安徽省濉溪县2018-2019学年高二上学期期末考试理科数学试题
20182019第一学期期末考试高二理科数学试卷

第 1 页濉溪县2019—2019学年度第一学期期末考试高二理科数学试卷题号 一 二 三 总分得分一、选择题.本大题共有10道小题,每小题4分,共40分.在每小题给出的四个选项中只有一个是正确的,选出你认为正确的答案代号,填入本大题最后的相应空格内.1.在中,若225,,cos 43b B A π===则 a =A. B. C. D.2.“2x >”是“24x >”的A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件3.命题“a, b 都是偶数,则a 与b 的和是偶数”的逆否命题是A. a 与b 的和是偶数,则a, b 都是偶数B. a 与b 的和不是偶数,则a, b 都不是偶数C. a, b 不都是偶数,则a 与b 的和不是偶数D. a 与b 的和不是偶数,则a, b 不都是偶数4.曲线221259x y +=与曲线22125-9-x y k k+=(k<9)的A.长轴长相等B.短轴长相等C.离心率相等D.焦距相等5.已知两定点1(5,0)F ,2(5,0)F -,曲线上的点P 到1F 、2F 的距离之差的绝对值是6,则该曲线的方程为A .221916x y -= B .221169x y -= C .2212536x y -= D . 2212536y x -=第 2 页6.抛物线24(0)y ax a =<的焦点坐标是A.(,0)aB.(,0)a -C.(0,)aD. (0,)a -7.不等式ax 2+bx+2>0的解集是,则a -b 等于A.-4B.14C.-10D.108.已知}{n a 是等差数列,.28,48721=+=+a a a a 则该数列的前10项之和为A. 64B. 100C. 110D. 1209.一个等比数列}{n a 的前n 项和为48,前2n 项和为60,则前3n 项和为A.63B.108C.75D.8310.已知a =(1,2,3),b =(3,0,-1),c =13,1,55⎛⎫-- ⎪⎝⎭给出下列等式:其中正确的个数是A.1个B.2个C.3个D.4个题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题.本大题共5小题,每小题4分,共20分.把答案填在题中横线上.11. 已知ABC ∆中,A 、B 、C 的对边分别是a 、b 、c ,且A 、B 、C 成等差数列,ABC ∆的面积为23,则ac 的值为____________.第 3 页12. 已知x ,y 满足约束条件,则目标函数的取值范围为 .13. 在数列中,,且对于任意+∈N n ,都有,则= .14. 已知点M (1,-1,2),直线AB 过原点O, 且平行于向量(0,2,1),则点M 到直线AB 的距离为__________.15、已知正实数b a 、满足1=+b a ,且m ba ≥+21恒成立,则实数m 的最大值是________.三、解答题.本题共5小题,满分60分.解答应写出必要的文字说明、演算步骤或证明过程.16. (本题满分10分)ABC ∆中,A 、B 、C 的对边分别是a 、b 、c ,且bca B C -=3cos cos .(1)求B sin ; (2)若42,,b a c ABC ==∆求的面积.17. (本题满分12分)当a ≥ 0时,解关于x 的不等式2(22)40ax a x -++>.18.(本题满分12分)已知数列的前n 项和.(1)求数列的通项公式;(2)设,求.19. (本题满分12分)设椭圆)0(1:2222>>=+b a by a x C 的一个顶点与抛物线y x C 34:2=的焦点重合,21,F F 分别是椭圆的左、右焦点,且离心率⋅=21e 且过椭圆右焦点2F 的直线l 与椭圆C 交于NM 、两点.第 4 页(1)求椭圆C 的方程;(2)是否存在直线l ,使得2-=⋅ON OM .若存在,求出直线l 的方程;若不存在,说明理由.20、(本题满分14分)如图,在四棱锥O —ABCD 中,底面ABCD 是边长为1的菱形,4ABC π∠=, OA ⊥底面ABCD , OA =2,M 为OA 的中点,N 为BC 的中点,以A 为原点,建立适当的空间坐标系,利用空间向量解答以下问题:(Ⅰ)证明:直线MN ∥平面OCD ;(Ⅱ)求异面直线AB 与MD 所成角的大小;(Ⅲ)求点B 到平面OCD 的距离.濉溪县2019—2019学年度第一学期期末考试高二理科数学试卷参考答案一、选择题.1—5 BBDDA 6—10 ACBAD二、填空题.11、2;12、[]4,0;13、4951;14、6;15、223+.三、解答题.16、解:(1)由题意BCA B C sin sin sin 3cos cos -=解得 322s i n 31c o s =∴=B B ……………………………………………………………5分(2)312cos 222=-+=ac b c a B ,又24,==b c a∴242=a 28s i n 21s i n212===∴∆B a B ac S ABC ……………………………10分解:原不等式可化为(x – 2)(ax – 2) > 0, (2)分(1)当a = 0时,原不等式即为042>+-x ,解得x < 2;…………………………………4分_N _M _A _B _D _C _O第 5 页(2)当a > 0时,0)2)(2(>--ax x ,……………………………………………………………5分①若22<a ,即a > 1时,解得x <a 2或x >2;②若22>a ,即0<a <1时,解得x < 2或x >a2;…9分③若22=a,即a =1时,解得x ≠2; ……………………………………………………………11分综上所述,原不等式的解集为:当a = 0时,{}2|<x x ;当0<a <1时,⎭⎬⎫⎩⎨⎧><a x x x 22|或;当a =1时,{}2|≠∈x R x x 且;当a > 1时,⎭⎬⎫⎩⎨⎧><22|x ax x 或.……………………………………………………12分18、解:(1)当时,①…………………………………………………………………………………………4分当时,,也满足①式 5分所以数列的通项公式为……………………………………………………6分(2)10分…12分19、解:椭圆的顶点为)3,0(,即3=b ,22112c b e a a ==-=,解得2=a ,∴椭圆的标准方程为22143x y +=……………………………………………………… 5分(2)由题可知,直线l 与椭圆必相交.①当直线斜率不存在时,经检验不合题意.……………………………………………………………………………………………6分第 6 页xyz NMABD C OP②设存在直线l 为(1)(0)y k x k =-≠,且11(,)M x y ,22(,)N x y .由22143(1)x y y k x ⎧+=⎪⎨⎪=-⎩得2222(34)84120k x k x k +-+-=,2122834k x x k +=+212241234k x x k-⋅=+,…………………………………………………8分 所以2±=k ,故直线l 的方程为)1(2-=x y 或)1(2--=x y ………………………12分20、解: 作AP CD ⊥于点P,如图,分别以AB,AP,AO 所在直线为,,x y z 轴建立坐标系22222(0,0,0),(1,0,0),(0,,0),(,,0),(0,0,2),(0,0,1),(1,,0)22244A B P D O M N --,…3分(1)22222(1,,1),(0,,2),(,,2)44222MN OP OD =--=-=-- ………5分 设平面OCD 的法向量为(,,)n x y z =,则0,0=⋅=⋅OD n OP n即 2202222022y z x y z ⎧-=⎪⎪⎨⎪-+-=⎪⎩取2z =,解得(0,4,2)n = ………………………7分MN OCD ∴平面‖ (9)分(2)设AB 与MD 所成的角为θ,22(1,0,0),(,,1)22AB MD ==--∵,3,21cos πθθ=∴=⋅⋅=∴MD AB MDAB AB 与MD 所成角的大小为3π………12分(3)设点B 到平面OCD 的距离为d ,则d 为OB 在向量(0,4,2)n =上的投影的绝对值,由 (1,0,2)OB =-, 得23OB n d n⋅==.所以点B 到平面OCD 的距离为23…14分。
2018-2019学年高二(上)期末数学试卷(理科)(含答案解析)(3)

