实验六_CPU_微程序控制器实验
计算机组成原理实验报告

3)在增大合法码的码距时,所有码的码距应尽量均匀增大,以保证对所有码的检错能力平衡提高。
下面具体看一下对一个字节进行海明编码的实现过程。
只实现一位纠错两位检错,由前面的表可以看出,8位数据位需要5位校验位,可表示为H13H12…H2H1。
0
0
1
1
0
0
1
1
0
S1
0
0
1
0
1
0
1
0
1
0
1
0
1
由此可得校验后的数据位表达式为:
D1=D1 (S1•S2• • •S5)
D2=D2 (S1• •S3• •S5)
D3=D3 ( •S2•S3• •S5)
D4=D4 (S1•S2•S3• •S5)
D5=D5 (S1• • •S4•S5)
D6=D6 ( •S2• •S4•S5)
答:我们认为16位数据位的编码原理与8位数据位的hamming编码原理基本相同。即:,在k个数据位之外加上r个校验位,从而形成一个k+r位的新的码字,使新的码字的码距比较均匀地拉大。把数据的每一个二进制位分配在几个不同的偶校验位的组合中,当某一位出错后,就会引起相关的几个校验位的值发生变化,这不但可以发现出错,还能指出是哪一位出错,为进一步自动纠错提供了依据。
《计算机组成原理》
实验报告
实验室名称:S402
任课教师:邹洋
小组成员:王娜任芬
学号:2010212121 2010212119
实验一_Hamming码2
实验二_乘法器7
计算机组成原理-微程序控制器实验报告

计算机组成原理实验之微程序控制器实验一、实验目的1.掌握时序发生器的组成原理。
2.掌握微程序控制器的组成原理。
二、实验内容1.实验电路(1)时序发生器电路本实验所用的时序电路见图4.1。
电路由一个500KHz晶振、2片GAL22V10、一片74LS390组成,可产生两级等间隔时序信号T1-T4、W1-W3,其中一个W由一轮T1-T4组成,相当于一个微指令周期或硬连线控制器的一拍,而一轮W1-W3可以执行硬连线控制器的一条机器指令。
另外,供数字逻辑实验使用的时钟由MF经一片74LS390分频后产生。
图4.1 时序信号发生器(2)微程序控制器电路图4.2微程序控制器电路微地址转移逻辑表达式:A5=D5=μA5;A4=D4=C•P2+μA4;A3=D3=IR7•P1+μA3;A2=D2=IR6•P1+SWC•P0+μA2;A1=D1=IR5•P1+SWB•P0+μA1;A0=D0=IR4•P1+SWA•P0+μA0。
2.一些关键技术(1)微指令格式图4.3微指令格式(3)上述8条指令的微程序流程图如图4.4所示图4.4微程序流程图(4)微程序代码表表4-2微程序代码表微指令KT RRF WRF RRM WRM PR当前微地址00 0C 1E 06 07 0B 1D 0D 0E 0A 02 03 09 04 05 08 0F 下一微地址08 1E 06 07 1E 1D 0D 0E 1D 02 03 02 04 05 04 0F 10P0 1 . . . . . . . . . . . . . . . .P1 . . . . . . . . . . . . . . . . 1P2 . . . . . . . . . . . . . . . . .备用. . . . . . . . . . . . . . . . .TJ . 1 . . 1 1 . 1 1 . 1 . 1 . 1 . .LDIR . . . 1 . . . 1 . . . . . . . . 1PC+1 . . . . . . . . . . . . . . . . .LDPC# . 1 . . . 1 . . . . . . . . . 1AR+1 . . . . . . . . . . . 1 . . 1 . .LDAR# . 1 . . . 1 . . . 1 . . 1 . . . . LDDR1 . . . . . . . . . . . . . . . . . LDDR2 . . . . . . . . . . . . . . . . . LDRi . . . . . . . . 1 . . . . . . . .SW_BUS# . 1 1 . . 1 1 . 1 1 . . 1 1 . 1 . RS_BUS# . . . . 1 . . . . . . . . . . . . ALU_BUS# . . . . . . . . . . . . . . . . . RAM_BUS# . . . . . . . . . . 1 . . . . . . CER# . . . 1 . . . 1 . . . . . . . . 1 CEL# . . 1 . . . 1 . . . 1 . . 1 . . . LR/W# . . 0 . . . 0 . . . 1 . . 