金属固态相变特征讲解
1-2金属固态相变的主要特点

2.2界面能
界面能 σ由结构界面能σst和化学界面 能σch组成。即:σ=σst+σch 结构界面能是由于界面处的原子键合被
切断或削弱引起了势能的升高,形成的 界面能。, 化学界面能是由于界面原子的结合键与 两相内部原子键合的差别,导致界面能 量升高。
两相界面上原子排列的不规则性将导
致界面能的升高,所以非共格界面能 最大,约为1J/m2左右;半共格界面能 次之,不超过为0.5J/m2;共格界面能 最小。约为0.1J/m2
一般地说,当两相界面为共格或半共格界面时, 新相和母相之间必然有一定的位向关系;如果两 相之间没有确定的位向关系,则界面肯定为非共 格界面。
2.5弹性应变能
固态相变时,当新相与母相间存在点 阵错配和体积错配时所引起的应变能, 称为弹性应变能。
(1)点阵错配:新相和母相的晶体结 构和位向相同,但点阵常数不同,由 此在所形成的共格界面附近产生弹性 应变的现象。而产生的应变能称为共 格应变能。
2.4新旧两相之间的位向关系
固态相变时,为了减少新相与母相间的界面能, 新相和母相之间的晶面和晶向往往存在一定的位 向关系,它们常以低指数的、原子密度大而又彼 此匹配较好的晶面相互平行。例如,钢中面心立 方奥氏体转变为体心正方马氏体时,母相奥氏体 的行密密,排排母方面 相 向(奥<111氏111)体> γα的与相密新平排相行向马。<氏1它1体0称>的为γ密K与排一新面S相位(1马向10氏关) 体α系平的。
δ <0.05两相可以构成完全共格界面; δ大于o.25时易形成非共格界面; δ 介于0.05到0.25之间,则形成半共格界 面。
显然,共格应变能以共格界面最大,半 共格界面次之,非共格界面为零。
金属固态相变的特征

金属固态相变的特征引言:金属是一类常见的材料,其固态相变是指在一定条件下,金属由一种晶体结构转变为另一种晶体结构的过程。
金属固态相变具有许多独特的特征,本文将从晶格结构、原子运动和宏观性质三个方面来探讨金属固态相变的特征。
一、晶格结构变化金属的固态相变通常伴随着晶格结构的变化。
晶格是金属内部排列有序的原子阵列,不同的晶格结构决定了金属的性质。
金属固态相变中,晶格结构发生变化,常见的相变类型有铁素体相变、奥氏体相变和马氏体相变等。
不同的相变类型对应着不同的晶格结构,如面心立方结构、体心立方结构和六方最密堆积结构等。
晶格结构的变化直接影响了金属的力学性能、导电性能和磁性等性质。
二、原子运动特征金属固态相变中,原子的运动是相变发生的基础。
在金属的相变过程中,原子会发生位移、交换或重新排列等运动。
例如在铁素体相变中,铁原子的位置会从面心立方结构变为体心立方结构,原子发生了位移和重新排列。
此外,金属固态相变的过程中,原子间的键合也会发生改变。
原子运动的特征直接影响了金属的热膨胀性、热导率和硬度等性质。
三、宏观性质变化金属固态相变引起了金属的宏观性质变化。
金属的固态相变通常伴随着热学性质和力学性质的变化。
例如,在铁素体相变中,金属的磁性会发生明显变化,从铁磁性转变为顺磁性。
此外,金属的热膨胀性、热导率和电阻率等热学性质也会随着相变发生变化。
另外,金属相变还会对金属的力学性能产生影响,如硬度和韧性等。
金属固态相变的特征不仅与金属的性质有关,也与相变过程的条件有关。
金属的固态相变通常需要一定的温度和压力条件,不同的温度和压力条件下,金属的相变行为也会有所不同。
此外,金属的化学成分也会对固态相变产生影响,不同的化学成分会导致金属的相变温度发生变化。
总结:金属固态相变是金属由一种晶体结构转变为另一种晶体结构的过程,具有晶格结构变化、原子运动特征和宏观性质变化等特征。