2018-2019学年高二(上)期末数学试卷(理科)(含答案解析) 一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)向量十:二鼻"二:二,-,若」 '则x 的值为() A. - 3 B. 1 C. - 1 D . 32. (5分)已知函数f (x ) =x+lnx ,则f'(1)的值为()A. 1B. 2C. - 1 D .- 2 3. (5分)某学校高一、高二、高三共有学生 3500人,其中高三学生数是高一 学生数的两倍,高二学生数比高一学生数多 300人,现在按丁的抽样比用分层 抽样的方法抽取样本,则应抽取高一学生数为()A. 8B. 11C. 16 D . 104. (5分)某公司在2014年上半年的收入x (单位:万元)与月支出万元)的统计资料如下表所示:5. (5分)齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等 马,田忌的中等马优于齐王的下等马, 劣于齐王的中等马,田忌的下等马劣于齐 王的下等马,现从双方的马匹中随机选一匹马进行一场比赛,为( y (单位: 根据统计资料,则( ) A. 月收入的中位数是15, B. 月收入的中位数是17, C. 月收入的中位数是16, D. 月收入的中位数是16, x 与y 有正线性相关关系x 与y 有负线性相关关系 x与y 有正线性相关关系 x与y 有负线性相关关系 则田忌获胜的概率6 . (5 分)点集Q= (x, y) | 0<x<e, 0<y<e}, A={ (x, y) | y>e x, (x, y) €內,在点集Q中任取一个元素a,贝U a€ A的概率为( )7. (5分)下列说法错误的是( )A .函数f (x )的奇函数”是“f (0) =0”的充分不必要条件.B. 已知A , B , C 不共线,若-: = |,则P >△ ABC 的重心.C. 命题? x o € R , sinx o 》T 的否定是:? x € R, sinx v 1”.D.命题若a=,则cos 的逆否命题是: 若cosy • —,则,——”. 322 3 2 28. (5分)过双曲线21 - :.的右焦点且垂直于x 轴的直线与双a 2b 2 曲线交于A , B 两点,D 为虚轴上的一个端点,且△ ABD 为直角三角形,则此双 曲线离心率的值为( )A . 「B.门.:C. Y :或 门.:D. 「或::'.:9. (5分)若双曲线x 2+my 2=m (m € R )的焦距4,则该双曲线的渐近线方程为 ( )A. : :B. : :■-C. , _ I :,D.,-,—10. (5分)已知正三棱柱ABC- A1B1C1的侧棱长与底面边长相等,则 ABi 与侧面2=x 2 - 9lnx 在区间[a - 1, a+1]上单调递减,则实数a 的取值范围是() A . (1, 2] B . [4, +x)C . (-X, 2] D. (0, 3] 12. (5分)设函数f (x )=二sin 丄三,若存在f (x )的极值点X 。
【教育资料】2018—2019第一学期期末考试高二理科数学试卷学习精品

教育资源濉溪县2019—2019学年度第一学期期末考试高二理科数学试卷题号 一 二 三 总分得分一、选择题.本大题共有10道小题,每小题4分,共40分.在每小题给出的四个选项中 只有一个是正确的,选出你认为正确的答案代号,填入本大题最后的相应空格内. 1.在中,若225,,cos 43b B A π===则 a = A.B. C.D.2.“2x >”是“24x >”的A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件 3.命题“a, b 都是偶数,则a 与b 的和是偶数”的逆否命题是 A. a 与b 的和是偶数,则a, b 都是偶数 B. a 与b 的和不是偶数,则a, b 都不是偶数 C. a, b 不都是偶数,则a 与b 的和不是偶数 D. a 与b 的和不是偶数,则a, b 不都是偶数4.曲线221259x y +=与曲线22125-9-x y k k+=(k<9)的A.长轴长相等B.短轴长相等C.离心率相等D.焦距相等5.已知两定点1(5,0)F ,2(5,0)F -,曲线上的点P 到1F 、2F 的距离之差的绝对值是6,则该曲线的方程为A .221916x y -=B .221169x y -=C .2212536x y -=D . 2212536y x -=6.抛物线24(0)y ax a =<的焦点坐标是A.(,0)aB.(,0)a -C.(0,)aD. (0,)a -教育资源7.不等式ax 2+bx+2>0的解集是,则a -b 等于A.-4B.14C.-10D.108.已知}{n a 是等差数列,.28,48721=+=+a a a a 则该数列的前10项之和为 A. 64 B. 100 C. 110 D. 1209.一个等比数列}{n a 的前n 项和为48,前2n 项和为60,则前3n 项和为 A.63 B.108 C.75 D.83 10.已知a =(1,2,3),b =(3,0,-1),c =13,1,55⎛⎫-- ⎪⎝⎭给出下列等式:其中正确的个数是 A.1个 B.2个 C.3个 D.4个 题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题.本大题共5小题,每小题4分,共20分.把答案填在题中横线上. 11. 已知ABC ∆中,A 、B 、C 的对边分别是a 、b 、c ,且A 、B 、C 成等差数列,ABC ∆的面积为23,则ac 的值为____________. 12. 已知x ,y 满足约束条件,则目标函数的取值范围为 .13. 在数列中,,且对于任意+∈N n ,都有,则= .14. 已知点M (1,-1,2),直线AB 过原点O, 且平行于向量(0,2,1),则点M 到直线AB 的距离为__________.15、已知正实数b a 、满足1=+b a ,且m ba ≥+21恒成立,则实数m 的最大值是________. 三、解答题.本题共5小题,满分60分.解答应写出必要的文字说明、演算步骤或证明过程. 16. (本题满分10分)教育资源ABC ∆中,A 、B 、C 的对边分别是a 、b 、c ,且bca B C -=3cos cos . (1)求B sin ; (2)若42,,b ac ABC ==∆求的面积. 17. (本题满分12分)当a ≥ 0时,解关于x 的不等式2(22)40ax a x -++>. 18.(本题满分12分) 已知数列的前n 项和.(1)求数列的通项公式;(2)设,求.19. (本题满分12分)设椭圆)0(1:2222>>=+b a by a x C 的一个顶点与抛物线y x C 34:2=的焦点重合,21,F F 分别是椭圆的左、右焦点,且离心率⋅=21e 且过椭圆右焦点2F 的直线l 与椭圆C 交于NM 、两点.(1)求椭圆C 的方程;(2)是否存在直线l ,使得2-=⋅ON OM .若存在,求出直线l 的方程;若不存在,说明理由.20、(本题满分14分)如图,在四棱锥O —ABCD 中,底面ABCD 是边长为1的菱形,4ABC π∠=, OA ⊥底面ABCD , OA =2,M 为OA 的中点,N 为BC 的中点,以A 为原点,建立适当的空间坐标系,利用空间向量解答以下问题:(Ⅰ)证明:直线MN ∥平面OCD ; (Ⅱ)求异面直线AB 与MD 所成角的大小; (Ⅲ)求点B 到平面OCD 的距离.濉溪县2019—2019学年度第一学期期末考试高二理科数学试卷参考答案_N_ M_ A _B _D _C _O教育资源一、选择题.1—5 BBDDA 6—10 ACBAD二、填空题.11、2;12、[]4,0;13、4951;14、6;15、223+.三、解答题.16、解:(1)由题意BCA B C sin sin sin 3cos cos -=解得 322s i n 31c o s =∴=B B ……………………………………………………………5分 (2)312cos 222=-+=ac b c a B ,又24,==b c a ∴242=a 28s i n 21s i n212===∴∆B a B ac S ABC .................................10分 解:原不等式可化为(x – 2)(ax – 2) > 0, (2)分(1)当a = 0时,原不等式即为042>+-x ,解得x < 2;…………………………………4分(2)当a > 0时,0)2)(2(>--ax x ,……………………………………………………………5分①若22<a,即a > 1时,解得x <a 2或x >2;②若22>a ,即0<a <1时,解得x < 2或x >a2;…9分③若22=a ,即a =1时,解得x ≠2; ……………………………………………………………11分综上所述,原不等式的解集为:当a = 0时,{}2|<x x ;当0<a <1时,⎭⎬⎫⎩⎨⎧><a x x x 22|或;当a =1时,{}2|≠∈x R x x 且;当a > 1时,⎭⎬⎫⎩⎨⎧><22|x ax x 或.……………………………………………………12分18、解:(1)当时,①…………………………………………………………………………………………4分 当时,,也满足①式5分所以数列的通项公式为……………………………………………………6分教育资源xyz NMABD C OP(2) 10分…12分19、解:椭圆的顶点为)3,0(,即3=b ,22112c b e a a ==-=,解得2=a ,∴椭圆的标准方程为22143x y +=……………………………………………………… 5分 (2)由题可知,直线l 与椭圆必相交.