高一数学集合间的基本关系练习题及答案

合集下载

数学必修一《集合间的基本关系》精选练习(含详细答案)

数学必修一《集合间的基本关系》精选练习(含详细答案)

数学必修一《集合间的基本关系》精选练习(含详细答案)一、选择题1.下列四个结论中,正确的是( )A.0={0}B.0∈{0}C.0⊆{0}D.0∈{∅}2.下列四个集合中,是空集的是( )A.{x|x+3=3}B.{(x,y)|y2=-x2,x,y∈R}C.{x|x2≤0}D.{x|x2-x+1=0,x∈R}3.已知集合A={x|3≤x2≤5,x∈Z},则集合A的真子集个数为( )A.1个B.2个C.3个D.4个4.已知集合M={x|y2=2x,y∈R}和集合P={(x,y)|y2=2x,y∈R},则两个集合间的关系是( )A.M PB.P MC.M=PD.M,P互不包含5.已知全集U=R,则正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的Venn图是( )6.集合A={2n+1|n∈Z},集合B={4k±1|k∈Z},则A与B间的关系是( )A.A∈BB.A BC.A∉BD.A=B7.集合B={a,b,c},C={a,b,d};集合A满足A⊆B,A⊆C.则满足条件的集合A的个数是( )A.8B.2C.4D.1二、填空题8.已知集合A={x|x2-3x+2=0},B={1,2},C={x|x<8,x∈N},用适当符号填空:A B,A C,{2} C,2 C.9.已知集合A={x|-2≤x≤3},B={x|x≥m},若A⊆B,则实数m的取值范围为.10.设x,y∈R,A={(x,y)|y=x},B=,则A,B的关系是.11.已知集合A={(x,y)|x+y=2,x,y∈N},试写出A的所有子集.12.若集合A={x|(k+1)x2+x-k=0}有且仅有两个子集,求实数k的值.13.设集合M={(x,y)|x+y<0,xy>0}和P={(x,y)|x<0,y<0},那么M与P的关系为.14.若A={1,2},B={x|x⊆A},则B= .15.已知A={x|x<-1或x>2},B={x|4x+a<0},当B⊆A时,求实数a的取值范围.16.已知集合A={2,4,6,8,9},B={1,2,3,5,8},又知非空集合C是这样一个集合:其各元素都加2后,就变为A的一个子集,若各元素都减2后,则变为B的一个子集,求集合C.参考答案与解析1【解析】选B.{0}是含有1个元素0的集合,故0∈{0}.2【解析】选D.对A,{x|x+3=3}={0};对B,{(x,y)|y2=-x2,x,y∈R}={(0,0)};对C,{x|x2≤0}={0};对D,由于Δ=(-1)2-4=-3<0,即方程x2-x+1=0无解,故{x|x2-x+1=0,x∈R}=∅.3【解析】选C.由题意知,x=-2,2,即A={-2,2},故其真子集有3个.【误区警示】本题易忽视真子集这一条件而误选D.4【解析】选D.由于两集合代表元素不同,即M表示数集,P表示点集,因此M与P 互不包含,故选D.【误区警示】解答本题易忽视集合的属性而误选C.5【解析】选B.由N={x|x2+x=0}={-1,0},得N M.6【解析】选 D.因为整数包括奇数与偶数,所以n=2k或2k-1(k∈Z),当n=2k 时,2n+1=4k+1,当n=2k-1时,2n+1=4k-1,故A=B.7【解析】选C.因为A⊆B,A⊆C,所以集合A中的元素只能由a或b构成.所以这样的集合共有22=4个.即:A=∅或A={a}或A={b}或A={a,b}.【补偿训练】若集合A={1,3,x},B={x2,1}且B⊆A,则满足条件的实数x的个数是( )A.1B.2C.3D.4【解析】选C.因为B⊆A,所以x2∈A,又x2≠1,所以x2=3或x2=x,所以x=±或x=0.故选C.8【解析】A={1,2},B={1,2},C={0,1,2,3,4,5,6,7},所以A=B,A C,{2}C,2∈C.答案:= ∈9【解题指南】根据集合间的关系,借助数轴求解.【解析】将集合A,B表示在数轴上,如图所示,所以m≤-2.答案:m≤-210【解析】因为B=={(x,y)|y=x,且x≠0},故B A.答案:B A【误区警示】解答本题易忽视集合B中x≠0而误认为A=B.11【解析】因为A={(x,y)|x+y=2,x,y∈N},所以A={(0,2),(1,1),(2,0)}.所以A的子集有:∅,{(0,2)},{(1,1)},{(2,0)},{(0,2),(1,1)},{(0,2),(2,0)},{(1,1),(2,0)},{(0,2),(1,1),(2,0)}.12【解析】集合A有且仅有两个子集说明A中仅有一个元素,那么对于方程(k+1)x2+x-k=0,若k+1=0,即k=-1,方程即为x+1=0,x=-1,此时A={-1},满足题意; 若k+1≠0,则需Δ=0,即12-4(k+1)(-k)=0,解得k=-,此时A={-1},满足题意.所以实数k的值为-1或-.13【解析】因为xy>0,所以x,y同号,又x+y<0,所以x<0,y<0,即集合M表示第三象限内的点.而集合P也表示第三象限内的点,故M=P.答案:M=P14【解题指南】正确解答本题的关键是弄清集合B的含义,即它是由集合A的所有子集组成的集合.【解析】由于x⊆A,即x是集合A的子集,故B={∅,{1},{2},{1,2}}.答案:{∅,{1},{2},{1,2}}15【解析】因为A={x|x<-1或x>2},B={x|4x+a<0}=,因为A⊇B,所以-≤-1,即a≥4,所以a的取值范围是a≥4.16【解析】由题设条件知C⊆{0,2,4,6,7},C⊆{3,4,5,7,10},所以C⊆{4,7},又因为C非空,所以C={4},{7}或{4,7}.。