0 . . . Cn# . . . . . . . . . . . . . . . . .M . . . . . . . . . . . . . . . . .S0 . . . . . . . . . . . . . . . . .S1 . . . . . . . . . . . . . . . . .S2 . . . . . . . . . . . . . . . . .S3 . . . . . . . . . . . . . . . . .表4-2微程序代码表(续)微指令ADD SUB AND STA LDA JC STP OUT当前微地址10 18 11 19 12 1A 13 1B 14 1C 15 1F 16 17 下一微地址18 0F 19 0F 1A 0F 1B 0F 1C 0F 0F 0F 0F 0FP0 . . . . . . . . . . . . . .P1 . . . . . . . . . . . . . .P2 . . . . . . . . . . 1 . . .备用. . . . . . . . . . . . . .TJ . . . . . . . . . . . . 1 1LDIR . . . . . . . . . . . . . .PC+1 . 1 . 1 . 1 . 1 . 1 1 . 1 1LDPC# . . . . . . . . . . . 1 . .AR+1 . . . . . . . . . . . . . .LDAR# . . . . . 1 . 1 . . . . .LDDR1 1 . 1 . 1 . 1 . . . . . . .LDDR2 1 . 1 . 1 . . . . . . . . .LDRi . 1 . 1 . 1 . . . 1 . . . .SW_BUS# . . . . . . . . . . . . . .RS_BUS# . . . . . . 1 . 1 . . 1 . 1ALU_BUS# . 1 . 1 . 1 . 1 . . . . . .RAM_BUS# . . . . . . . . . 1 . . . .CER# . . . . . . . . . . . . . .CEL# . . . . . . . 1 . 1 . . . .LR/W# . . . . . . 0 . 1 . . . .Cn# . . . 1 . . . . . . . . . .M . 0 . 0 . 1 . 0 . . . . . .S0 . 1 . 0 . 1 . 0 . . . . . .S1 . 0 . 1 . 1 . 0 . . . . . .S2 . 0 . 1 . 0 . 0 . . . . . .S3 . 1 . 0 . 1 . 0 . . . . . .注:后缀为#的信号都是低电平有效信号,为了在控存ROM中用“1”表示有效,这些信号在控制器中经过反相后送往数据通路。
实验六微程序控制单元实验

实验六 微程序控制单元实验一、实验目的1. 熟悉微程序控制器的工作原理。
2. 掌握微程序编制及微指令格式。
二、实验要求按照实验步骤完成实验项目,熟悉微程序的编制、写入、观察运行状态。
三、实验原理⒈ 微程序控制电路微程序控制器的组成见图6-1,其中控制存储器采用4片6116静态存储器 ,微命令寄存器32位,用三片8D 触发器(273)和一片4D(175)触发器组成。
微地址寄存器6位,用三片正沿触发的双D 触发器(74)组成,它们带有清零端和置位端。
在不判别测试的情况下,T2时刻打入微地址寄存器的内容即为下一条微指令地址。
当T4时刻进行测试判别时,转移逻辑满足条件后输出的负脉冲通过置位端将某一触发器输出端置为“1”状态,完成地址修改。
⒉ 微指令格式表6-1A 字段B 字段A 、B 二译码字段,分别由6个控制位译码输出多位。
B 段中的PX3、PX2、PX1 三个测试字位。
其功能是根据机器指令及相应微代码进行译码,使微程序转入相应的微地址入口,从而实现微程序的顺序、分支、循环运行。
⒊微程序流程与代码图6-2为几条机器指令对应的参考微程序流程图,将全部微程序按微指令格式变成二进制代码,可得到模型机(一)所例举的8位指令代码。
图6-2微程序流程图四、实验内容(一)微程序的编写为了解决微程序的编写,本装置设有微程序读写命令键,学生可根据微地址和微指令格式将微指令代码以快捷方式写入到微程序控制单元。
具体的操作方法是按动位于本实验装置右中则的红色复位按钮使系统进入初始待令状态。
再按动【增址】命令键使工作方式提示位显示“H”。
微程序存贮器读写的状态标志是:显示器上显示8个数字,左边1、2位显示实验装置的当前状态,左边3、4位显示区域号(区域的分配见表7-2),左边5、6位数字是微存贮单元地址,硬件定义的微地址线是ua0~ua5共6根,因此它的可寻址范围为00H~3FH;右边2位数字是该单元的微程序,光标在第7位与第8位之间,表示等待修改单元内容。
实验六实验报告模板 CPU组成与机器指令执行周期实验(1)

实验六实验报告模板 CPU组成与机器指令执行周期实验(1)课程计算机组成原理实验名称 CPU组成与指令周期实验专业:计算机班级:3 学号:105032021118 姓名:林加明实验日期 2021 年 6 月 10 日报告退发 (订正、重做)实验六 CPU组成与指令周期实验一、实验目的1.用微程序控制器控制数据通路,将相应的信号线连接,构成一台能运行测试程序的模型计算机。