①当直线斜率不存在时,经检验不合题意.……………………………………………………………………………………………6分②设存在直线l 为(1)(0)y k x k =-≠,且11(,)M x y ,22(,)N x y .由22143(1)x y y k x ⎧+=⎪⎨⎪=-⎩得2222(34)84120k x k x k +-+-=, 2122834k x x k +=+212241234k x x k-⋅=+,…………………………………………………8分 所以2±=k ,故直线l 的方程为)1(2-=x y 或)1(2--=x y ………………………12分20、解: 作AP CD ⊥于点P,如图,分别以AB,AP,AO 所在直线为,,x y z 轴建立坐标系22222(0,0,0),(1,0,0),(0,,0),(,,0),(0,0,2),(0,0,1),(1,,0)22244A B P D O M N --,…3分 (1)22222(1,,1),(0,,2),(,,2)44222MN OP OD =--=-=-- ………5分 设平面OCD 的法向量为(,,)n x y z =,则0,0=⋅=⋅OD n OP n即 2202222022y z x y z ⎧-=⎪⎪⎨⎪-+-=⎪⎩取2z =,解得(0,4,2)n = ………………………7分MN OCD ∴平面‖ (9)分(2)设AB 与MD 所成的角为θ,22(1,0,0),(,,1)22AB MD ==--∵教育资源,3,21cos πθθ=∴=⋅⋅=∴MD AB MDAB AB 与MD 所成角的大小为3π………12分(3)设点B 到平面OCD 的距离为d ,则d 为OB 在向量(0,4,2)n =上的投影的绝对值, 由 (1,0,2)OB =-, 得23OB n d n⋅==.所以点B 到平面OCD 的距离为23…14分。
【教育资料】20182019第一学期期末考试高二理科数学试卷学习专用

教育资源濉溪县2019—2019学年度第一学期期末考试高二理科数学试卷题号 一 二 三 总分得分一、选择题.本大题共有10道小题,每小题4分,共40分.在每小题给出的四个选项中 只有一个是正确的,选出你认为正确的答案代号,填入本大题最后的相应空格内. 1.在中,若225,,cos 43b B A π===则 a = A.B. C.D.2.“2x >”是“24x >”的A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件 3.命题“a, b 都是偶数,则a 与b 的和是偶数”的逆否命题是 A. a 与b 的和是偶数,则a, b 都是偶数 B. a 与b 的和不是偶数,则a, b 都不是偶数 C. a, b 不都是偶数,则a 与b 的和不是偶数 D. a 与b 的和不是偶数,则a, b 不都是偶数4.曲线221259x y +=与曲线22125-9-x y k k+=(k<9)的A.长轴长相等B.短轴长相等C.离心率相等D.焦距相等5.已知两定点1(5,0)F ,2(5,0)F -,曲线上的点P 到1F 、2F 的距离之差的绝对值是6,则该曲线的方程为A .221916x y -=B .221169x y -=C .2212536x y -=D . 2212536y x -=6.抛物线24(0)y ax a =<的焦点坐标是A.(,0)aB.(,0)a -C.(0,)aD. (0,)a -教育资源7.不等式ax 2+bx+2>0的解集是,则a -b 等于A.-4B.14C.-10D.108.已知}{n a 是等差数列,.28,48721=+=+a a a a 则该数列的前10项之和为 A. 64 B. 100 C. 110 D. 1209.一个等比数列}{n a 的前n 项和为48,前2n 项和为60,则前3n 项和为 A.63 B.108 C.75 D.83 10.已知a =(1,2,3),b =(3,0,-1),c =13,1,55⎛⎫-- ⎪⎝⎭给出下列等式:其中正确的个数是 A.1个 B.2个 C.3个 D.4个 题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题.本大题共5小题,每小题4分,共20分.把答案填在题中横线上. 11. 已知ABC ∆中,A 、B 、C 的对边分别是a 、b 、c ,且A 、B 、C 成等差数列,ABC ∆的面积为23,则ac 的值为____________. 12. 已知x ,y 满足约束条件,则目标函数的取值范围为 .13. 在数列中,,且对于任意+∈N n ,都有,则= .14. 已知点M (1,-1,2),直线AB 过原点O, 且平行于向量(0,2,1),则点M 到直线AB 的距离为__________.15、已知正实数b a 、满足1=+b a ,且m ba ≥+21恒成立,则实数m 的最大值是________. 三、解答题.本题共5小题,满分60分.解答应写出必要的文字说明、演算步骤或证明过程. 16. (本题满分10分)教育资源ABC ∆中,A 、B 、C 的对边分别是a 、b 、c ,且bca B C -=3cos cos . (1)求B sin ; (2)若42,,b ac ABC ==∆求的面积. 17. (本题满分12分)当a ≥ 0时,解关于x 的不等式2(22)40ax a x -++>. 18.(本题满分12分) 已知数列的前n 项和.(1)求数列的通项公式;(2)设,求.19. (本题满分12分)设椭圆)0(1:2222>>=+b a by a x C 的一个顶点与抛物线y x C 34:2=的焦点重合,21,F F 分别是椭圆的左、右焦点,且离心率⋅=21e 且过椭圆右焦点2F 的直线l 与椭圆C 交于NM 、两点.(1)求椭圆C 的方程;(2)是否存在直线l ,使得2-=⋅ON OM .若存在,求出直线l 的方程;若不存在,说明理由.20、(本题满分14分)如图,在四棱锥O —ABCD 中,底面ABCD 是边长为1的菱形,4ABC π∠=, OA ⊥底面ABCD , OA =2,M 为OA 的中点,N 为BC 的中点,以A 为原点,建立适当的空间坐标系,利用空间向量解答以下问题:(Ⅰ)证明:直线MN ∥平面OCD ; (Ⅱ)求异面直线AB 与MD 所成角的大小;(Ⅲ)求点B 到平面OCD 的距离.濉溪县2019—2019学年度第一学期期末考试高二理科数学试卷参考答案_N_M _A _B_ D_ C_O教育资源一、选择题.1—5 BBDDA 6—10 ACBAD二、填空题.11、2;12、[]4,0;13、4951;14、6;15、223+. 三、解答题.16、解:(1)由题意BCA B C sin sin sin 3cos cos -= 解得 322s i n 31c o s =∴=B B ……………………………………………………………5分 (2)312cos 222=-+=ac b c a B ,又24,==b c a ∴242=a 28s i n 21s i n212===∴∆B a B ac S ABC .................................10分 解:原不等式可化为(x – 2)(ax – 2) > 0, (2)分(1)当a = 0时,原不等式即为042>+-x ,解得x < 2;…………………………………4分(2)当a > 0时,0)2)(2(>--ax x ,……………………………………………………………5分①若22<a,即a > 1时,解得x <a 2或x >2;②若22>a ,即0<a <1时,解得x < 2或x >a2;…9分③若22=a ,即a =1时,解得x ≠2; ……………………………………………………………11分综上所述,原不等式的解集为:当a = 0时,{}2|<x x ;当0<a <1时,⎭⎬⎫⎩⎨⎧><a x x x 22|或;当a =1时,{}2|≠∈x R x x 且;当a > 1时,⎭⎬⎫⎩⎨⎧><22|x ax x 或.……………………………………………………12分18、解:(1)当时,①…………………………………………………………………………………………4分 当时,,也满足①式5分所以数列的通项公式为……………………………………………………6分教育资源xyz NMABD C OP(2) 10分…12分19、解:椭圆的顶点为)3,0(,即3=b ,22112c b e a a ==-=,解得2=a ,∴椭圆的标准方程为22143x y +=……………………………………………………… 5分 (2)由题可知,直线l 与椭圆必相交.①当直线斜率不存在时,经检验不合题意.……………………………………………………………………………………………6分②设存在直线l 为(1)(0)y k x k =-≠,且11(,)M x y ,22(,)N x y .