集合间的基本关系练习题含答案

集合间的基本关系练习题含答案

集合间的基本关系练习题(1)1. 如图,已知全集U=Z,集合A={−2, −1, 0, 1, 2},B={1, 2, 3, 4},则图中阴影部分所表示的集合是()A.{3, 4}B.{−2, −1, 0}C.{1, 2}D.{2, 3, 4}2. 已知集合A={−1, 0, 1},则含有元素0的A的子集的个数为()A.2B.4C.6D.83. 设集合A={−1, 1, 2},集合B={x|x∈A 且2−x∉A},则B=()A.{−1}B.{2}C.{−1, 2}D.{1, 2}4. 已知A={−2, 2011, x2−1},B={0, 2011, x2+3x},且A=B,则x的值为()A.1或−1B.0C.−2D.−15. 定义:设A,B是非空的数集,a∈A,b∈B,若a是b的函数且b也是a的函数,则称a与b是“和谐关系”.如等式b=a2,a∈[0, +∞)中a与b是“和谐关系”,则下列等中a与b是“和谐关系”的是()A.b=sin aa ,a∈(0,π2) B.b=a3+52a2+2a+1,a∈(−2,−23)C.(a−2)2+b2=1,a∈[1, 2]D.|a|+|b|=1,a∈[−1, 1]6. 已知集合:①{0};②{⌀};③{x|3m<x<m};④{x|a+2<x<a};⑤{x|x2+ 2x+5=0, x∈R}.其中,一定表示空集的是________(填序号).7. 当a满足________时,集合A={x|3x−a<0, x∈N+}表示集合{1}.8. 已知集合M={1, 2, 3, ..., n}(n>1, n∈N∗),则M的所有非空子集的元素和为________(只需写出数学表达式)=a+2},B={(x,y)|(a2−4)x+(a−2)y=7},若A∩9. 已知集合A={(x,y)|y−2x−1B=⌀,则实数a=________.10. 集合A={1, 2}共有________子集.11. 已知集合A={1,2,3,4}.(1)若M⊆A,且M中至少有一个偶数,则这样的集合M有多少个?(2)若B={x|ax−3=0},且B⊆A,求实数a的取值集合.12. 已知集合A={x|2m−10<x<m−1},B={x|2<x<6}.(1)若m=4,求A∩B;(2)若A⊆B,求m的取值范围.参考答案与试题解析集合间的基本关系练习题(1)一、选择题(本题共计 5 小题,每题 5 分,共计25分)1.【答案】A【考点】Venn图表达集合的关系及运算【解析】由阴影部分可知对应的集合为B∩∁U A,即可得到结论.【解答】解:阴影部分可知对应的集合为B∩(∁U A),∵全集U=Z,集合A={−2, −1, 0, 1, 2},B={1, 2, 3, 4},∴B∩(∁U A)={3, 4},故选A.2.【答案】B【考点】元素与集合关系的判断【解析】由集合子集的定义找出集合A的所有子集可得答案,【解答】已知集合A={−1, 0, 3},则由集合的子集定义可得A集合的所有子集为:⌀,{−1},{1},8},1},1},4,1},则含有元素0的A的子集为{6},{−1,{0,{−2,0,个数为4个,3.【答案】C【考点】集合的包含关系判断及应用【解析】本题的关键是认清集合B的研究对象,利用列举法写出集合B的元素即可.【解答】解:∵集合A={−1, 1, 2},集合B={x|x∈A 且2−x∉A},−1∈A,且2−(−1)=3∉A,故1∈B;1∈A,但2−1=1∈A,不满足题意;2∈A,且2−2=0∉A,故2∈B;故B={−1, 2}.故选C.4.【答案】D【考点】集合的相等【解析】直接应用集合相等则集合中的元素完全相同来解决问题.【解答】解:∵A=B,即A和B中的元素完全相同,∴有{x2−1=0x2+3x=−2,解得:x=−1.故选D.5.【答案】A【考点】元素与集合关系的判断【解析】只要判断所给出的函数单调即可.【解答】解:A.∵a∈(0,π2),则a>sin a,∴b′=a cos a−sin aa2=cos a(a−sin a)a2>0,因此函数b在a∈(0,π2)上单调递增,正确;B.∵a∈(−2,−23),b′=3a2+5a+2=(3a+2)(a+1),∴a∈(−2, −1)时单调递增;a∈(−1, −23)时单调递减,因此不符合题意;C.∵(a−2)2+b2=1,a∈[1, 2],∴b=±√1−(a−2)2,b不是a的函数,舍去;D.∵|a|+|b|=1,a∈[−1, 1],∴b=±(1−|a|),b不是a的函数,舍去.故选:A.二、填空题(本题共计 5 小题,每题 5 分,共计25分)6.【答案】④⑤【考点】空集的定义、性质及运算【解析】利用单元素集、空集的定义直接求解.【解答】①{0}是单元素集;②{⌀}是单元素集;③当m<0时,{x|8m<x<m}不是空集;④{x|a+2<x<a}是空集;⑤{x|x2+7x+5=0, x∈R}是空集.∴一定表示空集的是④⑤.7.【答案】【考点】集合的含义与表示【解析】先解不等式3x−a<0,得,根据已知条件需限制a为:1<≤2,解不等式即得a满足的条件.【解答】解3x−a<0得.根据已知条件知:x=1,∴1<.解得3<a≤6.8.【答案】(n2+n)⋅2n−2【考点】子集与真子集【解析】由题意可知,集合中的元素出现的次数都是相等的,从而确定每个元素出现的次数,从而利用等差数列求和公式求和.【解答】若M={1, 2, 3, ...n},则集合M的所有非空子集中,集合M中的任何一个元素出现的次数都是相等的;考查1出现的次数,可看成集合{2, 3, 4, ...n}的子集个数,故共有2n−1个1,故M的所有非空子集的元素和为2n−1(1+2+3+4+...+n)=(n2+n)⋅2n−29.【答案】【考点】集合关系中的参数取值问题【解析】此题暂无解析【解答】此题暂无解答10.【答案】4【考点】子集与真子集【解析】对于有限集合,我们有以下结论:若一个集合中有n个元素,则它有2n个子集.【解答】解:集合A有2个元素,故有22=4个子集.故答案为:4.三、 解答题 (本题共计 2 小题 ,每题 5 分 ,共计10分 )11.【答案】解:(1)由M ⊆A ,且M 中至少有一个偶数,得满足条件的集合M 为:{2},{1,2},{2,3},{1,2,3},{4},{1,4},{3,4},{1,3,4},{2,4},{1,2,4},{2,3,4},{1,2,3,4},共12个.(2)因为B ⊆A ,所以集合B 有两种可能:B =⌀,B ≠⌀.当B =⌀时,显然a =0,当B ≠⌀时,则a ≠0,得x =3a ,则有3a =1或3a =2或3a =3或3a =4, 解得a =3或a =32或a =1或a =34.综上,实数a 的取值集合是{0,34,1,32,3}.【考点】集合的包含关系判断及应用【解析】此题暂无解析【解答】解:(1)由M ⊆A ,且M 中至少有一个偶数,得满足条件的集合M 为:{2},{1,2},{2,3},{1,2,3},{4},{1,4},{3,4},{1,3,4},{2,4},{1,2,4},{2,3,4},{1,2,3,4},共12个.12.【答案】解:(1)当m =4时,A ={x|2×4−10<x <4−1}={x|−2<x <3},B ={x|2<x <6},则A ∩B ={x|2<x <3}.(2)∵ A ⊆B ,当A ≠⌀时,{2m −10<m −12m −10≥2m −1≤6;解得,6≤m ≤7;当A =⌀时,由2m −10≥m −1得,m ≥9;故m 的取值范围为{m|m ≥9或6≤m ≤7}.【考点】交集及其运算集合的包含关系判断及应用【解析】(1)当m =3时,化简A ={x 2−3x −10≤0}=[−2, 5],B =(2, 7);从而求交集.(2)讨论当B ≠⌀时,{m −1<2m +1m −1≥−22m +1≤5;当B =⌀时,m −1≥2m +1,从而解得.【解答】解:(1)当m =4时,A ={x|2×4−10<x <4−1}={x|−2<x <3},B ={x|2<x <6},则A ∩B ={x|2<x <3}.(2)∵ A ⊆B ,当A ≠⌀时,{2m −10<m −12m −10≥2m −1≤6;解得,6≤m ≤7;当A =⌀时,由2m −10≥m −1得,m ≥9;故m 的取值范围为{m|m ≥9或6≤m ≤7}.。

高中数学必修一1.2 集合间的基本关系-单选专项练习(1)(人教A版,含解析)

高中数学必修一1.2 集合间的基本关系-单选专项练习(1)(人教A版,含解析)