金属固态相变的特征与金属的性质、相变过程的条件和化学成分有关。
第九章 金属固态相变

3. 晶界促进形核 具有高能量的大晶界可以释放界面能为形核提供相变 驱动力,以降低形核功。 驱动力,以降低形核功。 三、晶核长大 1. 长大机制 新相晶核的长大,实质是相界面向旧相迁移的过程。 新相晶核的长大,实质是相界面向旧相迁移的过程。 新旧相成分不同时: 新旧相成分不同时:晶核的长大依赖于溶质原子在旧 相中的长程扩散。 相中的长程扩散。
五、母相晶体缺陷促进相变 在母相晶体中的缺陷处,晶格畸变、自由能高, 在母相晶体中的缺陷处,晶格畸变、自由能高,促进形 核及相变。 核及相变。 六、易出现过渡相 固态相变阻力大, 直接转变困难, 固态相变阻力大 , 直接转变困难 , 往往先形成协调性 中间产物(过渡相) 中间产物(过渡相)。 母相→较不稳定的过渡相→较稳定的过渡相→ 母相→较不稳定的过渡相→较稳定的过渡相→稳定相
二、新相与母相界面上原子排列的匹配性 固态相变时, 固态相变时,新相与母相界面上原子排列越保持一定 的匹配性,越有利于相变阻力的降低。 的匹配性,越有利于相变阻力的降低。 固态相变产生的相界面根据两相原子在晶体学上匹配 程度不同可分为三种类型, 共格界面,半共格界面和 程度不同可分为三种类型,即共格界面,半共格界面和非 共格界面,如图9-1所示 所示。 共格界面,如图 所示。
3. 非共格界面 当界面处的原子排列差异很大, 原子匹配关系不能继 当界面处的原子排列差异很大 , 续维持,形成非共格界面。 续维持,形成非共格界面。 一般认为, 小于 小于0.05时完全共格; δ大于 时完全共格; 大于 大于0.25时形成 一般认为,δ小于 时完全共格 时形成 非共格界面; 介于 介于0.05和 0.25之间时,形成半共格界面, 之间时, 非共格界面;δ介于 和 之间时 形成半共格界面, 它们的能量是不同的。 它们的能量是不同的。
金属固态相变资料.pptx

3. 按相变方式分类
(1)形核-长大型相变:相变时在很小范围内发生原子 相当激烈的重排,生成新相核心,两相之间产生相界。 相变靠不断的生核和晶核的长大实现。脱溶转变、共析 转变属于此类。 (2)连续型相变:相变时在很大范围内发生原子轻微 的重排,相变的起始状态与最终状态之间存在一系列连 续状态,不需形核,靠连续涨落形成新相。调幅分解属 于此类。
第34页/共86页
3.奥氏体的稳定化
概念:马氏体转变中止、停顿后再继续冷却时出 现转变滞后和残余奥氏体量增多的现象。
(1)热稳定化 A体淬火时因缓慢冷却或在MS~Mf之间某温度
停留一段时间后,使过冷奥氏体转变迟滞的现象。
第35页/共86页
(2)机械稳定化 在应力—应变作用下可以促进钢中的相变发生,即形变诱发
(3)空位形核
(4)层错形核
新相生成处空位消失,提供能量 空位群可凝结成位错 (在过饱和固溶体的脱溶析出过程中, 空位作用更明显。)
第15页/共86页
新相的长大
1.界面过程控制的新相长大 (1)非热激活界面近程控制的新相长大 (2)热激活界面过程控制的新相长大
切
台
变
阶
长
式
大
长
大
第16页/共86页
2 扩散控制的新相长大 (1) 界面控制长大 新相生成时无成分变化(有结构、有 序度变化)
S:650~600℃, S0=80~150nm,高倍OM
T: 600~550℃, S0=30~80nm,TEM
组织名称
表示符号
形成温度范围 /℃
硬度
片间距/nm
能分辨片层的 放大倍数
珠光体
P
A1~650
170~200HB 150~450