由22143(1)x y y k x ⎧+=⎪⎨⎪=-⎩得2222(34)84120k x k x k +-+-=, 2122834k x x k +=+212241234k x x k-⋅=+,…………………………………………………8分 所以2±=k ,故直线l 的方程为)1(2-=x y 或)1(2--=x y ………………………12分20、解: 作AP CD ⊥于点P,如图,分别以AB,AP,AO 所在直线为,,x y z 轴建立坐标系22222(0,0,0),(1,0,0),(0,,0),(,,0),(0,0,2),(0,0,1),(1,,0)22244A B P D O M N --,…3分 (1)22222(1,,1),(0,,2),(,,2)44222MN OP OD =--=-=-- ………5分 设平面OCD 的法向量为(,,)n x y z =,则0,0=⋅=⋅OD n OP n即 2202222022y z x y z ⎧-=⎪⎪⎨⎪-+-=⎪⎩取2z =,解得(0,4,2)n = ………………………7分MN OCD ∴平面‖ (9)分(2)设AB 与MD 所成的角为θ,22(1,0,0),(,,1)22AB MD ==--∵教育资源,3,21cos πθθ=∴=⋅⋅=∴MD AB MDAB AB 与MD 所成角的大小为3π………12分(3)设点B 到平面OCD 的距离为d ,则d 为OB 在向量(0,4,2)n =上的投影的绝对值, 由 (1,0,2)OB =-, 得23OB n d n⋅==.所以点B 到平面OCD 的距离为23…14分。
(精品)2019年高二数学上学期期末考试试题 理

濉溪县2018—2019学年度第一学期期末考试高二理科数学试卷一、选择题.本大题共有10道小题,每小题4分,共40分.在每小题给出的四个选项中只有一个是正确的,选出你认为正确的答案代号,填入本大题最后的相应空格内.2.“2x >”是“24x >”的A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件 3.命题“a, b 都是偶数,则a 与b 的和是偶数”的逆否命题是 A. a 与b 的和是偶数,则a, b 都是偶数 B. a 与b 的和不是偶数,则a, b 都不是偶数 C. a, b 不都是偶数,则a 与b 的和不是偶数 D. a 与b 的和不是偶数,则a, b 不都是偶数4.曲线221259x y +=与曲线22125-9-x y k k+=(k<9)的A.长轴长相等B.短轴长相等C.离心率相等D.焦距相等5.已知两定点1(5,0)F ,2(5,0)F -,曲线上的点P 到1F 、2F 的距离之差的绝对值是6,则该曲线的方程为A .221916x y -=B .221169x y -=C .2212536x y -=D . 2212536y x -=6.抛物线24(0)y ax a =<的焦点坐标是A.(,0)aB.(,0)a -C.(0,)aD. (0,)a -7.不等式ax 2+bx+2>0的解集是⎭⎬⎫⎩⎨⎧<<-3121x x ,则a -b 等于 A.-4 B.14 C.-10 D.108.已知}{n a 是等差数列,.28,48721=+=+a a a a 则该数列的前10项之和为 A. 64 B. 100 C. 110 D. 1209.一个等比数列}{n a 的前n 项和为48,前2n 项和为60,则前3n 项和为 A.63 B.108 C.75 D.8310.已知=(1,2,3), =(3,0,-1),=13,1,55⎛⎫-- ⎪⎝⎭给出下列等式:①∣++∣=∣--∣ ②⋅+)( =)(+⋅ ③2)(c b a ++=222c b a ++ ④c b a ⋅⋅)( =)(c b a ⋅⋅其中正确的个数是 A.1个 B.2个 C.3个 D.4个二、填空题.本大题共5小题,每小题4分,共20分.把答案填在题中横线上.11. 已知ABC ∆中,A 、B 、C 的对边分别是a 、b 、c ,且A 、B 、C 成等差数列,ABC ∆的面积为23,则ac 的值为____________.12. 已知x ,y 满足约束条件0260y y x x y ≥⎧⎪≤⎨⎪+-≤⎩,则目标函数y x z +=的取值范围为 .13. 在数列{}n a 中,11a =,且对于任意+∈N n ,都有1n n aa n +=+,则100a = .14. 已知点M (1,-1,2),直线AB 过原点O, 且平行于向量(0,2,1),则点M 到直线AB 的距离为__________. 15、已知正实数b a 、满足1=+b a ,且m ba ≥+21恒成立,则实数m 的最大值是________. 三、解答题.本题共5小题,满分60分.解答应写出必要的文字说明、演算步骤或证明过程. 16. (本题满分10分)ABC ∆中,A 、B 、C 的对边分别是a 、b 、c ,且bca B C -=3cos cos . (1)求B sin ; (2)若,b ac ABC ==∆求的面积.当a ≥ 0时,解关于x 的不等式2(22)40ax a x -++>.18.(本题满分12分)已知数列{}n a 的前n 项和22n S n n =+. (1)求数列的通项公式n a ; (2)设123423111n T a a a a a a =++11n n a a +++,求nT .19. (本题满分12分)设椭圆)0(1:2222>>=+b a by a x C 的一个顶点与抛物线y x C 34:2=的焦点重合,21,F F 分别是椭圆的左、右焦点,且离心率⋅=21e 且过椭圆右焦点2F 的直线l 与椭圆C 交于N M 、两点.(1)求椭圆C 的方程;(2)是否存在直线l ,使得2-=⋅OM .若存在,求出直线l 的方程;若不存在,说明理由.20、(本题满分14分)如图,在四棱锥O —ABCD 中,底面ABCD 是边长为1的菱形,4ABC π∠=, OA ⊥底面ABCD , OA =2,M 为OA 的中点,N 为BC 的中点,以A 为原点,建立适当的空间坐标系,利用空间向量解答以下问题:(Ⅰ)证明:直线MN ∥平面OCD ; (Ⅱ)求异面直线AB 与MD 所成角的大小; (Ⅲ)求点B 到平面OCD 的距离.濉溪县2018—2019学年度第一学期期末考试高二理科数学试卷参考答案一、选择题.1—5 BBDDA 6—10 ACBAD二、填空题.11、2;12、[]4,0;13、4951;14、6;15、223+. 三、解答题.16、解:(1)由题意BCA B C sin sin sin 3cos cos -=B C B A B C cos sin cos sin 3sin cos -=∴解得 322sin 31cos =∴=B B ……………………………………………………………5分 (2)312cos 222=-+=ac b c a B ,又24,==b c a ∴242=a 28sin 21sin 212===∴∆B a B ac S ABC ……………………………10分解:原不等式可化为(x – 2)(ax – 2) > 0,………………………………………………………2分(1)当a = 0时,原不等式即为042>+-x ,解得x < 2;…………………………………4分(2)当a > 0时,0)2)(2(>--ax x ,……………………………………………………………5分①若22<a ,即a > 1时,解得x <a 2或x >2;②若22>a ,即0<a <1时,解得x < 2或x >a 2;…9分③若22=a,即a =1时,解得x ≠2; ……………………………………………………………11分综上所述,原不等式的解集为:当a = 0时,{}2|<x x ;当0<a <1时,⎭⎬⎫⎩⎨⎧><a x x x 22|或;当a =1时,{}2|≠∈x R x x 且;当a > 1时,⎭⎬⎫⎩⎨⎧><22|x ax x 或.……………………………………………………12分18、解:(1)当2≥n 时,12)]1(2)1[(2221+=-+--+=-=-n n n n n S S a n n n①…………………………………………………………………………………………4分 当1=n 时, 3121211=⨯+==S a ,也满足①式5分所以数列的通项公式为 12+=n a n ……………………………………………………6分(2))321121(21)32)(12(111+-+=++=+n n n n a a n n10分=+-++-+-+-=)321121917171515131(21n n T n )32(3)32131(21+=+-n n n …12分19、解:椭圆的顶点为)3,0(,即3=b ,12c e a ===,解得2=a ,∴椭圆的标准方程为22143x y +=……………………………………………………… 5分 (2)由题可知,直线l 与椭圆必相交.①当直线斜率不存在时,经检验不合题意.