1.2 集合间的基本关系一、单选题1.集合M= x ∈N*| x (x -3)< 0}的子集个数为 A .1 B .2 C .3 D .4答案:D 详解:{}{*|(3)0}{*|03}1,2M x N x x x N x =∈-<=∈<<=所以集合的子集个数为224=个,故选D .2.若集合{|11}M x x =∈-≤≤Z ,2{|,}P y y x x M ==∈,则集合M 与P 的关系是( ) A .M P = B .M P C .P MD .M P ⋂=∅答案:C解析:根据集合M ,求出集合P ,进而可得集合M 与P 的关系. 详解:解:由题意可得{1,0,1}M ,{0,1}P =,所以P M .故选:C . 点睛:本题考查了集合包含关系的判断及应用,属基础题.3.已知集合{}12A x x =<≤,{}B x x a =<.若A B ⊆,则a 的取值范围是( ) A .1a a ≥ B .1a a ≤C .{}2a a ≥D .{}2a a >答案:D解析:利用数轴法,根据集合间的关系,即可得答案; 详解: 根据题意作图:易知2a >. 故选:D.点睛:本题考查根据集合间的关系求参数的取值,求解时注意等号成立的条件. 4.已知集合{}0,1A =,{}1,0,2B a =-+,若A B ⊆,则a 的值为( ) A .2- B .1- C .0 D .1答案:B解析:根据A B ⊆可得出关于a 的等式,解出即可. 详解:集合{}0,1A =,{}1,0,2B a =-+,A B ⊆,21a ∴+=,解得1a =-. 故选:B. 点睛:本题考查利用集合的包含关系求参数,考查计算能力,属于基础题. 5.集合(1,2)(3,4)}的子集个数为( ) A .3 B .4C .15D .16答案:B解析:直接枚举求解即可. 详解:易得()(){}1,2,3,4的子集有∅,(){}1,2,(){}3,4,()(){}1,2,3,4. 故选:B 点睛:本题主要考查了集合的子集个数,属于基础题. 6.集合{1,0,1}-的非空真子集共有( ) A .5个 B .6个C .7个D .8个答案:B解析:将集合的所有非空真子集列举出来,即可得解. 详解:集合{1,0,1}-,则其非空真子集为{}1-,{0},{1},{1,0}-,{0,1},{1,1}-, 所以非空真子集共有6个, 故选:B. 点睛:本题考查了集合的真子集概念,真子集个数计算,属于基础题.7.已知集合{}0,1,2A =,则A 的子集共有( ) A .2个 B .4个 C .6个 D .8个答案:D解析:根据集合中元素的个数,以及集合子集的个数2n ,简单计算可得结果. 详解:集合A 的子集共有328=个. 故选:D. 点睛:本题考查集合子集个数的计算,识记常用结论,假设集合元素个数为n ,则该集合子集个数为2n ,真子集个数为21n -,非空子集个数为21n -,非空真子集个数为22n -,属基础题. 8.含有三个实数的集合表示为,,1b a a ⎧⎫⎨⎬⎩⎭,也可表示为{}2,,0a a b +,则20092009a b +的值为 A .0 B .-1 C .1 D .答案:B解析:根据集合的相等,分别找到元素的对应关系,排除不可能的情况,再进行分类讨论,得到答案. 详解:含有三个实数的集合表示为,,1b a a ⎧⎫⎨⎬⎩⎭,也可表示为{}2,,0a a b + 所以可得0a =或者0ba=当0a =时,因有b a,所以不成立. 故只能0b a=,即0b =此时集合分别为{},0,1a 和{}2,,0a a所以有21a =,即1a =±而由集合的互异性可知,1a =时,不成立 故1a =- 故选B 项. 点睛:本题考查集合的相等,和集合的性质,属于简单题.9.集合P 具有性质“若x P ∈,则1P x∈”,就称集合P 是伙伴关系的集合,集合111,0,,,1,2,3,432A ⎧⎫=-⎨⎬⎩⎭的所有非空子集中具有伙伴关系的集合的个数为A .3B .7C .15D .31答案:C解析:首先分析集合A 中的哪些元素能是伙伴关系的集合里的元素,然后利用集合的子集个数公式求解. 详解:根据条件可知满足伙伴关系的集合里面有111,1,,3,,232-中的某些元素,13和3,12和2都以整体出现,13和3看成一个元素,12和2也看成一个元素,∴共有4个元素,集合是非空集合,∴有42115-=个.故选C 点睛:本题主要考查集合关系的判断,利用条件确定伙伴关系的元素是解决本题的关键,意在考查分析问题和解决问题的能力.10.设A=x|2≤x≤4},B=x|2a≤x≤a+3},若B 真包含于A ,则实数a 的取值范围是( ) A .[]1,3 B .(){}3,1∞+⋃ C .{}1 D .()3,∞+答案:C解析:由B 真包含于A ,讨论B =∅与B≠∅时,求出a 的取值范围. 详解:∵A=x|2≤x≤4},B =x|2a≤x≤a+3},且B 真包含于A ; 当B =∅时,2a >a+3,解得a >3;当B≠∅时,232234a a a a ≤+⎧⎪≥⎨⎪+≤⎩解得a =1;此时A=B.∴a 的取值范围是a|a >3} 故选C . 点睛:本题考查了集合之间的基本运算,解题时容易忽略B =∅的情况,是易错题.11.集合{}1,2,3的真子集有( ) A .4个 B .6个 C .7个 D .8个答案:C解析:根据集合真子集的个数公式求解即可. 详解:集合{}1,2,3的元素个数为3个, 故真子集的个数为3217-=, 故选:C 点睛:本题主要考查了集合子集,真子集的概念,考查了集合真子集个数公式,属于容易题.12.集合{}2|4,,A y y x x N y N ==-+∈∈的真子集的个数为A .9B .8C .7D .6答案:C 详解:{}0,3,4,A =故A 有7个真子集13.已知集合{}1,1A =-,{}|10B x ax =+=,若B A ⊆,则实数a 的所有可能取值的集合为 A .{}1,0,1- B .{}1,1- C .{}1 D .{}1-答案:A 详解:试题分析:B A ⊆,∴B=φ或B =-1}或B =1},∴a=0,-1,1. 考点:子集关系点评:本题考查了子集关系,勿忘空集.14.下列四个集合中,空集是A .{}2|20x R x ∈+=B .0C .{}|84x x x ><或D .{}∅答案:A 详解:试题分析:A.因为方程2+2=0x 无解,所以{}2|20x R x ∈+= =φ;B.0中含有一个元素0,所以不是空集;C. {}|84x x x ><或含有很多元素,所以不是空集;D. {}∅含有一个元素φ,所以不是空集. 考点:集合的表示方法;空集的定义.点评:空集就是不含任何元素的集合.属于基础题型.15.下列四个关系中,正确的是( ) A .{},a a b ∈ B .{}{},a a b ∈ C .{}a a ∉D .(){},a a b ∈答案:A解析:因为a 是集合{,}a b 中的元素,判断A 选项正确;因为{}a 与{},a b 是两个集合,判断B 选项错误;因为a 是集合{}a 中的元素,判断C 选项错误;因为数a 不在集合{(,)}a b 中,判断D 选项错误. 详解:解:A 选项:因为a 是集合{,}a b 中的元素,所以{},a a b ∈,故A 选项正确; B 选项:{}a 与{},a b 是两个集合,集合之间没有属于关系,故B 选项错误; C 选项:因为a 是集合{}a 中的元素,所以{}a a ∈,故C 选项错误;D 选项:因为集合{(,)}a b 中的元素是点(,)a b ,数a 不在集合{(,)}a b 中,故D 选项错误; 故选:A. 点睛:本题考查元素与集合的属于关系、集合之间的包含关系,是基础题 16.集合{1,2,3}的子集共有 A .7个 B .8个 C .6个 D .5个答案:B 详解:集合{1,2,3}中共三个元素,子集个数为:328=. 故选B.17.集合A =(x ,y)|y =x}和B =()21,|45x y x y x y ⎧⎫-=⎧⎨⎨⎬+=⎩⎩⎭,则下列结论中正确的是 ( )A .1∈AB .B ⊆AC .(1,1)⊆BD .∅∈A答案:B解析:B =()21,|45x y x y x y ⎧⎫-=⎧⎨⎨⎬+=⎩⎩⎭=(1,1)},而A =(x ,y)|y =x},B 中的元素在A 中,所以B ⊆A故选B .18.已知集合{}22,4,A a =,{}2,6B a =+,若B A ⊆,则a =( )A .-3B .-2C .3D .-2或3答案:C解析:因为B A ⊆得到64a +=或者26a a +=,但是算出a 的值后,要将a 值代回去检验是否满足集合的互异性的条件. 详解: 因为B A ⊆,若64a +=,则2a =-,24a =,集合A 中的元素不满足互异性,舍去; 若26a a +=,则3a =或-2,因为2a ≠-,所以3a =. 故选C. 点睛:根据集合之间的包含关系求解参数的值时,一定要记得将参数的值代回集合中检验是否会有重合的元素,如果有重合的情况就要舍掉这个参数的取值,切记集合的三要素:确定性,互异性,无序性.19.设集合{}125S x x x =-++>,{}4T x x a =-≤,S T R ⋃=,则a 的取值范围为( ) A .2a ≤-或1a ≥ B .21a -≤≤ C .21a -<< D .2a <-或1a >答案:B解析:{|32},[4,=4]S x x x T a a =-=-或 ,所以432142a a a -≤-⎧⇒-≤≤⎨+≥⎩,选A. 点睛:形如|x -a|+|x -b|≥c(或≤c)型的不等式主要有三种解法:(1)分段讨论法,利用绝对值号内式子对应方程的根,将数轴分为(-∞,a],(a ,b],(b ,+∞)(此处设a <b)三个部分,在每个部分上去掉绝对值号分别列出对应的不等式求解,然后取各个不等式解集的并集;(2)几何法,利用|x -a|+|x -b|>c(c >0)的几何意义:数轴上到点x 1=a 和x 2=b 的距离之和大于c 的全体;(3)图象法:作出函数y 1=|x -a|+|x -b|和y 2=c 的图象,结合图象求解.20.设集合{}|12A x x =<<,{}|B x x a =<,若A B ⊆,则a 的取值范围 A .2a ≤ B .1a ≤C .1a <D .2a ≥答案:D解析:结合数轴分析即可. 详解:画出数轴可得,若A B ⊆则2a ≥.故选:D点睛:本题主要考查了根据集合的关系求参数的问题,属于基础题型.。