2.执行一个简单的程序,掌握机器指令与微指令的关系。
3.理解计算机如何取出指令、如何执行指令、如何在一条指令执行结束后自动取出下一条指令并执行,牢固建立的计算机整机概念。
二、实验内容及说明1.实验电路及说明ZMS0S1S2S3CINC数据总线DBUSINS7―INS0ABUSALUA端口A7―A04选1选择器ARD0RD1B端口B7―B04选1选择器B LDCLDZT3MBUSMEMWT2D7L―D0LD7R―D0R双端口RAMA7L―A0LA7R―A0RPC7―PC0CLR#PCADDLPCPCINCT3IR3―IR0IRBUSRS0RS1AR7―AR0CLR#L ARARINCT3DBUSRD1RD0LR0LR1LR2LR3SWDRD0RD1RS0数据开关SD7―SD0A组控制信号B组控制信号独立K15-K0IR7―IR4RS1W3INTQW1W2T1T2T3ZCCLR#T3ZCCLR#T3MFCLR#QDSTOPDPINTENINTDIINTPSHOR T LONG本实验将前面几个实验中的所有电路,包括时序发生器、通用寄存器组、算术逻辑运算部件、存储器、微程序控制器等模块组合在一起,构成一台能够运行程序的简单处理机。
数据通路的控制由微程序控制器完成,由微程序解释指令的执行过程,从存储器2―4译码器ARPCR0DBUSSBUSLR0DRWT3R1LR1DRWT3R2LR2DRWT3R3LR3DRWT3LIARIABUST3IARIRPC7―PC0LIRT3控制信号控制信号切换电路控制转换微程序控制器硬连线控制器W3―W1IR7―I R42选1选择器IR3―IR0SELCTLSEL3―SEL0IRBUS时序发生器SWC―SWA图6.1 TEC-8模型计算机框图1取出一条指令到执行指令结束的一个指令周期,是由微程序完成的,即一条机器指令对应一个微程序序列。
微程序控制器原理实验报告

微程序控制器原理实验报告一、引言微程序控制器作为计算机系统的重要组成部分,扮演着指挥和控制计算机操作的关键角色。
本实验报告将对微程序控制器的原理进行探讨,并描述相关实验的设计、步骤、结果和分析。
二、微程序控制器的原理2.1 微程序控制器的概念微程序控制器是一种控制计算机操作的技术,通过将指令集中的每个指令分解为一系列微操作,并以微指令的形式存储在控制存储器中,从而实现指令的执行控制。
2.2 微指令的组成和格式微指令由多个字段组成,每个字段代表一个微操作控制信号。
常见的微指令格式包括微地址字段、条件码字段、操作码字段等。
2.3 微指令的执行过程微指令的执行过程包括指令的取指、译码、执行和写回等阶段。
每个阶段对应微指令的不同部分,通过控制信号的转换和传递,完成相应的操作。
三、微程序控制器的设计与实验3.1 设计思路在进行微程序控制器实验前,需要明确实验的目标和设计思路。
实验通常包括以下几个步骤:确定指令集、确定微指令格式、设计控制存储器、设计控制逻辑电路等。
3.2 实验步骤1.确定指令集:根据实验需求,确定需要支持的指令集。
2.确定微指令格式:根据指令集的要求,设计适合的微指令格式。
3.设计控制存储器:根据微指令格式,设计控制存储器的结构和内容。
4.设计控制逻辑电路:根据微指令的执行过程,设计控制逻辑电路,实现指令的控制和转换。
5.构建实验平台:将设计的控制存储器和控制逻辑电路构建成实验平台,并与计算机系统相连。
6.进行实验:在实验平台上执行指令,观察和记录实验结果。
3.3 实验结果与分析根据实验步骤中的设计和操作,得到了相应的实验结果。
通过比对实验结果和预期效果,可以对微程序控制器的设计和实验进行分析和评估。
四、总结与展望微程序控制器作为计算机系统的关键组成部分,通过微操作的方式实现指令的执行控制。
本实验报告对微程序控制器的原理进行了探讨,并描述了相关实验的设计、步骤、结果和分析。
通过实验,我们深入理解了微程序控制器的工作原理和设计方法。
微程序控制器_实验报告

微程序控制器_实验报告本次实验使用的是微程序控制器,主要涵盖了微程序控制器的概念、微指令的设计、微指令的执行以及测试和调试方法等。
首先,我们需要了解什么是微程序控制器。
微程序控制器是一种专门用于控制计算机操作的控制器,其中的微指令由微程序控制器产生。
微程序控制器的主要优点是提高了计算机系统的可控性和可编程性,可避免在操作过程中出现复杂的电路切换。
在实验中,我们主要是操作微指令的设计和执行。
微指令需要根据指令的类型以及相应的操作码进行设计,确保计算机能够正确地执行指令。
在设计微指令过程中,我们要考虑到指令执行时需要进行的操作、信号的传递以及各个部分之间的协调。
在微指令设计完成后,需要进行微指令的执行。
微指令执行的过程也是十分关键的,这需要对微指令的执行顺序进行精密设计以保证整个计算机发挥最大的性能。
实验中我们了解了基本的微指令执行步骤,包括状态存储器、微指令计数器、微指令发生器以及微指令存储器等。