……………………………………………………………………………………………6分②设存在直线l 为(1)(0)y k x k =-≠,且(,)M x y ,(,)N x y .由22143(1)x y y k x ⎧+=⎪⎨⎪=-⎩得2222(34)84120k x k x k +-+-=, 2122834k x x k +=+212241234k x x k -⋅=+,…………………………………………………8分]1)([21212212121++-+=+=⋅x x x x k x x y y x x ON OM=243125)143843124(43124222222222-=+--=++-+-++-k k k k k k k k k 所以2±=k ,故直线l 的方程为)1(2-=x y或)1(2--=x y………………………12分 20、解:作AP CD ⊥于点P,如图,分别以AB,AP,AO 所在直线为,,x y z 轴建立坐标系(0,0,0),(1,0,0),((0,0,2),(0,0,1),(122244A B P D O M N --,…3分(1)2222(1,,1),(0,,2),(2)MN OP OD =--=-=-- ………5分 设平面OCD 的法向量为(,,)n x y z =,则0,0=⋅=⋅即 2022022y z x y z -=⎪⎨⎪-+-=⎪⎩取z =解得(0,4,2)n = ………………………7分0)2,4,0()1,42,421(=⋅--=⋅n MN MN OCD ∴平面‖ …………………………………………………………………9分 (2)设AB 与MD 所成的角为θ,(1,0,0),(1)AB MD ==--∵,3,21cos πθθ=∴==∴ AB 与MD 所成角的大小为3π………12分(3)设点B 到平面OCD 的距离为d ,则d 为OB 在向量(0,4,2)n =上的投影的绝对值, 由 (1,0,2)OB =-, 得23OB n d n⋅==.所以点B 到平面OCD 的距离为23…14分。
濉溪县高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

濉溪县高级中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 函数f (x )=lnx ﹣+1的图象大致为( )A .B .C .D .2. 不等式≤0的解集是()A .(﹣∞,﹣1)∪(﹣1,2)B .[﹣1,2]C .(﹣∞,﹣1)∪[2,+∞)D .(﹣1,2]3. 执行如图的程序框图,则输出S 的值为()A .2016B .2C .D .﹣14. 已知一个算法的程序框图如图所示,当输出的结果为时,则输入的值为( )21A .B .C .或D .或21-1-21-105. (m+1)x 2﹣(m ﹣1)x+3(m ﹣1)<0对一切实数x 恒成立,则实数m 的取值范围是( )A .(1,+∞)B .(﹣∞,﹣1)C .D .6. 已知直线l 1 经过A (﹣3,4),B (﹣8,﹣1)两点,直线l 2的倾斜角为135°,那么l 1与l 2( )A .垂直B .平行C .重合D .相交但不垂直7. 给出下列各函数值:①sin100°;②cos (﹣100°);③tan (﹣100°);④.其中符号为负的是( )A .①B .②C .③D .④8. 若等式(2x ﹣1)2014=a 0+a 1x+a 2x 2+…+a 2014x 2014对于一切实数x 都成立,则a 0+1+a 2+…+a 2014=()A .B .C .D .09. 函数f (x )=有且只有一个零点时,a 的取值范围是()A .a ≤0B .0<a <C .<a <1D .a ≤0或a >1 10.的外接圆圆心为,半径为2,为零向量,且,则在方向上ABC ∆O OA AB AC ++ ||||OA AB =CA BC 的投影为( )A .-3B .C .3D 11.某三棱锥的三视图如图所示,该三棱锥的体积是( )A . 2B .4C .D .3438【命题意图】本题考查三视图的还原以及特殊几何体的体积度量,重点考查空间想象能力及对基本体积公式的运用,难度中等.12.过点P (﹣2,2)作直线l ,使直线l 与两坐标轴在第二象限内围成的三角形面积为8,这样的直线l 一共有( )A .3条B .2条C .1条D .0条13.将函数(其中)的图象向右平移个单位长度,所得的图象经过点x x f ωsin )(=0>ω4π,则的最小值是( ))0,43(πωA . B .C .D .313514.函数f (x )=﹣x 的图象关于()A .y 轴对称B .直线y=﹣x 对称C .坐标原点对称D .直线y=x 对称15.设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF|=5,若以MF 为直径的圆过点(0,2),则C 的方程为( )A .y 2=4x 或y 2=8xB .y 2=2x 或y 2=8xC .y 2=4x 或y 2=16xD .y 2=2x 或y 2=16x二、填空题16.在中,,,为的中点,,则的长为_________.ABC ∆90C ∠=2BC =M BC 1sin 3BAM ∠=AC 17.直线2x+3y+6=0与坐标轴所围成的三角形的面积为 .18.图中的三个直角三角形是一个体积为20的几何体的三视图,则__________.h =19.台风“海马”以25km/h 的速度向正北方向移动,观测站位于海上的A 点,早上9点观测,台风中心位于其东南方向的B 点;早上10点观测,台风中心位于其南偏东75°方向上的C 点,这时观测站与台风中心的距离AC 等于 km .三、解答题20.【徐州市第三中学2017~2018学年度高三第一学期月考】为了制作广告牌,需在如图所示的铁片上切割出一个直角梯形,已知铁片由两部分组成,半径为1的半圆及等腰直角三角形,其中,为O EFH FE FH ⊥裁剪出面积尽可能大的梯形铁片(不计损耗),将点放在弧上,点放在斜边上,ABCD ,A B EF ,C D EH且,设.////AD BC HF AOE θ∠=(1)求梯形铁片的面积关于的函数关系式;ABCD S θ(2)试确定的值,使得梯形铁片的面积最大,并求出最大值.θABCD S21.数列中,,,且满足.{}n a 18a =42a =*2120()n n n a a a n N ++-+=∈(1)求数列的通项公式;{}n a (2)设,求.12||||||n n S a a a =++ n S 22.如图,矩形ABCD 和梯形BEFC 所在平面互相垂直,BE ∥CF ,BC ⊥CF ,,EF=2,BE=3,CF=4.(Ⅰ)求证:EF ⊥平面DCE ;(Ⅱ)当AB 的长为何值时,二面角A ﹣EF ﹣C 的大小为60°.23.某滨海旅游公司今年年初用49万元购进一艘游艇,并立即投入使用,预计每年的收入为25万元,此外每年都要花费一定的维护费用,计划第一年维护费用4万元,从第二年起,每年的维修费用比上一年多2万元,设使用x年后游艇的盈利为y万元.(1)写出y与x之间的函数关系式;(2)此游艇使用多少年,可使年平均盈利额最大?24.已知命题p:方程表示焦点在x轴上的双曲线.命题q:曲线y=x2+(2m﹣3)x+1与x轴交于不同的两点,若p∧q为假命题,p∨q为真命题,求实数m的取值范围.25.如图,在四棱柱中,底面,,,.(Ⅰ)求证:平面;(Ⅱ)求证:;(Ⅲ)若,判断直线与平面是否垂直?并说明理由.濉溪县高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】A【解析】解:∵f(x)=lnx﹣+1,∴f′(x)=﹣=,∴f(x)在(0,4)上单调递增,在(4,+∞)上单调递减;且f(4)=ln4﹣2+1=ln4﹣1>0;故选A.【点评】本题考查了导数的综合应用及函数的图象的应用.2.【答案】D【解析】解:依题意,不等式化为,解得﹣1<x≤2,故选D【点评】本题主要考查不等式的解法,关键是将不等式转化为特定的不等式去解.3.【答案】B【解析】解:模拟执行程序框图,可得s=2,k=0满足条件k<2016,s=﹣1,k=1满足条件k<2016,s=,k=2满足条件k<2016,s=2.k=3满足条件k<2016,s=﹣1,k=4满足条件k<2016,s=,k=5…观察规律可知,s的取值以3为周期,由2015=3*671+2,有满足条件k<2016,s=2,k=2016不满足条件k<2016,退出循环,输出s的值为2.故选:B.【点评】本题主要考查了程序框图和算法,依次写出前几次循环得到的s,k的值,观察规律得到s的取值以3为周期是解题的关键,属于基本知识的考查.4. 【答案】D 【解析】试题分析:程序是分段函数 ,当时,,解得,当时,,⎩⎨⎧=x y x lg 200>≤x x 0≤x 212=x1-=x 0>x 21lg =x 解得,所以输入的是或,故选D.10=x 1-10考点:1.分段函数;2.程序框图.11111]5. 【答案】C【解析】解:不等式(m+1)x 2﹣(m ﹣1)x+3(m ﹣1)<0对一切x ∈R 恒成立,即(m+1)x 2﹣(m ﹣1)x+3(m ﹣1)<0对一切x ∈R 恒成立若m+1=0,显然不成立若m+1≠0,则 解得a .