数n的多项式,因此它至多在F内有n个根,由已知数域F含有无穷多个元素,f(x)-g(x)有无限多个根,与前面至多在F内有n个根矛盾,因此f(x)-g(x)的系数必须全为0,因此其相对应系数都相等。

20、若数域F只有P个元素,则从分析观点出发F上的多项式只有有限个。

相关文档
最新文档