除了微指令设计和执行外,测试和调试也是实验中比较重要的步骤。
这一步骤旨在确保整个计算机系统能够正常运行,同时也可以在测试过程中发现和纠正存在的错误。
在测试过程中,我们需要编写测试程序,通过输入不同的指令类型和操作码来测试微指令是否能够正确地执行。
在调试过程中,我们需要通过检查微指令执行的每个步骤,找到代码中存在的错误并进行修正,以保证计算机的正常运行。
在实验中,学习了微程序控制器的基本知识,包括微指令的设计和执行以及测试和调试方法。
这些知识对于计算机专业的学生非常重要,可以帮助他们深入了解计算机系统的运行原理及其基本结构。
同时也可以为今后的工作和研究提供基础知识和经验。
微程序控制器实验报告

一、实验目的1、通过实验,进一步理解微程序控制器的组成结构。
理解微程序控制器的控制原理2、加深理解微程序控制器的工作原理。
掌握指令流程与功能3、理解掌握微程序控制器的设计思路与方法二、实验内容与步骤1、微程序控制器的组成原理控制存储器:实现整个指令系统的所有微程序,一般指令系统是规定的由高速半导体存储器构成,容量视机器指令系统而定,取决于微程序的个数,其长度就是微指令字的长度。
微指令寄存器:存放从控存读出的当前微指令。
微操作控制字段将操作控制信号送到控制信号线上,微地址字段指出下一条微地址的形成。
微地址寄存器:存放将要访问的下一条微指令地址地址转移逻辑:形成将要执行的微指令地址,形成方式:取指令公操作所对应的微程序一般从控存的0地址开始,所以微程序的人口地址0是由硬件控制的。
当出现分支时,通过判别测试字段、微地址字段、和执行部件的反馈信息形成后即微地址。
Cpu设计步骤:1.拟定指令系统2.确定总体结构(数据通路)3.安排时序4.拟定指令流程。
根据指令系统,写出对应所有机器指令的全部微操作机器节拍安排,然后列出操作时间表5.确定微指令的控制方式、下地址形成方式、微指令格式及微指令字长,编写全部的微指令的代码,最后将编写的微指令放入控制存储器中。
微程序控制器的设计步骤(1)设计微程序确定微程序流程图,也就是控制算法流程图。
(2)确定微指令格式微指令格式中的操作控制字段取决于执行部件的子系统需要多少微指令。
假定采用直接控制方式,执行部件需要10个微命令,则操作控制字段需要10位。
测试判别字段取决于微程序流程图中有多少处分支转移。
假定有3处分支,则测试判别字段需要3位。
下址字段取决于微程序流程图的规模。
假定微程序共用50条微指令,则下址字段至少需要6位。
这是因为ROM地址译码时,26=64,6位地址可容纳64条微指令。
(3)将微程序编译成二进制代码(4)微程序写入控制存储器(5)设计硬件电路三、实验现象--CPU 头文件cpu_defsLIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;PACKAGE cpu_defs IS --定义程序包,包头,包体TYPE opcode IS (load, store, add, sub, bne); --这个语句适合于定义一些用std_logic 等不方便定义的类型,综合器自动实现枚举类型元素的编码,一般将第一个枚举量(最左边)编码为0 CONSTANT word_w: NATURAL :=8;CONSTANT op_w: NATURAL :=3;CONSTANT rfill: STD_LOGIC_VECTOR(op_w-1 downto 0):=(others =>'0');--FUNCTIOn slv2op(slv:IN STD_LOGIC_VECTOR) RETURN opcode;FUNCTION op2slv(op:in opcode) RETURN STD_LOGIC_VECTOR;END PACKAGE cpu_defs;PACKAGE BODY cpu_defs ISTYPE optable IS ARRAY(opcode) OF STD_LOGIC_VECTOR(op_w-1 DOWNTO 0);--数组有5个元素,其他均0CONSTANT trans_table:optable :=("000", "001", "010", "011", "100");FUNCTION op2slv(op:IN opcode) RETURN STD_LOGIC_VECTOR ISBEGINRETURN trans_table(op);END FUNCTION op2slv;END PACKAGE BODY cpu_defs;--实验7-8 微程序控制器实验LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL,IEEE.NUMERIC_STD.ALL;USE WORK.CPU_DEFS.ALL;--使用自己定义的程序包ENTITY CPU ISPORT( clock : IN STD_LOGIC;--时钟reset : IN STD_LOGIC;--复位mode : IN STD_LOGIC_VECTOR(2 