故选C .【点评】本题的求解中,注意对二次项系数的讨论,二次函数恒小于0只需.6. 【答案】A【解析】解:由题意可得直线l 1的斜率k 1==1,又∵直线l 2的倾斜角为135°,∴其斜率k 2=tan135°=﹣1,显然满足k 1•k 2=﹣1,∴l 1与l 2垂直故选A 7. 【答案】B【解析】解::①sin100°>0,②cos (﹣100°)=cos100°<0,③tan (﹣100°)=﹣tan100>0,④∵sin>0,cos π=﹣1,tan<0,∴>0,其中符号为负的是②,故选:B .【点评】本题主要考查三角函数值的符号的判断,判断角所在的象限是解决本题的关键,比较基础.8.【答案】B【解析】解法一:∵,∴(C为常数),取x=1得,再取x=0得,即得,∴,故选B.解法二:∵,∴,∴,故选B.【点评】本题考查二项式定理的应用,定积分的求法,考查转化思想的应用.9.【答案】D【解析】解:∵f(1)=lg1=0,∴当x≤0时,函数f(x)没有零点,故﹣2x+a>0或﹣2x+a<0在(﹣∞,0]上恒成立,即a>2x,或a<2x在(﹣∞,0]上恒成立,故a>1或a≤0;故选D.【点评】本题考查了分段函数的应用,函数零点与方程的关系应用及恒成立问题,属于基础题. 10.【答案】B【解析】考点:向量的投影.11.【答案】B12.【答案】C【解析】解:假设存在过点P(﹣2,2)的直线l,使它与两坐标轴围成的三角形的面积为8,设直线l的方程为:,则.即2a﹣2b=ab直线l与两坐标轴在第二象限内围成的三角形面积S=﹣ab=8,即ab=﹣16,联立,解得:a=﹣4,b=4.∴直线l的方程为:,即x﹣y+4=0,即这样的直线有且只有一条,故选:C【点评】本题考查了直线的截距式、三角形的面积计算公式,属于基础题.13.【答案】D考点:由的部分图象确定其解析式;函数的图象变换.()ϕω+=x A y sin ()ϕω+=x A y sin 14.【答案】C【解析】解:∵f (﹣x )=﹣+x=﹣f (x )∴是奇函数,所以f (x )的图象关于原点对称故选C . 15.【答案】 C【解析】解:∵抛物线C 方程为y 2=2px (p >0),∴焦点F 坐标为(,0),可得|OF|=,∵以MF 为直径的圆过点(0,2),∴设A (0,2),可得AF ⊥AM ,Rt △AOF 中,|AF|==,∴sin ∠OAF==,∵根据抛物线的定义,得直线AO 切以MF 为直径的圆于A 点,∴∠OAF=∠AMF ,可得Rt △AMF 中,sin ∠AMF==,∵|MF|=5,|AF|=∴=,整理得4+=,解之可得p=2或p=8因此,抛物线C的方程为y2=4x或y2=16x.故选:C.方法二:∵抛物线C方程为y2=2px(p>0),∴焦点F(,0),设M(x,y),由抛物线性质|MF|=x+=5,可得x=5﹣,因为圆心是MF的中点,所以根据中点坐标公式可得,圆心横坐标为=,由已知圆半径也为,据此可知该圆与y轴相切于点(0,2),故圆心纵坐标为2,则M点纵坐标为4,即M(5﹣,4),代入抛物线方程得p2﹣10p+16=0,所以p=2或p=8.所以抛物线C的方程为y2=4x或y2=16x.故答案C.【点评】本题给出抛物线一条长度为5的焦半径MF,以MF为直径的圆交抛物线于点(0,2),求抛物线的方程,着重考查了抛物线的定义与简单几何性质、圆的性质和解直角三角形等知识,属于中档题.二、填空题16.【解析】考点:1、正弦定理及勾股定理;2诱导公式及直角三角形的性质.【方法点睛】本题主要考查正弦定理及勾股定理、诱导公式及直角三角形的性质,属于难题,高考三角函数的考查主要以三角恒等变形,三角函数的图象和性质,利用正弦定理、余弦定理解三角形为主,难度中等,因此只要掌握基本的解题方法与技巧即可,对于三角函数与解三角形相结合的题目,要注意通过正余弦定理以及面积公式实现边角互化,求出相关的边和角的大小,有时也要考虑特殊三角形的特殊性质(如正三角形,直角三角形等).17.【答案】 3 .【解析】解:把x=0代入2x+3y+6=0可得y=﹣2,把y=0代入2x+3y+6=0可得x=﹣3,∴直线与坐标轴的交点为(0,﹣2)和(﹣3,0),故三角形的面积S=×2×3=3,故答案为:3.【点评】本题考查直线的一般式方程和三角形的面积公式,属基础题.18.【答案】【解析】试题分析:由三视图可知该几何体为三棱锥,其中侧棱底面,且为直角三角形,且VA ⊥ABC ABC ∆,所以三棱锥的体积为,解得.5,,6AB VA h AC ===115652032V h h =⨯⨯⨯==4h =考点:几何体的三视图与体积.19.【答案】 25 【解析】解:由题意,∠ABC=135°,∠A=75°﹣45°=30°,BC=25km ,由正弦定理可得AC==25km ,故答案为:25.【点评】本题考查三角形的实际应用,转化思想的应用,利用正弦定理解答本题是关键. 三、解答题20.【答案】(1),其中.(2)时,()21sin cos S θθ=+02πθ<<6πθ=max S =【解析】试题分析:(1)求梯形铁片的面积关键是用表示上下底及高,先由图形得ABCD S θ,这样可得高,再根据等腰直角三角形性质得,AOE BOF θ∠=∠=2cos AB θ=()1cos sin AD θθ=-+最后根据梯形面积公式得,交代定义域()1cos sin BC θθ=++()2AD BC AB S +⋅=()21sin cos θθ=+.(2)利用导数求函数最值:先求导数,再求导函数零点02πθ<<()'f θ()()22sin 1sin 1θθ=--+,列表分析函数单调性变化规律,确定函数最值6πθ=试题解析:(1)连接,根据对称性可得且,OB AOE BOF θ∠=∠=1OA OB ==所以,,,1cos sin AD θθ=-+1cos sin BC θθ=++2cos AB θ=所以,其中.()2AD BC AB S +⋅=()21sin cos θθ=+02πθ<<考点:利用导数求函数最值【方法点睛】利用导数解答函数最值的一般步骤:第一步:利用f′(x )>0或f′(x )<0求单调区间;第二步:解f′(x )=0得两个根x 1、x 2;第三步:比较两根同区间端点的大小;第四步:求极值;第五步:比较极值同端点值的大小.21.【答案】(1);(2).102n a n =-229(5)940(5)n n n n S n n n ⎧-≤⎪=⎨-+>⎪⎩【解析】试题分析:(1)由,所以是等差数列且,,即可求解数列的通2120n n n a a a ++-+={}n a 18a =42a ={}n a 项公式;(2)由(1)令,得,当时,;当时,;当时,,0n a =5n =5n >0n a <5n =0n a =5n <0n a >即可分类讨论求解数列.n S当时,5n ≤12||||||n n S a a a =++ 2129n a a a n n=+++=- ∴.1229(5)940(5)n n n n S n n n ⎧-≤⎪=⎨-+>⎪⎩考点:等差数列的通项公式;数列的求和.22.【答案】【解析】证明:(Ⅰ)在△BCE 中,BC ⊥CF ,BC=AD=,BE=3,∴EC=,∵在△FCE 中,CF 2=EF 2+CE 2,∴EF ⊥CE 由已知条件知,DC ⊥平面EFCB ,∴DC ⊥EF ,又DC 与EC 相交于C ,∴EF ⊥平面DCE 解:(Ⅱ)方法一:过点B 作BH ⊥EF 交FE 的延长线于H ,连接AH .由平面ABCD ⊥平面BEFC ,平面ABCD ∩平面BEFC=BC ,AB ⊥BC ,得AB ⊥平面BEFC ,从而AH ⊥EF .所以∠AHB 为二面角A ﹣EF ﹣C 的平面角.在Rt △CEF 中,因为EF=2,CF=4.EC=∴∠CEF=90°,由CE ∥BH ,得∠BHE=90°,又在Rt △BHE 中,BE=3,∴由二面角A ﹣EF ﹣C 的平面角∠AHB=60°,在Rt △AHB 中,解得,所以当时,二面角A﹣EF﹣C的大小为60°方法二:如图,以点C为坐标原点,以CB,CF和CD分别作为x轴,y轴和z轴,建立空间直角坐标系C﹣xyz .设AB=a(a>0),则C(0,0,0),A(,0,a),B(,0,0),E(,3,0),F(0,4,0).从而,设平面AEF的法向量为,由得,,取x=1,则,即,不妨设平面EFCB的法向量为,由条件,得解得.所以当时,二面角A﹣EF﹣C的大小为60°.【点评】本题考查的知识点是用空间向量求平面间的夹角,其中(I)的关键是熟练掌握线线垂直、线面垂直与面面垂直的之间的相互转化,(II)的关键是建立空间坐标系,将二面角问题,转化为向量的夹角问题. 23.【答案】【解析】解:(1)(x∈N*) (6)(2)盈利额为…当且仅当即x=7时,上式取到等号 (11)答:使用游艇平均7年的盈利额最大. (12)【点评】本题考查函数模型的构建,考查利用基本不等式求函数的最值,属于中档题.24.【答案】【解析】解:∵方程表示焦点在x轴上的双曲线,∴⇒m>2若p为真时:m>2,∵曲线y=x2+(2m﹣3)x+1与x轴交于不同的两点,则△=(2m﹣3)2﹣4>0⇒m>或m,若q真得:或,由复合命题真值表得:若p∧q为假命题,p∨q为真命题,p,q命题一真一假若p真q假:;若p假q真:∴实数m的取值范围为:或.【点评】本题借助考查复合命题的真假判定,考查了双曲线的标准方程,关键是求得命题为真时的等价条件. 25.【答案】【解析】【知识点】垂直平行【试题解析】(Ⅰ)证明:因为,平面,平面,所以平面.因为,平面,平面,所以平面.又因为,所以平面平面.又因为平面,所以平面.(Ⅱ)证明:因为底面,底面,所以.又因为,,所以平面.又因为底面,所以.(Ⅲ)结论:直线与平面不垂直.证明:假设平面,由平面,得.由棱柱中,底面,可得,,又因为,所以平面,所以.又因为,所以平面,所以.这与四边形为矩形,且矛盾,故直线与平面不垂直.。