集合的基本关系高一数学总结练习含答案

集合的基本关系高一数学总结练习含答案

§2集合的基本关系1.子集(1)含义:一般地,对于两个集合A与B,如果集合A中的任何一个元素①集合B中的元素,即若a∈A,则a∈B,我们就说集合A②集合B,或集合B③集合A,记作A⊆B(或B⊇A),这时我们就说集合A是集合B的④.(2)性质:空集是任何集合的子集,即⌀⑤A;任何一个集合都是它本身的子集,即A⑥A;对于集合A、B、C,如果A⊆B,且B⊆C,那么A⑦ C.2.集合的相等对于两个集合A与B,如果集合A中的任何一个元素⑧集合B中的元素,同时集合B中的任何一个元素⑨集合A中的元素,这时我们就说集合A与集合B相等,记作A=B.3.真子集(1)含义:对于两个集合A与B,如果A⊆B,并且A⑩B,我们就说集合A是集合B的,记作A B(或B A).(2)性质:对于集合A、B、C,如果A⫋B,且B⫋C,那么A C.4.不包含当集合A不包含于集合B,或集合B不包含集合A时,记作“A B”或“B A”,读作“A不包含于B”或“B不包含A”.5.Venn图为了直观地表示集合间的关系,我们常用平面上的封闭曲线的内部代表集合,这种图称为Venn图,集合间的基本关系如图所示:一、集合间关系的判断1.(2012大纲全国,文1,5分,★☆☆)已知集合A={x|x是平行四边形},B={x|x是矩形},C={x|x是正方形},D={x|x是菱形},则( )A.A⊆BB.C⊆BC.D⊆CD.A⊆D思路点拨根据平面几何中各类四边形的定义和集合的子集含义进行判断.2.(2014广东珠海模拟,★☆☆)下列关系中正确的个数为( )①0∈{0},②⌀⫋{0},③{0,1}⊆{(0,1)},④{(a,b)}={(b,a)}A.1B.2C.3D.4思路点拨根据元素与集合的关系、集合与集合的关系的含义逐个进行分析判断.3.(高考预测,★★☆)设S为实数集R的非空子集.若对任意x,y∈S,都有x+y,x-y,xy∈S,则称S为封闭集.下列命题:①集合S={a+b√3|a,b为整数}为封闭集;②若S为封闭集,则一定有0∈S;③封闭集一定是无限集;④若S为封闭集,则满足S⊆T⊆R的任意集合T也是封闭集.其中的真命题是.(写出所有真命题的序号)思路点拨正确的命题要证明,而错误的命题只需举一反例即可.二、集合相等的应用4.(2014福建四地六校联考,★☆☆)集合M={a,b},N={a+1,3},其中a,b为实数,若M=N,则( )A.a=2,b=1B.a=1,b=2C.a=3,b=4D.a=4,b=3思路点拨根据集合相等时元素完全相同,列出方程组求解.5.(高考预测,★☆☆)已知A={1,1+d,1+2d},B={1,q,q2},若A=B,求集合A.思路点拨利用集合相等的含义以及集合中元素的互异性求解.6.(高考预测,★★☆)已知集合A={a-b,a+b,ab},集合B={a2+b2,a2-b2,0}.若A=B,试求实数a,b的值,并写出集合A,B.思路点拨若两集合相等,则两集合中的元素相同,由此可列方程组求出a,b的值,求出a,b的值后要检验是否满足集合中元素的特征.三、利用集合间的关系求参数的取值范围7.(2014湖南岳阳模拟,★★☆)设A={x|x2-x-6=0},B={x|x2+(1-2m)x+m2-7=0}.若A⊆B,则m= . 思路点拨集合A是方程x2-x-6=0的解集,解方程可得集合A.集合A⊆B,说明集合A中的元素都是集合B 中的元素,即集合A中的元素都是方程x2+(1-2m)x+m2-7=0的实数根.8.(2014河北唐山模拟,★★☆)已知集合A={x|0<x+a≤5},集合B={x|-1<x≤2},若B⊆A,则实数a的取值集合是.思路点拨把集合A用实数a表示出来,根据B⊆A得出关于a的不等式组,解不等式组即可.一、选择题1.设P={x∈R|x≤8},a=√61,则下列关系中正确的是( )A.a⊆PB.a∉PC.{a}⊆PD.{a}∈P2.下列表述正确的有( )①空集没有子集;②任何集合都至少有两个子集;③空集是任何集合的真子集;④若⌀⫋A,则A≠⌀.A.0个B.1个C.2个D.3个3.已知集合M={1},集合B={1,2,3},则有( )A.M=BB.M⫋BC.B⫋MD.B⊆M4.以下说法中正确的个数是( )①M={(1,2)}与N={(2,1)}表示同一个集合;②M={1,2}与N={2,1}表示同一个集合;③空集是唯一的;④若M={y|y=x2+1,x∈R}与N={x|x=t2+1,t∈R},则集合M=N.A.0B.1C.2D.35.若a∈R,则集合M={x∈R|x2-3x-a2+2=0}的子集的个数为( )A.4B.16C.2D.8二、解答题6.若集合M={x|-3≤x≤4},集合P={x|2m-1≤x≤m+1}.(1)证明:M与P不可能相等;(2)若两个集合中有一个集合是另一个集合的真子集,求实数m的取值范围.一、选择题1.(2015福建泉州一中期中,★☆☆)已知集合A={-1,0,1},B={1,m}.若B⊆A,则实数m的值是( )A.0B.-1C.0或-1或1D.-1或02.(2015江西贵溪实验中学期中,★☆☆)已知集合A={x|x2-1=0},则下列结论正确的有( )①1∈A;②{-1}∈A;③⌀⊆A;④{1,-1}⊆A.A.1个B.2个C.3个D.4个3.(2015河北成安一中期中,★☆☆)已知集合A满足{1,2}⊆A⊆{1,2,3,4},则集合A的个数为( )A.8B.2C.3D.44.(2014浙江湖州九校联考,★☆☆)如果A={x|x>-1},那么( )A.0⊆AB.{0}∈AC.⌀∈AD.{0}⊆A5.(2014贵州湄潭中学期末,★☆☆)设集合A={x|x=2k+1,k∈Z},a=5,则有( )A.a∈AB.-a∉AC.{a}∈AD.{a}⊇A6.(2013江西南昌模拟,★☆☆)若⌀是{x|x2≤a,a∈R}的真子集,则实数a的取值集合是( )A.{a|a>0}B.{a|a≥0}C.{a|a≤0}D.{a|a<0}二、填空题7.(2015广东增城新塘中学期中,★☆☆)已知集合A={x|x2=1},B={x|ax=1}.若B⊆A,则实数a的值为.8.(2015广东增城郑中钧中学期中,★☆☆)已知非空集合A={x|x2=a},则实数a的取值范围是.知识清单①都是 ②包含于 ③包含 ④子集 ⑤⊆ ⑥⊆ ⑦⊆ ⑧都是 ⑨都是 ⑩≠ 真子集 ⫋⫌ ⫋ ⊈ ⊉链接高考1.B 由于四边相等的矩形是正方形,故C ⊆B.2.B ①②显然正确.③中集合{0,1}是由数0和1组成的集合,而集合{(0,1)}是由点(0,1)组成的集合,故③错;④当a≠b 时,(a,b)与(b,a)代表不同的点,故④错.3.答案 ①②解析 由封闭集定义知,若S={a+b √3|a,b 为整数},则S 一定是封闭集,理由如下:任取a 1+b 1√3∈S,a 2+b 2√3∈S,其中a 1,b 1,a 2,b 2为整数,则(a 1+b 1√3)+(a 2+b 2√3)=(a 1+a 2)+(b 1+b 2)√3∈S,(a 1+b 1√3)-(a 2+b 2√3)=(a 1-a 2)+(b 1-b 2)√3∈S,(a 1+b 1√3)(a 2+b2√3)=(a 1a 2+3b 1b 2)+(a 1b 2+a 2b 1)√3∈S.易证明②是真命题.③是假命题,如S={0}.④是假命题,如S={0},T={0,1}.故填①②. 4.C ∵M=N,∴{a +1=b ,a =3,解得{a =3,b =4. 5.解析 因为A=B,所以{1+d =q ,1+2d =q 2或{1+d =q 2,1+2d =q .由{1+d =q ,1+2d =q 2,得(1+d)2-(1+2d)=q 2-q 2=0,解得d=0,当d=0时,1+d=1+2d=1,这与集合中元素的互异性相矛盾,应舍去.由{1+d =q 2,1+2d =q ,得(1+2d)2-(1+d)=q 2-q 2=0,解得d=0(舍去)或d=-34, 当d=-34时,q=1+2d=-12.此时A={1,14,-12},B={1,-12,14},满足题意. 所以集合A={1,14,-12}. 6.解析 ∵A=B,0∈B,∴0∈A.若a+b=0或a-b=0,则a 2-b 2=0,这时集合B={a 2+b 2,0,0},不满足集合中元素的互异性,故a+b≠0,a -b≠0.∴{ab =0,a -b =a 2+b 2,a +b =a 2-b 2①,或{ab =0,a -b =a 2-b 2,②a +b =a 2+b 2. 由①得{a =0,b =0或{a =0,b =-1或{a =1,b =0.由②得{a =0,b =0或{a =0,b =1或{a =1,b =0.经检验知{a =0,b =0和{a =1,b =0不满足集合中元素的互异性,故舍去.∴{a =0,b =1或{a =0,b =-1.∴A=B={-1,0,1}. 7.答案 1解析 A={x|x 2-x-6=0}={-2,3}, 因为A ⊆B,而B 至多含有两个元素,所以A=B,则-2,3是方程x 2+(1-2m)x+m 2-7=0的两个根.因此{(-2)2+(1-2m )×(-2)+m 2-7=0,32+(1-2m )×3+m 2-7=0, 解得m=1.8.答案 {a|1≤a≤3}解析 集合A={x|-a<x≤5-a},若B ⊆A,则实数a 满足{-a ≤-1,5-a ≥2,解得1≤a≤3,故实数a 的取值集合是{a|1≤a≤3}.基础过关一、选择题1.C √61<√64=8,故{a}⊆P.2.B ①错误,⌀⊆⌀;②错误,⌀只有一个子集⌀;③错误,空集不是空集的真子集;④正确.故选B.3.B ∵1∈B,∴M ⊆B,又∵M≠B,∴M ⫋B.4.D ①集合M 表示由点(1,2)组成的单元素集,集合N 表示由点(2,1)组成的单元素集,故①错误; ②由集合中元素的无序性可知M,N 表示同一个集合,故②正确;③假设空集不是唯一的,则不妨设⌀1、⌀2为不相等的两个空集,易知⌀1⊆⌀2且⌀2⊆⌀1,故可知⌀1=⌀2,矛盾,则空集是唯一的,故③正确;④M,N 都是由大于或等于1的实数组成的集合,故④正确.5.A 因为Δ=9-4(2-a 2)=1+4a 2>0,所以M 恒含有2个元素,所以其子集有4个. 二、解答题6.解析 (1)证明:若M=P,则-3=2m-1且4=m+1,解得m=-1且m=3, 显然不可能,故M 与P 不可能相等.(2)若P ⫋M,则{-3≤2m -1,m +1≤4,m +1≥2m -1或m+1<2m-1,解得-1≤m≤2或m>2,即m≥-1;若M ⫋P,则{-3≥2m -1,4≤m +1,m +1≥2m -1,此方程组无解.综上,当有一个集合是另一个集合的真子集时,只能是P ⫋M,此时m 的取值范围是m≥-1.三年模拟一、选择题1.D 由已知及集合中元素的互异性知,m=-1或0.2.C 由已知得,A={-1,1},根据元素与集合的关系及集合间的基本关系可知,①③④正确,故共3个正确的结论.3.D 集合A 可以为{1,2},{1,2,3},{1,2,4},{1,2,3,4},共4个.4.D 显然D 正确.5.A 集合A 表示全体奇数,而5是奇数,故选A.6.B 由题意知,集合{x|x 2≤a,a∈R}不是空集,则a≥0. 二、填空题7.答案 0或1或-1解析 由已知得,A={-1,1},又∵B ⊆A,∴B=⌀或{1}或{-1},∴a 的值为0或1或-1. 8.答案 a≥0解析 ∵集合A={x|x 2=a}为非空集合,∴方程x 2=a 有实根,∴a≥0.。