DOWNTO 0); --查看用mem_addr : INUNSIGNED(word_w-op_w-1 DOWNTO 0);--地址output : OUT STD_LOGIC_VECTOR(word_w-1 DOWNTO 0);data_r_out : OUT STD_LOGIC_VECTOR(19 DOWNTO 0);--微指令Rop_out : OUT STD_LOGIC_VECTOR(op_w-1 DOWNTO 0);--操作码add_r_out : OUT UNSIGNED(4 DOWNTO 0) --微地址R);END ENTITY;ARCHITECTURE rtl OF CPU ISTYPE mem_array IS ARRAY (0 TO 2**(word_w-op_w)-1) OF STD_LOGIC_VECTOR(word_w-1DOWNTO 0);--定义RAMSIGNAL mem : mem_array;CONSTANT prog : mem_array:=(0=> op2slv(load) & STD_LOGIC_VECTOR(TO_UNSIGNED(4,word_w-op_w)),1=> op2slv(add) & STD_LOGIC_VECTOR(TO_UNSIGNED(5,word_w-op_w)),2=> op2slv(store) & STD_LOGIC_VECTOR(TO_UNSIGNED(6,word_w-op_w)),3=> op2slv(bne) & STD_LOGIC_VECTOR(TO_UNSIGNED(7,word_w-op_w)), --TO_UNSIGNED转换函数将4转换为5位“00100”4=> STD_LOGIC_VECTOR(TO_UNSIGNED(2,word_w)),5=> STD_LOGIC_VECTOR(TO_UNSIGNED(3,word_w)),OTHERS => (OTHERS =>'0'));TYPE microcode_array IS ARRAY (0 TO 14) OF STD_LOGIC_VECTOR(19 DOWNTO 0); CONSTANT code : microcode_array:=(--控制存储器0=> "00010100010000000001",1=> "00000000000110000010",2=> "00001010000000000011",3=> "00000100001000001111",4=> "00100010000000000000",5=> "00000000000100000000",6=> "00000010100001000000",7=> "00000010100000100000",8=> "00000000000110000100",9=> "01000001000000000101",10=> "00000000000110000110",11=> "00000000000110000111",12=> "00000000000110010000",13=> "10000010000000000000",14=> "00000000000000000000");SIGNAL count : UNSIGNED(word_w-op_w-1 DOWNTO 0);SIGNAL op : STD_LOGIC_VECTOR(op_w-1 DOWNTO 0);SIGNAL z_flag : STD_LOGIC;SIGNAL mdr_out : STD_LOGIC_VECTOR(word_w-1 DOWNTO 0);SIGNAL mar_out : UNSIGNED(word_w-op_w-1 DOWNTO 0);SIGNAL IR_out : STD_LOGIC_VECTOR(word_w-1 DOWNTO 0);SIGNAL acc_out : UNSIGNED(word_w-1 DOWNTO 0);SIGNAL sysbus_out : STD_LOGIC_VECTOR(word_w-1 DOWNTO 0);EGINPROCESS(reset,clock)VARIABLE instr_reg : STD_LOGIC_VECTOR(word_w-1 DOWNTO 0);VARIABLE acc : UNSIGNED(word_w-1 DOWNTO 0);CONSTANT zero : UNSIGNED(word_w-1 DOWNTO 0):=(OTHERS =>'0')VARIABLE mdr : STD_LOGIC_VECTOR(word_w-1 DOWNTO 0);VARIABLE mar : UNSIGNED(word_w-op_w-1 DOWNTO 0);VARIABLE sysbus : STD_LOGIC_VECTOR(word_w-1 DOWNTO 0);VARIABLE microcode : microcode_array;VARIABLE add_r : UNSIGNED(4 DOWNTO 0);VARIABLE data_r : STD_LOGIC_VECTOR(19 DOWNTO 0);VARIABLE temp : STD_LOGIC_VECTOR(4 DOWNTO 0);BEGINIF reset='0' THENadd_r:=(OTHERS =>'0');count <= (OTHERS =>'0');instr_reg := (OTHERS =>'0');acc := (OTHERS =>'0');mdr := (OTHERS =>'0');mar := (OTHERS =>'0');z_flag <='0';mem <= prog;sysbus :=(OTHERS =>'0');ELSIF RISING_EDGE(clock) THEN--microprogram controllerdata_r := code(TO_INTEGER(add_r));IF data_r(4 DOWNTO 0)="01111" THEN --判断下地址temp:="01" & op(2 DOWNTO 0);add_r := UNSIGNED(temp);ELSIF data_r(4 DOWNTO 0)="10000" THENIF z_flag='1' THENadd_r:="01110";ELSEadd_r :="01101";END IF;ELSEadd_r := UNSIGNED(data_r(4 DOWNTO 0));END IF;data_r_out <=data_r;add_r_out <= add_r;--PCIF data_r(16)='1' THEN --PC_bus='1'sysbus := rfill & STD_LOGIC_VECTOR(count);END IF;IF data_r(19)='1' THEN --load_PC='1'count <= UNSIGNED(mdr(word_w-op_w-1 DOWNTO 0));ELSIF data_r(10)='1' THEN --INC_PC='1'count <= count+1;ELSEcount <= count;END IF;--IRIF data_r(15)='1' THEN --load_IRinstr_reg := mdr;END IF;IF data_r(9)='1' THEN --Addr_bus='1'sysbus := rfill & instr_reg(word_w-op_w-1 DOWNTO 0);END IF;op <= instr_reg(word_w-1 DOWNTO word_w-op_w);IR_out <= instr_reg;op_out <=op;--ALUIF data_r(17)='1' THEN --load_ACC='1'acc:=UNSIGNED(mdr);END IF;IF data_r(11)='1' THEN --ALU_ACC='1'IF data_r(6)='1' THEN --ALU_add='1'acc := acc + UNSIGNED(mdr);ELSIF data_r(5)='1' THEN --ALU_sub='1'acc := acc - UNSIGNED(mdr);END IF;END IF;IF data_r(18)='1' THEN --ACC_bus='1'sysbus := STD_LOGIC_VECTOR(acc);END IF;IF acc=zero THENz_flag <='1';ELSEz_flag <='0';END IF;acc_out<= acc;--RAMIF data_r(14)='1' THEN --load_MAR='1'mar := UNSIGNED(sysbus(word_w-op_w-1 DOWNTO 0));ELSIF data_r(12)='1' THEN --load_MDR='1'mdr := sysbus;ELSIF data_r(8)='1' THEN --CS='1'IF data_r(7)='1' THEN --R_NW='1'mdr := mem(TO_INTEGER(mar));ELSEmem(TO_INTEGER(mar))<=mdr;END IF;END IF;IF data_r(13)='1' THEN --MDR_bus='1'sysbus:=mdr;END IF;mdr_out <= mdr;mar_out <= mar;END IF;sysbus_out <=sysbus;END PROCESS;PROCESS(mode,mem_addr)BEGIN--mode=0 -> sysbus--mode=1 -> PC--mode=2 -> result of ALU--mode=3 -> IR--mode=4 -> MAR--mode=5 -> MDR--mode=6 -> memoutput <= (OTHERS =>'0');CASE