【期末试卷】2018-2019学年高二(上)期末数学试卷(理科)含答案解析

2018-2019学年高二(上)期末数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.抛物线y 2=4x 的准线方程是( ) A.x=﹣1 B.x=1 C.x=﹣2 D.x=2 2.数列{a n }满足a n =4a n ﹣1+3(n ≥2且n ∈N*),a 1=1,则此数列的第3项是( ) A.15 B.255 C.20 D.31 3.命题“∃x 0∈R ,f (x 0)<0”的否定是( ) A.∃x 0∉R ,f (x 0)≥0 B.∀x ∉R ,f (x )≥0 C.∀x ∈R ,f (x )≥0 D.∀x ∈R ,f (x )<0 4.在等差数列{a n }中,a 2=5,a 6=17,则a 14=( ) A.45 B.41 C.39 D.375.实数a ,b 满足a+b=2,则3a +3b的最小值是( )A.18B.6C.2D.26.设,是非零向量,“=||||”是“”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.F 1,F 2为椭圆的两个焦点,过F 2作椭圆的弦AB ,若△AF 1B 的周长为16,椭圆的离心率,则椭圆的方程是( )A. B.C.D.8.设变量x ,y 满足约束条件,则目标函数z=x+2y 的最小值为( )A.2B.3C.4D.59.椭圆中,以点M (﹣2,1)为中点的弦所在的直线斜率为( )A. B. C. D.10.O 为坐标原点,F 为抛物线C :y 2=4x 的焦点,P 为C 上一点,若|PF|=4,则△POF 的面积为( )A.2B.2C.2D.411.与曲线=1共焦点,而与曲线=1共渐近线的双曲线方程为( )A.=1 B. =1 C. =1 D. =112.当|m|≤1时,不等式1﹣2x<m(x2﹣1)恒成立,则x的取值范围是()A.(﹣1,3)B.C.(﹣3,1)D.二、填空题(本大题共4小题,每小题5分,共20分)13.不等式的解集是.14.若等比数列{a n}满足a2+a4=20,a3+a5=40,则数列{a n}的前n项和S n= .15.方程表示焦点在x轴上椭圆,则实数k的取值范围是.16.已知数列{a n}中,a1=1,a n=3a n﹣1+4(n∈N*且n≥2),则数列{a n}的通项公式为.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.命题p:关于x的方程x2+ax+2=0无实数根,命题q:函数f(x)=log a x在(0,+∞)上单调递增,若“p∧q”为假命题,“p∨q”为真命题,求实数a的取值范围.18.解关于x的不等式 2ax2﹣(2a+1)x+1>0(a>0).19.已知x>0,y>0,且2x+8y﹣xy=0,求:(1)xy的最小值;(2)x+y的最小值.20.已知点P为曲线C:x2+y2=4上的任意一点,过点P作x轴的垂线段PD,D为垂足,当点P在曲线C上运动时,求线段PD的中点M的轨迹方程,并说明点M轨迹是什么?21.已知各项都为整数的等差数列{a n}的前n项和为S n,若S5=35,且a2,a3+1,a6成等比数列.(1)求{a n}的通项公式;(2)设b n=,且数列{b n}的前n项和为T n,求证:T n.22.如图,椭圆的两顶点A(﹣1,0),B(1,0),过其焦点F(0,1)的直线l与椭圆交于C,D两点,并与x轴交于点P,直线AC与直线BD交于点Q.(1)当|CD|=时,求直线l的方程;(2)当点P异于A,B两点时,求证:点P与点Q横坐标之积为定值.参考答案1.A.2.D.解析:数列{a n}满足a n=4a n﹣1+3(n≥2且n∈N*),a1=1,a2=4a1+3=7,a3=4a2+3=31.3.C.解析:∵命题“∃x0∈R,f(x0)<0”是特称命题.∴否定命题为:∀x∈R,f(x)≥0.4.B.解析:设等差数列{a n}的公差为d,由a2=5,a6=17得, =3,则a14=a6+(14﹣6)×3=17+24=41,5.B.解析:实数a,b满足a+b=2,则3a+3b≥2=2=2=6,当且仅当a=b=1时,取得等号,即3a+3b的最小值是6.6.A.7.D.8.B.9.D.10.C.11.A.12.B.13.答案为:(0,0.5);14.答案为:2n+1﹣2.解析:设等比数列{a n}的公比为q,∵a2+a4=20,a3+a5=40,∴a3+a5=40=q(a2+a4)=20q,解得q=2,∴20=a2+a4=a1(2+23),解得a1=2.则数列{a n}的前n项和S n=2n+1﹣2.15.答案为:(0.5,1).16答案为:a n=3n﹣2.解析:数列{a n}中,a1=1,a n=3a n﹣1+4(n∈N*且n≥2),可得a n+2=3(a n﹣1+2),则数列{a n+2}为首项为3,公比为3的等比数列,可得a n+2=33n﹣1=3n,即有a n=3n﹣2.17.解:18.解:19.解:20.解:21.22.解:。
2018-2019安徽省淮北高二上学期期末考试数学(理)试题(解析版)

2018-2019学年安徽省淮北一中、合肥六中、阜阳一中、滁州中学高二上学期期末考试数学(理)试题一、单选题1.抛物线y 2=2x 的准线方程是( ) A .y =﹣1 B .12y =-C .x =﹣1D .12x =-【答案】D【解析】直接利用抛物线方程写出准线方程即可. 【详解】抛物线22y x =的准线方程是:12x =-.故选:D . 【点睛】本题考查抛物线的简单性质的应用,是基础题.2.在下列双曲线方程中,表示焦点在y 轴上且渐近线方程为3y x =±的是A .2219y x -=B .2219x y -=C .2219y x -=D .2219x y -=【答案】C【解析】 由题意,该双曲线的焦点在y 轴上,排除A 、B 项;又方程2219y x -=的渐近线方程为3y x =±,而方程2219x y -=的渐近线方程为13y x =±,故选C.3.下列命题正确的是( )A .“若x =3,则x 2﹣2x ﹣3=0”的否命题是:“若x =3,则x 2﹣2x ﹣3≠0”B .在△ABC 中,“A >B ”是“sinA >sinB ”的充要条件 C .若p ∧q 为假命题,则p ∨q 一定为假命题D .“存在x 0∈R ,使得e x 0≤0”的否定是:不存在x 0∈R ,使得e 0x >0” 【答案】B【解析】写出命题的否命题判断A ;ABC ∆中,由正弦定理判断B 的正误;若“p q ∧”为假命题,则p 、q 至少一个是假命题,判断C ;利用命题的否定形式判断D . 【详解】对于A ,命题“若3x =,则2230x x --=”的否命题是“若3x ≠,则2230x x --≠”,故A 不正确.对于B ,ABC ∆中,“A B >” ⇔ “a b >”;由正弦定理得“a b >” ⇔ “sin sin A B >”;“ A B >” ⇔ “sin sin A B >”所以B 正确;对于C ,若“p q ∧”为假命题,所以p 、q 至少一个是假命题,所以C 错误; 对于D ,“存在0x R ∈,使得00x e ”的否定是:不存在0x R ∈,使得00x e >”,不满足命题的否定形式,所以D 不正确; 故选:B . 【点睛】本题考查复合命题的真假与构成其简单命题的真假的关系:“p q ∧”有假则假,全真则真;“p ∨q ”有真则真,全假则假;“p ⌝”真假相反;考查命题的否定与否命题的区别以及考查三角形中正弦定理,是基本知识的考查.4.如图所示,在长方体1111ABCD A B C D -中,M 为11A C 与11B D 的交点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