高一数学集合间的基本关系练习题及答案

高一数学集合间的基本关系练习题及答案

精心整理1.集合{a,b}的子集有()A.1个B.2个C.3个D.4个【解析】集合{a,b}的子集有?,{a},{b},{a,b}共4个,故选D.【答案】 D2.下列各式中,正确的是()【解析】由题意知A={0,1,2},其真子集的个数为23-1=7个,故选C.【答案】 C2.在下列各式中错误的个数是()①1∈{0,1,2};②{1}∈{0,1,2};③{0,1,2}?{0,1,2};④{0,1,2}={2,0,1}A.1B.2【解析】①正确;②错.因为集合与集合之间是包含关系而非属于关系;③正确;④正确.两个集合的元素完全一样.故选A.【答案】 A3.已知集合A={x|-1<x<2},B={x|0<x<1},则()A.A>BB...A?B【答案】 C.下列说法:其中正确的有A.0.已知2-】∵∴方程x2-x+a=0有实根,∴Δ=(-1)2-4a≥0,a≤.【答案】a≤6.已知集合A={-1,3,2m-1},集合B={3,m2},若B?A,则实数m=________.【解析】∵B?A,∴m2=2m-1,即(m-1)2=0∴m=1,当m=1时,A={-1,3,1},B={3,1}满足B?A.三、解答题(每小题10分,共20分)7.设集合A={x,y},B={0,x2},若A=B,求实数x,y.【解析】从集合相等的概念入手,寻找元素的关系,必须注意集合中元素的互异性.因为A=B,则x=0或y=0.(1)当x=0时,x2=0,则B={0,0},不满足集合中元素的互异性,故舍去.23},此时N{2,a},={x|x=,p∈Z}.∵3n-2=3(n-1)+1,n∈Z.∴3n-2,3p+1都是3的整数倍加1,从而N=P.而6m+1=3×2m+1是3的偶数倍加1,∴=P.。

1.2 集合间的基本关系(答案版)

1.2 集合间的基本关系(答案版)