mode isWHEN "000" =>output<=sysbus_out;WHEN "001" =>output(word_w-op_w-1 DOWNTO 0)<= STD_LOGIC_VECTOR(count);WHEN "010" =>output <= STD_LOGIC_VECTOR(acc_out);WHEN "011" =>output <= IR_out;WHEN "100" =>output(word_w-op_w-1 DOWNTO 0) <= STD_LOGIC_VECTOR(mar_out);WHEN "101" =>output <= mdr_out;WHEN "110" =>output <= mem(TO_INTEGER(mem_addr));WHEN others =>output <= (OTHERS =>'Z');END CASE;END PROCESS;END ARCHITECTURE;现象结果:四、实验体会原本对于控制器的设计还是一片空白,通过实验初步理解微程序控制器的组成结构。
微程序控制器实验2008-05

8
2009-11-30
3.1 学习编写微代码(书中实验内容1) (12周任务)
将图 12-5 所示的全部微程序按微指令格式变换成二进制代码 将图12-5 12-5所示的全部微程序按微指令格式变换成二进制代码 第1步例:理解机器指令功能 机器指令 LDA STA OUT 20H R5 <- (X) 40H (10) <- R5 60H Bus <- (10) R5 <- (X) and R5
18
2009-11-30
3.2 电路训练及仿真训练(13周任务)
理解实验原理,指令码,IR[7..5],微程序入口地址之间的关系
– IR7,IR6,IR5对应指令码高三位 – 微程序入口地址: 0,1,IR7,IR6,IR5
指令码 二进制 Ir7,ir6,ir5 入口地址 机器指令
20 H 20H H 40 40H H 60 60H H 80 80H A0H C0H E0H
取指令
分析指令
10
2009-11-30
3.1 学习编写微代码(书中实验内容1) (12周任务)
1-22, 确定各微命令初始状态 (二进制代码 ) 第3步例:依据微指令格式编号 依据微指令格式编号1-22, 1-22,确定各微命令初始状态 确定各微命令初始状态( 二进制代码)
11
2009-11-30
3 2009-11-30
实验原理
2 基本概念 •计算机分控制部件和执行部件.控制器就是控制部件,执行部 件包括运算器、存储器、外围设备. •微命令:控制器通过控制线向执行部件发出的各种控制命令. •微操作:执行部件接受微命令后所进行的操作.
(微命令是微操作的控制信号,微操作是微命令的执行过程)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CPU__微程序控制器实验
实验目的
1、理解微程序控制器的控制原理
2、进一步掌握指令流程和功能
3、了解掌握微程序控制器的设计思路和方法
实验原理
微程序控制器的设计思想是由英国剑桥大学的威尔克斯(Wilkes)教授于1951年提出来的,即将机器指令的操作(从取指令到执行)分解成若干个更基本的微操作序列,并将有关的控制信号(微命令)按照一定的格式编成微指令,存放到一个只读存储器中,当机器运行时,一条一条地读出这些微指令,从而产生全机所需要的各种操作控制信号,使相应部件执行所规定的操作。
微指令格式:
N _µA 0
N _µA 1N _µA 2
N _µA 3
N _µA 4
P 0
P 1
P 2
P C _i n c
l j _i n s t r u c t
c _z _j _f l a g
l d _I R
o p _c o d e 0
o p _c o d e 1
o p _c o d e 2
c h a n g e _z
c h a n g e _c
D R W r
s e l _m e m d a t a
M e m _W r i t e
1
2
3
4
5
6
7
8
9
10
11121314
151617181920D W _i n s t r u c t
实验步骤
(1)实验台设置成FPGA-CPU 独立调试模式,REGSEL=0、
CLKSEL=1、FDSEL=0.使用实验台上的单脉冲,即STEP_CLK 短路子短接,短路子RUN_CLK 断开;
(2)将设计在Quartus II 下输入,编译后下载到TEC-CA 上的FPGA 中;
(3)按复位键后,拨动实验台上的开关SD5~SD0,改变IR[15…12]、
进位标志C 和结果为0标志Z ,观察指示灯R15~R0、A4~A0、A12~A8、A14和A15显示的信号,追踪每条指令的执行过程并把相应数据填在表6-1中。
(4)观察每条指令的执行过程,每个节拍进行的微操作和微操作控制信号。
心得体会:
1、理解微程序控制器的控制原理
2、进一步掌握指令流程和功能
3、了解掌握微程序控制器的设计思路和方法。