第一章 金固态相变特征

第一章 金属固态相变特征复习:相的概念,合金中结构相同、成分和性能均一并以界面相互分开的组成部分。
固态相变定义:固态金属(纯金属和合金)在温度和压力改变时,组织和结构会发生变化,这种变化统称为金属的固态相变。
重点:理解相和相变的物理意义,固态相变的基本特征。
难点:意义:固态相变是金属材料热处理的基础。
例如,马氏体相变可以使钢淬火强化;过饱和固溶体分解使合金时效强化等。
因此,研究固态相变有重要的实际意义。
金属固态相变与凝固过程相同处:* 以新相和母相的自由能差作为相变的驱动力;* 大多数固态相变也都包含成核和长大两个基本过程,并遵循结晶过程的一般规律。
但因其为固态下的结晶过程,故又具有不同于液态金属结晶的一系列特点。
热处理:将钢在固态下加热到预定的温度,并在该温度下保持一段时间,然后以一定的速度冷却到室温的一种热加工工艺。
热处理的作用?(1) 改变钢的组织结构,进而改善材料的性能,延长期使用寿命;(2) 消除铸、锻、焊等工艺造成的缺陷,细化晶粒,消除偏析,降低内应力,均匀钢的组织和性能;(3) 热处理还可以改善材料的切削加工性能;(4) 热处理可以提高工件表面的抗磨、耐蚀性能。
§1-1 固态相变的特点一、相界面金属固态相变时,新相与母相的界面为两种晶体的界面,按其结构特点可分为共格界面、半共格(部分共格)、非共格界面,如图1-1:1、共格界面――界面上的原子同时位于两相晶格的结点上,即两相界面上的原子排列完全匹配,界面上的原子为两相所共有,如图1-1a)。
只有孪生晶面才是理想的完全共格界面。
第一类共格:当两相之间的共格联系依靠正应变来维持时,图1-2a );第二类共格:当两相之间的共格联系依靠切应变来维持时,图1-2b )。
无论哪种共格,晶界两侧都有一定的畸变。
共格界面的特点:共格界面的界面能很小,但因界面附近有畸变,所以弹性畸变能大。
共格界面必须依靠弹性畸变来维持,当新相不断长大而使共格晶面的弹性畸变能增大到足够量时,也可能超过母相的屈服极限而产生塑性变形,结果使共格联系遭到破坏。
金属固态相变基础.ppt

2
2 1 P 2 T 2 2 P 2 T
2 1 TP 2 2 T P
多形性转变 固溶体由一种晶体结构转变为另一种 结构的过程称为多形性转变。
平衡脱溶转变
单一的α固溶体, 冷至 固溶度曲线MN以下温度时, β相又将逐渐析出,这一 过程称为平衡脱溶沉淀。 其特点是新相的成分 和结构始终与母相的不同; 随着新相的析出,母相的成 分和体积分数将不断变化, 但母相不会消失。 例如:钢在冷却时,二 次渗碳体的析出,即属这种 相变。
一级相变
具有体积和熵的突变; 熵的突变表明在一级相变过程中, 有相变潜热的吸收或释放,从而可 以应用热膨胀仪来测量一级相变的 开始点。 体积的突变说明在相变过程中要发 生体积变化。 材料凝固、熔化、升华、同素异构 转变均属一级相变。 几乎所有伴随晶体结构变化的固态 相变都为一级相变。
S, 0
V 0
非平衡脱溶转变 : 自t1快冷,在冷却过 程中β来不及析出; 故将得到过饱和固溶 体; 在室温或在低于固溶 度曲线MN的某一温度 下等温时将自α析出 成分与结构均与平衡 沉淀相不同的新相, 称为不平衡脱溶沉淀。
3、按原子的迁移情况分类
扩散型相变
定义:相变过程受控于原子(或离子)的扩散。 特点:(1)相变的速度取决于原子的扩散速度; (2)新相和母相成分不同; (3)体积变化,但宏观形状不变 无扩散型相变 定义:相变过程不存在原子(或离子)的扩散,原子(或 离子)仅做有有规则的迁移使点阵发生改组。 特点:(1)宏观形状变化,试样表面会出现浮凸; (2)新相与母相化学成分相同; (3)新相与母相之间存在一定晶体学位向关系。