集合的基本关系:包含关系(子集),或B A ⊆(A 包含于A B ⊇B ,B 含于A ,A>B )(2)子集个数结论:①含有n 个元素的集合有2n 个子集;①含有n 个元素的集合有2n -1个真子集;①含有n 个元素的集合有2n -2个非空真子集.例1:已知集合A ={0,m ,m 2-3m +2},且2①A ,则实数m 为( B )A .2B .3C .0或3D .0,2,3均可答案:B 由2①A 可知:若m =2,则m 2-3m +2=0,这与m 2-3m +2≠0相矛盾;若m 2-3m +2=2,则m =0或m =3,当m =0时,与m ≠0相矛盾,当m =3时,此时集合A ={0,3,2},符合题意.]例2:已知集合A ={x |-2≤x ≤5},若A ①B ,且B ={x |m -6≤x ≤2m -1},求实数m 的取值范围.【答案】若A ①B ,则由题意可知⎩⎪⎨⎪⎧m -6≤-22m -1≥5,解得3≤m ≤4.即m 的取值范围是{m |3≤m ≤4}. 变式1.把本例条件“A ①B ”改为“A =B ”,求实数m 的取值范围.【答案】由A =B 可知⎩⎪⎨⎪⎧m -6=-22m -1=5,无解,即不存在m 使得A =B . 变式2.把本例条件“A ①B ,B ={x |m -6≤x ≤2m -1}”改为“B ①A ,B ={m +1≤x ≤2m -1}”,求实数m 的取值范围.【答案】 ①若B =①,则m +1>2m -1,即m <2,此时满足B ①A .①若B ≠①,则⎩⎪⎨⎪⎧ m +1≤2m -1,-2≤m +1,2m -1≤5,解得2≤m ≤3.1.2 集合间的基本关系知识讲解 典型例题由①①得,m 的取值范围是{m |m ≤3}.一、选择题 1.已知集合2{2,25,12}A a a a =-+,且3A -∈,则a 等于( C )A .-1B .23-C .32-D .32-或-1 2.设集合A ={1,2,3},B ={4,5},M ={x |x =a +b ,a ①A ,b ①B },则M 中元素的个数为( B )A .3B .4C .5D .6解析:选B 因为集合A ={1,2,3},B ={4,5},M ={x |x =a +b ,a ①A ,b ①B },所以M 中的元素有:5,6,7,8,共4个.故选B.3.已知M ={(x ,y )|2x +3y =10,x ,y ①N },N ={(x ,y )|4x -3y =1,x ,y ①R },则( B )A .M 是有限集,N 是有限集B .M 是有限集,N 是无限集C .M 是无限集,N 是无限集D .M 是无限集,N 是有限集解析:选B 因为M ={(x ,y )|2x +3y =10,x ,y ①N }={(2,2),(5,0)},所以M 为有限集.N ={(x ,y )|4x -3y =1,x ,y ①R }中有无限多个点满足4x -3y =1,故N 为无限集.4.下列集合中,是空集的是( B )A .B .C .D . 【答案】B 【解析】对于A 选项,,不是空集,对于B 选项,没有实数根,故为空集,对于C 选项,显然不是空集,对于D 选项,集合为,故不是空集.5.函数f (x )=1+x +x 1-x 的定义域是( C ) A .[-1,+∞) B .(-∞,-1] C .[-1,1)①(1,+∞) D .R【答案】C [由⎩⎪⎨⎪⎧1+x ≥0,1-x ≠0,得x ≥-1且x ≠1,即定义域为[-1,1)①(1,+∞).] 6.设集合{1,1,2}A =-,集合{|B x x A =∈且2}x A -∉,则B =( C )A .{1}B .{2}C .{1,2}-D .{1,2}7.下列说法:①集合{x①N|x 3=x}用列举法表示为{-1,0,1};①实数集可以表示为{x|x 为所有实数}或{R}; {}0|2x x +={}210,x x x +=∈R {}1|x x <(){}22,,,x y y x x y =-∈R 2x =-210x +={(0,0)}同步练习①方程组31x y x y +=⎧⎨-=-⎩的解集为{x =1,y =2}.其中正确的有( D ) A .3个 B .2个 C .1个 D .0个8.已知集合P ={x |x 2=1},Q ={x |ax =1},若Q ①P ,则a 的值是( )A .1B .-1C .1或-1D .0,1或-1解析:选D 由题意,当Q 为空集时,a =0;当Q 不是空集时,由Q ①P ,a =1或a =-1.9.已知集合{}2|1A y y x ==+,集合{}2(,)|1B x y y x ==+,选项中元素与集合的关系都正确的是( C ) A .2A ∈,且2B ∈B .(1,2)A ∈,且(1,2)B ∈C .2A ∈,且(3,10)B ∈D .(3,10)A ∈,且2B ∈二、填空题 1.设集合M ={(x ,y )|x +y <0,xy >0}和P ={(x ,y )|x <0,y <0},那么M 与P 的关系为________.答案:M =P 解析:因为xy >0,所以x ,y 同号,又x +y <0,所以x <0,y <0,即集合M 表示第三象限内的点,而集合P 也表示第三象限内的点,故M =P .2.若集合A ={x |(a -1)x 2+3x -2=0}的子集有且仅有两个,则实数a =________.答案:1或-18解析:由集合A 的子集有且仅有两个知A 中只有一个元素,若a -1=0,则A =⎩⎨⎧⎭⎬⎫23,符合题意; 若a -1≠0,由题意得⎩⎪⎨⎪⎧a -1≠0,Δ=32-4×(-2)×(a -1)=0,得a =-18.①a 的值为1或-18. 3. 已知集合A ={-2,3,4m -4},B ={3,m 2},若B ①A ,则实数m =________.答案:2解析:依题意可得m 2=4m -4,即(m -2)2=0,①m =2.当m =2时,A ={-2,3,4},B ={3,4},①B ①A .4.已知A ={x |x <-2或x >3},B ={x |4x +m <0},当B ①A 时,则实数m 的取值范围为________.答案:m ≥8解析:集合A 在数轴上表示如图.要使B ①A ,则集合B 中的元素必须都是A 中的元素.即B 中元素必须都位于阴影部分内.那么由4x +m <0,即x <-m 4知,-m 4≤-2,即m ≥8,故实数m 的取值范围是m ≥8. 5.(2019·浙江四校高一联考)已知M ={x |x 2-2x -3=0},N ={x |x 2+ax +1=0,a ①R },且NM ,则实数a 的取值范围是________.答案:-2<a ≤2解析:M ={x |x 2-2x -3=0}={3,-1}.①当N =①时,N M 成立,①Δ=a 2-4<0,①-2<a <2.①当N ≠①时,①NM ,①3①N 或-1①N .当3①N 时,32+3a +1=0,即a =-103,此时方程为x 2-103x +1=0,解得N =⎩⎨⎧⎭⎬⎫3,13,不满足N M ; 当-1①N 时,(-1)2-a +1=0,即a =2,此时方程为x 2+2x +1=0,解得N ={-1},满足N M . 故实数a 的取值范围是-2<a ≤2.三、解答题1.设集合A ={x |-1≤x ≤6},B ={x |m -1≤x ≤2m +1},且B ①A .(1)求实数m 的取值范围;(2)当x ①N 时,求集合A 的子集的个数.解:(1)若B =①,则m -1>2m +1,得m <-2;若B ≠①,由题意得⎩⎪⎨⎪⎧ m -1≤2m +1,2m +1≤6,m -1≥-1,得0≤m ≤52. 综上得m 的取值范围是m <-2或0≤m ≤52. (2)当x ①N 时,A ={0,1,2,3,4,5,6},集合A 中共有7个元素,其子集个数为27=128个.2.已知a ①R ,x ①R ,A ={2,4,x 2-5x +9},B ={3,x 2+ax +a },C ={x 2+(a +1)x -3,1},求:(1)使A ={2,3,4}成立的x 的值;(2)使2①B ,B ①A 成立的a ,x 的值;(3)使B =C 成立的a ,x 的值.解:(1)由题意,知x 2-5x +9=3,解得x =2或x =3. (2)因为2①B ,B ①A ,所以⎩⎪⎨⎪⎧ 2=x 2+ax +a ,3=x 2-5x +9.所以⎩⎪⎨⎪⎧ x =2,a =-23或⎩⎪⎨⎪⎧x =3,a =-74. (3)因为B =C ,所以⎩⎪⎨⎪⎧ x 2+(a +1)x -3=3,x 2+ax +a =1.解得⎩⎪⎨⎪⎧ x =-1,a =-6或⎩⎪⎨⎪⎧x =3,a =-2.3.集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1}.(1)若B ①A ,求实数m 的取值范围;(2)当x ①Z 时,求A 的非空真子集的个数;(3)当x ①R 时,不存在元素x 使x ①A 且x ①B 同时成立,求实数m 的取值范围.解:(1)当m +1>2m -1,即m <2时,B =①满足题意;当m +1≤2m -1.即m ≥2时,要使B ①A 成立,则有m +1≥-2且2m -1≤5,可得-3≤m ≤3,即2≤m ≤3.综上可知,当m ≤3时,B ①A .(2)当x ①Z 时,A ={-2,-1,0,1,2,3,4,5},共8个元素,故A 的非空真子集的个数为28-2=254(个).(3)因为x ①R ,A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},且不存在元素x 使x ①A 且x ①B 同时成立, 所以A ,B 没有公共元素.当m +1>2m -1,即m <2时,B =①满足题意;当m +1≤2m -1,即m ≥2时,要使A ,B 没有公共元素,则有⎩⎪⎨⎪⎧ m ≥2,m +1>5或⎩⎪⎨⎪⎧m ≥2,2m -1<-2,解得m >4. 综上所述,当m <2或m >4时,不存在元素x 使x ①A 且x ①B 同时成立.。