濉溪县2018—2019学年度第一学期期末考试高二理科数学试卷一、选择题.本大题共有10道小题,每小题4分,共40分.在每小题给出的四个选项中只有一个是正确的,选出你认为正确的答案代号,填入本大题最后的相应空格内.1.在ABC ∆中,若5,,cos 4b B A π===则 a =D. 2.“2x >”是“24x >”的A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件 3.命题“a, b 都是偶数,则a 与b 的和是偶数”的逆否命题是 A. a 与b 的和是偶数,则a, b 都是偶数 B. a 与b 的和不是偶数,则a, b 都不是偶数 C. a, b 不都是偶数,则a 与b 的和不是偶数 D. a 与b 的和不是偶数,则a, b 不都是偶数4.曲线221259x y +=与曲线22125-9-x y k k+=(k<9)的A.长轴长相等B.短轴长相等C.离心率相等D.焦距相等5.已知两定点1(5,0)F ,2(5,0)F -,曲线上的点P 到1F 、2F 的距离之差的绝对值是6,则该曲线的方程为A .221916x y -=B .221169x y -=C .2212536x y -=D . 2212536y x -=6.抛物线24(0)y ax a =<的焦点坐标是A.(,0)aB.(,0)a -C.(0,)aD. (0,)a - 7.不等式ax 2+bx+2>0的解集是⎭⎬⎫⎩⎨⎧<<-3121x x ,则a -b 等于 A.-4 B.14 C.-10 D.108.已知}{n a 是等差数列,.28,48721=+=+a a a a 则该数列的前10项之和为A. 64B. 100C. 110D. 1209.一个等比数列}{n a 的前n 项和为48,前2n 项和为60,则前3n 项和为 A.63 B.108 C.75 D.83 10.已知a =(1,2,3),b =(3,0,-1),c =13,1,55⎛⎫-- ⎪⎝⎭给出下列等式: ①∣++∣=∣--∣ ②c b a ⋅+)( =)(c b a +⋅ ③2)(++=222++ ④⋅⋅)( =)(⋅⋅其中正确的个数是 A.1个 B.2个 C.3个 D.4个二、填空题.本大题共5小题,每小题4分,共20分.把答案填在题中横线上. 11. 已知ABC ∆中,A 、B 、C 的对边分别是a 、b 、c ,且A 、B 、C 成等差数列,ABC ∆的面积为23,则ac 的值为____________. 12. 已知x ,y 满足约束条件0260y y x x y ≥⎧⎪≤⎨⎪+-≤⎩,则目标函数y x z +=的取值范围为 .13. 在数列{}n a 中,11a =,且对于任意+∈N n ,都有1n n a a n +=+,则100a = . 14. 已知点M (1,-1,2),直线AB 过原点O, 且平行于向量(0,2,1),则点M 到直线AB 的距离为__________.15、已知正实数b a 、满足1=+b a ,且m ba ≥+21恒成立,则实数m 的最大值是________. 三、解答题.本题共5小题,满分60分.解答应写出必要的文字说明、演算步骤或证明过程. 16. (本题满分10分)ABC ∆中,A 、B 、C 的对边分别是a 、b 、c ,且bca B C -=3cos cos . (1)求B sin ; (2)若,b a c ABC ==∆求的面积.17. (本题满分12分)当a ≥ 0时,解关于x 的不等式2(22)40ax a x -++>.18.(本题满分12分)已知数列{}n a 的前n 项和22n S n n =+. (1)求数列的通项公式n a ; (2)设123423111n T a a a a a a =++11n n a a +++ ,求nT .19. (本题满分12分)设椭圆)0(1:2222>>=+b a by a x C 的一个顶点与抛物线y x C 34:2=的焦点重合,21,F F 分别是椭圆的左、右焦点,且离心率⋅=21e 且过椭圆右焦点2F 的直线l 与椭圆C 交于N M 、两点.(1)求椭圆C 的方程;(2)是否存在直线l ,使得2-=⋅.若存在,求出直线l 的方程;若不存在,说明理由.20、(本题满分14分)如图,在四棱锥O —ABCD 中,底面ABCD 是边长为1的菱形,4ABC π∠=, OA ⊥底面ABCD , OA =2,M 为OA 的中点,N 为BC 的中点,以A 为原点,建立适当的空间坐标系,利用空间向量解答以下问题:(Ⅰ)证明:直线MN ∥平面OCD ; (Ⅱ)求异面直线AB 与MD 所成角的大小; (Ⅲ)求点B 到平面OCD 的距离.濉溪县2018—2019学年度第一学期期末考试高二理科数学试卷参考答案一、选择题.1—5 BBDDA 6—10 ACBAD二、填空题.11、2;12、[]4,0;13、4951;14、6;15、223+.三、解答题.16、解:(1)由题意BCA B C sin sin sin 3cos cos -= B C B A B C cos sin cos sin 3sin cos -=∴解得 322s i n 31c o s =∴=B B……………………………………………………………5分 (2)312cos 222=-+=ac b c a B ,又24,==b c a ∴242=a 28s i n 21s i n 212===∴∆B a B ac S ABC ……………………………10分 解:原不等式可化为(x – 2)(ax – 2) > 0,………………………………………………………2分(1)当a = 0时,原不等式即为042>+-x ,解得x < 2;…………………………………4分(2)当a > 0时,0)2)(2(>--ax x ,……………………………………………………………5分①若22<a ,即a > 1时,解得x <a 2或x >2;②若22>a ,即0<a <1时,解得x < 2或x >a2;…9分③若22=a,即a =1时,解得x ≠2; ……………………………………………………………11分综上所述,原不等式的解集为:当a = 0时,{}2|<x x ;当0<a <1时,⎭⎬⎫⎩⎨⎧><a x x x 22|或;当a =1时,{}2|≠∈x R x x 且;当a > 1时,⎭⎬⎫⎩⎨⎧><22|x ax x 或.……………………………………………………12分18、解:(1)当2≥n 时,12)]1(2)1[(2221+=-+--+=-=-n n n n n S S a n n n①…………………………………………………………………………………………4分 当1=n 时, 3121211=⨯+==S a ,也满足①式 5分所以数列的通项公式为 12+=n a n ……………………………………………………6分(2))321121(21)32)(12(111+-+=++=+n n n n a a n n 10分=+-++-+-+-=)321121917171515131(21n n T n )32(3)32131(21+=+-n n n …12分19、解:椭圆的顶点为)3,0(,即3=b ,12c e a ===,解得2=a ,∴椭圆的标准方程为22143x y +=……………………………………………………… 5分 (2)由题可知,直线l 与椭圆必相交.①当直线斜率不存在时,经检验不合题意.……………………………………………………………………………………………6分②设存在直线l 为(1)(0)y k x k =-≠,且11(,)M x y ,22(,)N x y .由22143(1)x y y k x ⎧+=⎪⎨⎪=-⎩得2222(34)84120k x k x k +-+-=, 2122834k x x k +=+212241234k x x k -⋅=+,…………………………………………………8分]1)([21212212121++-+=+=⋅x x x x k x x y y x x=243125)143843124(43124222222222-=+--=++-+-++-k k k k k k k k k 所以2±=k ,故直线l 的方程为)1(2-=x y 或)1(2--=x y ………………………12分20、解:作AP CD ⊥于点P ,如图,分别以AB,AP ,AO 所在直线为,,xy z 轴建立坐标系(0,0,0),(1,0,0),((0,0,2),(0,0,1),(1A B P D OM N ,…3分(1)(11),(0,2),(2)44222MN OP OD =--=-=-- ………5分设平面OCD 的法向量为(,,)n x y z =,则0,0=⋅=⋅OD n OP n即20220y z x y z -=⎪⎪⎨⎪+-=⎪⎩取z =解得n =………………………7分0)2,4,0()1,42,421(=⋅--=⋅n MN MN OCD ∴平面‖ …………………………………………………………………9分(2)设AB 与M D 所成的角为θ,(1,0,0),(1)22AB MD ==-- ∵,3,21cos πθθ=∴==∴ AB 与M D 所成角的大小为3π………12分(3)设点B 到平面OCD 的距离为d ,则d 为OB在向量n =上的投影的绝对值,由 (1,0,2)OB =- , 得23OB n d n ⋅== .所以点B 到平面OCD 的距离为23…14分。