金属固态相变的主要特点

金属固态相变的主要特点金属固态相变是指金属在固态下由于温度、压力或其他外界条件的变化而引起的物理结构和性质的变化。
金属固态相变的主要特点有以下几个方面:1. 温度变化引起的相变:金属的固态相变主要是由于温度的变化引起的。
当金属的温度超过一定的临界温度时,金属内部的晶体结构会发生变化,从而导致固态相变。
例如,铁在不同的温度下会发生α相到γ相的相变,这种相变是由于温度变化引起的。
2. 压力变化引起的相变:除了温度变化,金属固态相变还可以由压力的变化引起。
当金属受到外界的压力作用时,原子之间的距离和排列会发生变化,从而导致固态相变。
例如,钻石可以在高压下转变为金刚石,这是由于压力变化引起的相变。
3. 结构和性质的变化:金属固态相变不仅会引起晶体结构的变化,还会导致金属的性质发生改变。
例如,铁的相变会引起其磁性的变化,从铁磁性到顺磁性的转变。
这种结构和性质的变化对金属的应用具有重要的影响。
4. 相变的可逆性:金属固态相变通常是可逆的,即当外界条件恢复到原来的状态时,金属可以再次发生相反的相变。
这与金属的液态相变或气态相变不同,液态和气态的相变通常是不可逆的。
5. 相变的影响因素:金属固态相变的发生受到多种因素的影响,包括温度、压力、晶体结构、晶界能量等。
这些因素会影响金属内部原子的排列和运动方式,从而导致相变的发生和性质的改变。
6. 金属固态相变的应用:金属固态相变在材料科学和工程中具有重要的应用价值。
通过控制金属的相变过程,可以制备出具有特定结构和性质的材料,如形状记忆合金和超弹性材料等。
这些材料在医学、航空航天等领域有着广泛的应用。
金属固态相变是金属在固态下由于温度、压力或其他外界条件的变化而引起的物理结构和性质的变化。
它具有温度和压力变化引起的相变、结构和性质的变化、相变的可逆性、影响因素和应用等主要特点。
金属固态相变的研究对于材料科学和工程具有重要意义,并且在实际应用中有着广泛的应用前景。
第一章 金固态相变特征

第一章 金属固态相变特征复习:相的概念,合金中结构相同、成分和性能均一并以界面相互分开的组成部分。
固态相变定义:固态金属(纯金属和合金)在温度和压力改变时,组织和结构会发生变化,这种变化统称为金属的固态相变。
重点:理解相和相变的物理意义,固态相变的基本特征。
难点:意义:固态相变是金属材料热处理的基础。
例如,马氏体相变可以使钢淬火强化;过饱和固溶体分解使合金时效强化等。
因此,研究固态相变有重要的实际意义。
金属固态相变与凝固过程相同处:* 以新相和母相的自由能差作为相变的驱动力;* 大多数固态相变也都包含成核和长大两个基本过程,并遵循结晶过程的一般规律。
但因其为固态下的结晶过程,故又具有不同于液态金属结晶的一系列特点。
热处理:将钢在固态下加热到预定的温度,并在该温度下保持一段时间,然后以一定的速度冷却到室温的一种热加工工艺。
热处理的作用?(1) 改变钢的组织结构,进而改善材料的性能,延长期使用寿命;(2) 消除铸、锻、焊等工艺造成的缺陷,细化晶粒,消除偏析,降低内应力,均匀钢的组织和性能;(3) 热处理还可以改善材料的切削加工性能;(4) 热处理可以提高工件表面的抗磨、耐蚀性能。
§1-1 固态相变的特点一、相界面金属固态相变时,新相与母相的界面为两种晶体的界面,按其结构特点可分为共格界面、半共格(部分共格)、非共格界面,如图1-1:1、共格界面――界面上的原子同时位于两相晶格的结点上,即两相界面上的原子排列完全匹配,界面上的原子为两相所共有,如图1-1a)。