(完整版)集合间的基本关系试题(含答案),推荐文档

(完整版)集合间的基本关系试题(含答案),推荐文档

一、选择题1.对于集合A ,B ,“A ⊆B ”不成立的含义是( )A .B 是A 的子集B .A 中的元素都不是B 的元素C .A 中至少有一个元素不属于BD .B 中至少有一个元素不属于A[答案] C[解析] “A ⊆B ”成立的含义是集合A 中的任何一个元素都是B 的元素.不成立的含义是A 中至少有一个元素不属于B ,故选C.2.集合M ={(x ,y )|x +y <0,xy >0},P ={(x ,y )|x <0,y <0}那么( )A .P MB .M PC .M =PD .M P [答案] C[解析] 由xy >0知x 与y 同号,又x +y <0∴x 与y 同为负数∴⎩⎨⎧ x +y <0xy >0等价于⎩⎪⎨⎪⎧x <0y <0∴M =P . 3.设集合A ={x |x 2=1},B ={x |x 是不大于3的自然数},A ⊆C ,B ⊆C ,则集合C 中元素最少有( )A .2个B .4个C .5个D .6个[答案] C[解析] A ={-1,1},B ={0,1,2,3},∵A ⊆C ,B ⊆C ,∴集合C 中必含有A 与B 的所有元素-1,0,1,2,3,故C 中至少有5个元素.4.若集合A ={1,3,x },B ={x 2,1}且B ⊆A ,则满足条件的实数x 的个数是()A.1 B.2C.3 D.4[答案] C[解析]∵B⊆A,∴x2∈A,又x2≠1∴x2=3或x2=x,∴x=±3或x=0.故选C.5.已知集合M={x|y2=2x,y∈R}和集合P={(x,y)|y2=2x,y∈R},则两个集合间的关系是()A.M P B.P MC.M=P D.M、P互不包含[答案] D[解析]由于两集合代表元素不同,因此M与P互不包含,故选D.6.集合B={a,b,c},C={a,b,d};集合A满足A⊆B,A⊆C.则满足条件的集合A的个数是()A.8 B.2C.4 D.1[答案] C[解析]∵A⊆B,A⊆C,∴集合A中的元素只能由a或b构成.∴这样的集合共有22=4个.即:A=∅,或A={a},或A={b}或A={a,b}.7.设集合M={x|x=k2+14,k∈Z},N={x|x=k4+12,k∈Z},则()A.M=N B.M NC.M N D.M与N的关系不确定[答案] B[解析]解法1:用列举法,令k=-2,-1,0,1,2…可得M={…-34,-14,14,34,54…},N={…0,14,12,34,1…},∴M N,故选B.解法2:集合M的元素为:x=k2+14=2k+14(k∈Z),集合N的元素为:x=k4+1 2=k+24(k∈Z),而2k+1为奇数,k+2为整数,∴M N,故选B.[点评]本题解法从分式的结构出发,运用整数的性质方便地获解.注意若k是任意整数,则k+m(m是一个整数)也是任意整数,而2k+1,2k-1均为任意奇数,2k为任意偶数.8.集合A={x|0≤x<3且x∈N}的真子集的个数是()A.16 B.8C.7 D.4[答案] C[解析]因为0≤x<3,x∈N,∴x=0,1,2,即A={0,1,2},所以A的真子集个数为23-1=7.9.(09·广东文)已知全集U=R,则正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的韦恩(Venn)图是()[答案] B[解析]由N={x|x2+x=0}={-1,0}得,N M,选B.10.如果集合A满足{0,2}A⊆{-1,0,1,2},则这样的集合A个数为() A.5 B.4C.3 D.2[答案] C[解析] 集合A 里必含有元素0和2,且至少含有-1和1中的一个元素,故A ={0,2,1},{0,2,-1}或{0,2,1,-1}.二、填空题11.设A ={正方形},B ={平行四边形},C ={四边形},D ={矩形},E ={多边形},则A 、B 、C 、D 、E 之间的关系是________.[答案] A D B C E[解析] 由各种图形的定义可得.12.集合M ={x |x =1+a 2,a ∈N *},P ={x |x =a 2-4a +5,a ∈N *},则集合M 与集合P 的关系为________.[答案] M P[解析] P ={x |x =a 2-4a +5,a ∈N *}={x |x =(a -2)2+1,a ∈N *}∵a ∈N * ∴a -2≥-1,且a -2∈Z ,即a -2∈{-1,0,1,2,…},而M ={x |x =a 2+1,a ∈N *},∴M P .13.用适当的符号填空.(∈,∉,⊆,⊇,,,=) a ________{b ,a };a ________{(a ,b )};{a ,b ,c }________{a ,b };{2,4}________{2,3,4};∅________{a }.[答案] ∈,∉,,, *14.已知集合A =⎩⎨⎧⎭⎬⎫x |x =a +16,a ∈Z , B ={x |x =b 2-13,b ∈Z },C ={x |x =c 2+16,c ∈Z }.则集合A ,B ,C 满足的关系是________(用⊆,,=,∈,∉,⃘中的符号连接A ,B ,C ).[答案] A B =C[解析] 由b 2-13=c 2+16得b =c +1,∴对任意c ∈Z 有b =c +1∈Z .对任意b ∈Z ,有c =b -1∈Z ,∴B =C ,又当c =2a 时,有c 2+16=a +16,a ∈Z .∴A C .也可以用列举法观察它们之间的关系.15.(09·北京文)设A 是整数集的一个非空子集,对于k ∈A ,如果k -1∉A ,那么k 是A 的一个“孤立元”.给定S ={1,2,3,4,5,6,7,8},由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有______个.[答案] 6[解析] 由题意,要使k 为非“孤立元”,则对k ∈A 有k -1∈A .∴k 最小取2.k -1∈A ,k ∈A ,又A 中共有三个元素,要使另一元素非“孤立元”,则其必为k +1.所以这三个元素为相邻的三个数.∴共有6个这样的集合.三、解答题16.已知A ={x ∈R |x <-1或x >5},B ={x ∈R |a ≤x <a +4},若AB ,求实数a 的取值范围.[解析] 如图∵A B ,∴a +4≤-1或者a >5.即a ≤-5或a >5.17.已知A ={x |x <-1或x >2},B ={x |4x +a <0},当B ⊆A 时,求实数a 的取值范围.[解析] ∵A ={x |x <-1或x >2},B ={x |4x +a <0}={x |x <-a 4},∵A ⊇B ,∴-a 4≤-1,即a ≥4,所以a 的取值范围是a ≥4.18.A ={2,4,x 2-5x +9},B ={3,x 2+ax +a },C ={x 2+(a +1)x -3,1},a 、x ∈R ,求:(1)使A ={2,3,4}的x 的值;(2)使2∈B ,B A 成立的a 、x 的值;(3)使B =C 成立的a 、x 的值.[解析] (1)∵A ={2,3,4} ∴x 2-5x +9=3解得x =2或3(2)若2∈B ,则x 2+ax +a =2又B A ,所以x 2-5x +9=3得x =2或3,将x =2或3分别代入x 2+ax +a=2中得a =-23或-74(3)若B =C ,则⎩⎪⎨⎪⎧x 2+ax +a =1①x 2+(a +1)x -3=3② ①-②得:x =a +5 代入①解得a =-2或-6此时x =3或-1.*19.已知集合A ={2,4,6,8,9},B ={1,2,3,5,8},又知非空集合C 是这样一个集合:其各元素都加2后,就变为A 的一个子集,若各元素都减2后,则变为B 的一个子集,求集合C .[解析] 由题设条件知C ⊆{0,2,4,6,7},C ⊆{3,4,5,7,10},∴C ⊆{4,7},∵C ≠∅,∴C ={4},{7}或{4,7}.。

新教材人教A版高中数学必修第一册1.2 集合间的基本关系练习含答案版在后面

新教材人教A版高中数学必修第一册1.2 集合间的基本关系练习含答案版在后面

1.2 集合间的基本关系基础巩固1.下列关系正确的是( )A.0=B.1∈{1}C.={0}D.0⊆{0,1}2.已知集合A={x|x是平行四边形},B={x|x是矩形},C={x|x是正方形},D={x|x是菱形},则( ) A.A⊆B B.C⊆BC.D⊆C D.A⊆D3.满足{1}⊆A⊆{1,2,3}的集合A的个数是( )A.2B.3C.4D.84.定义集合运算A⊕B={c|c=a+b,a∈A,b∈B},设A={0,1,2},B={3,4,5},则集合A⊕B的真子集个数为( )A.63B.31C. 15D. 165.设A={x|2<x<3},B={x|x<m},若A⊆B,则m的取值范围是( )A.{m|m>3}B.{m|m≥3}C.{m|m<3}D.{m|m≤3}6.设a,b∈R,集合A={1,a},B={x|x(x-a)(x-b)=0},若A=B,则a=________,b=_________.7.若集合A={x|2≤x≤3},集合B={x|ax-2=0,a∈Z},且B⊆A,则实数a=.8.已知集合A={x|},B={x|mx-3=0},且B⊆A,求实数m的集合.能力提升9.已知集合A={x|,a∈Z},B={x|x=,b∈Z},C={x|x=,c∈Z},则A,B,C之间的关系是( )(A)A=B C (B)A B=C(C)A B C (D)B C=A10.集合A={x|(a-1)x2+3x-2=0}有且仅有两个子集,则a的取值为________.11.设集合A={x|-1≤x+1≤6},B={x|m-1<x<2m+1}.(1)当x∈Z时,求A的非空真子集的个数;(2)若A⊇B,求m的取值范围.素养达成12.已知集合A={x|-2≤x≤5}.(1)若B⊆A,B={x|m+1≤x≤2m-1},求实数m的取值范围;(2)若A⊆B,B={x|m-6≤x≤2m-1},求实数m的取值范围;(3)若A=B,B={x|m-6≤x≤2m-1},求实数m的取值范围.1.2 集合间的基本关系【本节明细表】知识点、方法题号集合间关系的判断1,2,6,7,9子集的确定3,4由集合关系求参数范围5,8,10,11,12基础巩固1.下列关系正确的是( )A.0=B.1∈{1}C.={0}D.0⊆{0,1}【答案】B【解析】对于A:0是一个元素, ∅是一个集合,元素与集合是属于(∈)或者不属于(∉)关系,二者必居其一,A 不对.对于B:1是一个元素,{1}是一个集合,1∈{1},所以B对.对于C: ∅是一个集合,没有任何元素,{0}是一个集合,有一个元素0,所以C不对.对于D:0是一个元素,{0,1}是一个集合,元素与集合是属于(∈)或者不属于(∉)关系,二者必居其一,D不对.故选B.2.已知集合A={x|x是平行四边形},B={x|x是矩形},C={x|x是正方形},D={x|x是菱形},则( ) A.A⊆B B.C⊆BC.D⊆C D.A⊆D【答案】B【解析】由已知x是正方形,则x必是矩形,所以C⊆B,故选B.3.满足{1}⊆A⊆{1,2,3}的集合A的个数是( )A.2B.3C.4D.8【答案】C【解析】满足{1}⊆A⊆{1,2,3}的集合A为:{1},{1,2},{1,3},{1,2,3},共4个.4.定义集合运算A⊕B={c|c=a+b,a∈A,b∈B},设A={0,1,2},B={3,4,5},则集合A⊕B的真子集个数为( )A.63B.31C. 15D. 16【答案】B【解析】当a=0时,b=3或4或5,则c=3或4或5共3个值;当a=1时,b=3或4或5,则c=4或5或6共3个值;当a=2时,b=3或4或5,则c=5或6或7共3个值,所以A⊕B={3,4,5,6,7},则集合A⊕B的真子集个数为-1=31(个).故选B.5.设A={x|2<x<3},B={x|x<m},若A⊆B,则m的取值范围是( )A.{m|m>3}B.{m|m≥3}C.{m|m<3}D.{m|m≤3}【答案】B【解析】因为A={x|2<x<3},B={x|x<m},A⊆B,将集合A,B表示在数轴上,如图所示,所以m≥3.6.设a,b∈R,集合A={1,a},B={x|x(x-a)(x-b)=0},若A=B,则a=________,b=_________.【答案】0 1【解析】A={1,a},解方程x(x-a)(x-b)=0,解得x=0或a或b,若A=B,则a=0,b=1.7.若集合A={x|2≤x≤3},集合B={x|ax-2=0,a∈Z},且B⊆A,则实数a=.【答案】0或1【解析】当B=⌀时,a=0,满足B⊆A;当B≠⌀时,B=,又B⊆A,∴2≤≤3,即≤a≤1,又a∈Z,∴a=1.综上知a的值为0或1.8.已知集合A={x|},B={x|mx-3=0},且B⊆A,求实数m的集合.【答案】见解析【解析】由,得x=1或x=3.所以集合A={1,3}.(1)当B=时,此时m=0,满足B⊆A.(2)当B≠时,则m≠0,B={x|mx-3=0}={}.因为B⊆A,所以=1或=3,解之得m=3或m=1.综上可知,所求实数m的集合为{0,1,3}.能力提升9.已知集合A={x|,a∈Z},B={x|x=,b∈Z},C={x|x=,c∈Z},则A,B,C之间的关系是( )(A)A=B C (B)A B=C(C)A B C (D)B C=A【答案】B【解析】将三个集合同时扩大6倍,再来看A={x|x=6a+1},B={x|x=3b-2},C={x|x=3c+1},故B=C,而A的周期为6,很明显真包含于B,C,所以A B=C.故选B.10.集合A={x|(a-1)x2+3x-2=0}有且仅有两个子集,则a的取值为________.【答案】1或【解析】由集合有两个子集可知,该集合是单元素集,当a=1时,满足题意.当a≠1时,由Δ=9+8(a-1)=0可得a=.11.设集合A={x|-1≤x+1≤6},B={x|m-1<x<2m+1}.(1)当x∈Z时,求A的非空真子集的个数;(2)若A⊇B,求m的取值范围.【答案】见解析【解析】化简集合A得A={x|-2≤x≤5}.(1)∵x∈Z,∴A={-2,-1,0,1,2,3,4,5},即A中含有8个元素,∴A的非空真子集数为28-2=254(个).(2)①当B=时, m-1≥2m+1,即m≤-2时,B=∅⊆A;②当时,即m >-2时,B ={x |m -1<x <2m +1},因此,要B ⊆A ,则只要⎩⎪⎨⎪⎧ m -1≥-2,2m +1≤5⇒-1≤m ≤2.综上所述,知m 的取值范围是{m |-1≤m ≤2或m ≤-2}.素养达成12.已知集合A={x|-2≤x ≤5}.(1)若B ⊆A,B={x|m+1≤x ≤2m-1},求实数m 的取值范围;(2)若A ⊆B,B={x|m-6≤x ≤2m-1},求实数m 的取值范围;(3)若A=B,B={x|m-6≤x ≤2m-1},求实数m 的取值范围.【答案】见解析【解析】(1)①若B=,则m+1>2m-1,即m<2,此时满足B ⊆A; ②若B ≠,则.解得2≤m ≤3.由①②得,m 的取值范围是{m|m ≤3}.(2)若A ⊆B,则依题意应有,解得3≤m ≤4.所以m 的取值范围是{m|3≤m ≤4}. (3)若A=B,则必有无解,即不存在m 使得A=B.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学集合间的基本关系练习题及答案
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
1.集合{a,b}的子集有()
A.1个 B.2个 C.3个 D.4个
【解析】集合{a,b}的子集有Ø,{a},{b},{a,b}共4个,故选D.
【答案】D
2.下列各式中,正确的是()
A.23∈{x|x≤3} B.23∉{x|x≤3} C.23⊆{x|x≤3} D.{23}{x|x≤3} 【解析】23表示一个元素,{x|x≤3}表示一个集合,但23不在集合中,故23∉{x|x≤3},A、C不正确,又集合{23}{x|x≤3},故D不正确.
【答案】 B
3.集合B={a,b,c},C={a,b,d},集合A满足A⊆B,A⊆C.则集合A的个数是________.
【解析】若A=Ø,则满足A⊆B,A⊆C;若A≠Ø,由A⊆B,A⊆C知A是由属于B且属于C的元素构成,此时集合A可能为{a},{b},{a,b}.
【答案】 4
4.已知集合A={x|1≤x<4},B={x|x<a},若A⊆B,求实数a的取值集合.
【解析】
将数集A表示在数轴上(如图所示),要满足A⊆B,表示数a的点必须在表示4的点处或在表示4的点的右边,所以所求a的集合为{a|a≥4}.
一、选择题(每小题5分,共20分)
1.集合A={x|0≤x<3且x∈Z}的真子集的个数是()
A.5 B.6 C.7 D.8
【解析】由题意知A={0,1,2},其真子集的个数为23-1=7个,故选C.
【答案】 C
2.在下列各式中错误的个数是()
①1∈{0,1,2};②{1}∈{0,1,2};③{0,1,2}⊆{0,1,2};
④{0,1,2}={2,0,1}
A.1 B.2
C.3 D.4
【解析】 ①正确;②错.因为集合与集合之间是包含关系而非属于关系;③正确;④正确.两个集合的元素完全一样.故选A.
【答案】 A
3.已知集合A ={x|-1<x<2},B ={x|0<x<1},则( )
A .A>
B B .A B
C .B A
D .A ⊆B
【解析】 如图所示,
,由图可知,B A.故选C.
【答案】 C
4.下列说法:
①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若ØA ,则A ≠Ø.
其中正确的有( )
A .0个
B .1个
C .2个
D .3个
【解析】 ①空集是它自身的子集;②当集合为空集时说法错误;③空集不是它自身的真子集;④空集是任何非空集合的真子集.因此,①②③错,④正确.故选B.
【答案】 B
二、填空题(每小题5分,共10分)
5.已知Ø{x|x 2-x +a =0},则实数a 的取值范围是________.
【解析】 ∵Ø{x|x 2-x +a =0},
∴方程x 2-x +a =0有实根,
∴Δ=(-1)2-4a ≥0,a ≤14.
【答案】 a ≤14
6.已知集合A ={-1,3,2m -1},集合B ={3,m 2},若B ⊆A ,则实数m =________.
【解析】 ∵B ⊆A ,∴m 2=2m -1,即(m -1)2=0∴m =1,当m =1时,A ={-1,3,1},B ={3,1}满足B ⊆A.
【答案】 1
三、解答题(每小题10分,共20分)
7.设集合A ={x ,y},B ={0,x 2},若A =B ,求实数x ,y.
【解析】 从集合相等的概念入手,寻找元素的关系,必须注意集合中元素的互异性.因为A =B ,则x =0或y =0.
(1)当x =0时,x 2=0,则B ={0,0},不满足集合中元素的互异性,故舍去.
(2)当y =0时,x =x 2,解得x =0或x =1.由(1)知x =0应舍去.
综上知:x =1,y =0.
8.若集合M ={x|x 2+x -6=0},N ={x|(x -2)(x -a)=0},且N ⊆M ,求实数a 的值.
【解析】 由x 2+x -6=0,得x =2或x =-3.
因此,M ={2,-3}.
若a =2,则N ={2},此时N M ;
若a =-3,则N ={2,-3},此时N =M ;
若a ≠2且a ≠-3,则N ={2,a},
此时N 不是M 的子集,
故所求实数a 的值为2或-3.
9.(10分)已知集合M ={x|x =m +16,m ∈Z },N ={x|x =n 2-13,n ∈Z },P ={x|x =
p 2+16,p ∈Z },请探求集合M 、N 、P 之间的关系.
【解析】 M ={x|x =m +16,m ∈Z }
={x|x =6m +16,m ∈Z }.
N ={x|x =n 2-13,n ∈Z }
=⎩⎨⎧⎭
⎬⎫x|x =3n -26,n ∈Z P ={x|x =p 2+16,p ∈Z }
={x|x =3p +16,p ∈Z }.
∵3n -2=3(n -1)+1,n ∈Z .
∴3n -2,3p +1都是3的整数倍加1,
从而N =P.
而6m +1=3×2m +1是3的偶数倍加1,
∴M N=P.。

相关文档
最新文档