只有孪生晶面才是理想的完全共格界面。
第一类共格:当两相之间的共格联系依靠正应变来维持时,图1-2a );第二类共格:当两相之间的共格联系依靠切应变来维持时,图1-2b )。
无论哪种共格,晶界两侧都有一定的畸变。
共格界面的特点:共格界面的界面能很小,但因界面附近有畸变,所以弹性畸变能大。
共格界面必须依靠弹性畸变来维持,当新相不断长大而使共格晶面的弹性畸变能增大到足够量时,也可能超过母相的屈服极限而产生塑性变形,结果使共格联系遭到破坏。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
形核可能
• 临届晶胚尺寸:r*=2 σ/ (△gv—ε) 形核功: △ G*=16π σ 3/3 (△gv—ε)2 2.非均匀形核 △ G=V △gv+Aσ +εV —△gd
动力 阻力
3.晶体缺陷对形核的作用: 1)空位
第一章 金属固态相变特征
basic features of metallic solid-state phase transformation
§1 固态相变的特点
• 驱动力:新相与母相的自由能差 • 阻力:界面能和应变能 • 基本过程:成核(nucleation) • 长大(growing)
一、相界面(phase interface )
四、应变能
• 1.盘状最小,其次是针状,球形最大。 • 2.主导作用:具体分析。
五、晶体缺陷的影响
• 缺陷的促进作用。
• 思考:晶体中常见的缺陷有哪些?
六、原子的扩散 七、过渡相的形成
§2 固态相变的形核
• 成核主要在母相的晶界、层错、位错等 晶体缺陷处形成。是非均匀形核。 一、均匀形核 1.形核功: △ G=V △gv+Aσ +εV
• 1.弹性应变能:随错配度变化 • 2.错配度:δ= Δa/a
δ<0.05 δ=0.05-0.25 δ >0.25
完全共格 半共格 非共格
一、相界面(phase interface )
金属界面结构示意图---非共格界面
金属界面结构示意图---半共格界面
半共格界面
金属界面结构示意图---共格界面
• 二、新相长大速度:界、新相形成的转变速度与过冷度的关 系
新相形成的转变速度与过冷度的关系
temperature
Transformation speed
新相长大速度与过冷度的关系
temperature
D,
u, △g
α phase
β phase
3.溶质原子在晶界上的不均匀分布
晶界
应变能Es 溶质原子浓度%
Why?
溶质原子分布位置
二、位向关系(orientation relationship)
• 1.位向关系:低指数、原子密度大、匹配较好的晶面相 互平行。 • 2.K-Sorientation relationship
• Austenite(FCC)
• • • • •
Martensite(Body-Centred tetragonal) {111}γ // {110}α’ <110>γ // <111>α’ 共格(半共格)必有位向关系 没有位向关系必定非共格
三、惯习面
• 1 定义:固态相变时,新相往往在母 相的一定晶面上开始形成,这个晶面称 为惯习面。 • 奥氏体--先共析铁素体 • 1)奥氏体晶界 • 2)惯习面{111}γ
• • • • •
2)位错 I)在位错线 II)补偿错配 III)在位错线偏聚 3)晶界
晶界形核时晶核的形状
晶粒1
新 相 晶粒2
晶界
§2 固态相变的长大
• • • • • • 一、长大机制 1半共格界面的迁移 2非共格界面的迁移 3扩散型相变与无扩散型相变 1)扩散型相变的特征 2)无扩散型相变的特征