固态相变原理习题集答案
相变理论试题及答案

相变理论试题及答案一、单项选择题(每题2分,共10分)1. 物质从固态直接变为气态的过程称为:A. 蒸发B. 升华C. 凝固D. 液化答案:B2. 下列哪种物质在常温下为气态?A. 水B. 铁C. 氧气D. 铜答案:C3. 物质从液态变为固态的过程称为:A. 蒸发B. 凝固C. 沸腾D. 升华答案:B4. 物质从气态直接变为固态的过程称为:A. 蒸发B. 升华C. 凝固答案:B5. 物质从固态变为液态的过程称为:A. 蒸发B. 熔化C. 沸腾D. 升华答案:B二、填空题(每空1分,共10分)1. 物质从液态变为气态的过程称为________。
答案:蒸发2. 物质从固态变为液态的过程称为________。
答案:熔化3. 物质从气态变为液态的过程称为________。
答案:液化4. 物质从液态变为固态的过程称为________。
答案:凝固5. 物质从固态直接变为气态的过程称为________。
答案:升华三、简答题(每题5分,共20分)1. 请简述相变过程中的潜热是什么?答案:潜热是指在相变过程中,物质吸收或释放的热量,而温度保持2. 为什么水在0℃时会结冰?答案:水在0℃时结冰是因为在这个温度下,水分子的运动能量不足以抵抗分子间的吸引力,导致水分子排列成固态结构。
3. 请解释为什么在高压下,水的沸点会升高?答案:在高压下,水的沸点升高是因为压力的增加使得水分子间的距离减小,需要更多的能量才能使水分子从液态变为气态。
4. 为什么干冰(固态二氧化碳)在室温下会直接升华?答案:干冰在室温下直接升华是因为固态二氧化碳的分子间作用力较弱,且其升华点低于室温,使得干冰分子在室温下就能获得足够的能量直接从固态变为气态。
四、计算题(每题10分,共20分)1. 假设有1千克的水从0℃加热到100℃,然后完全蒸发。
已知水的比热容为4.18 J/(g·℃),汽化热为40.7 kJ/mol,水的摩尔质量为18 g/mol。
金属固态相变原理习题及解答

第二章1、钢中奥氏体的点阵结构,碳原子可能存在的部位及其在单胞中的最大含量。
奥氏体是碳在γ-Fe中的固溶体,碳原子在γ-Fe点阵中处于Fe原子组成的八面体间隙中心位置,即面心立方晶胞的中心或棱边中点。
八面体间隙:4个2、以共析碳钢为例说明奥氏体的形成过程,并讨论为什么奥氏体全部形成后还会有部分渗碳体未溶解?奥氏体的形成是由四个基本过程所组成:形核、长大、剩余碳化物的溶解和成分均匀化。
按相平衡理论,从Fe-Fe3C相图可以看出,在高于AC1温度,刚刚形成的奥氏体,靠近Cem 的C浓度高于共析成分较少,而靠近F处的C浓度低于共析成分较多(即ES线的斜率较大,GS线的斜率较小)。
所以,在奥氏体刚刚形成时,即F全部消失时,奥氏体的平均C浓度低于共析成分,这就进一步说明,共析钢的P刚刚形成的A的平均碳含量降低,低于共析成分,必然有部分碳化物残留,只有继续加热保温,残留碳化物才能逐渐溶解。
3、合金元素对奥氏体形成的四个阶段有何影响。
钢中添加合金元素并不影响珠光体向奥氏体的转变机制,但影响碳化物的稳定性及碳原子在奥氏体中的扩散系数。
另一方面,多数合金元素在碳化物和基体相中的分布是不均匀的,故合金元素将影响奥氏体的形核与长大、剩余碳化物的溶解、奥氏体成分均匀化的速度。
①通过对碳扩散速度影响奥氏体的形成速度。
②通过改变碳化物稳定性影响奥氏体的形成速度。
③对临界点的影响:Ni、Mn、Cu等降低A1温度;Cr、Mo、Ti、Si、Al、W、V 等升高A1温度。
④通过对原始组织的影响进而影响奥氏体的形成速度:Ni、Mn等往往使珠光体细化,有利于奥氏体的形成。
在其它条件相同的情况下,合金元素在奥氏体中的扩散速度比碳在奥氏体中的扩散速度小100-10000倍。
此外,碳化物形成元素还会减小碳在奥氏体中的扩散速度,这将降低碳的均匀化速度,因此,合金钢均匀化所需时间常常比碳钢长得多。
4、钢在连续加热时珠光体奥氏体转变有何特点。
○1在一定的加热速度范围内,临界点随加热速度增大而升高。
固态相变原理考试试题+答案

固态相变原理考试试题一、(20分)1、试对固态相变地相变阻力进行分析固态相变阻力包括界面能和应变能,这是由于发生相变时形成新界面,比容不同都需要消耗能量.(1)界面能:是指形成单位面积地界面时,系统地赫姆霍茨自由能地变化值.与大小和化学键地数目、强度有关.共格界面地化学键数目、强度没有发生大地变化,最小;半共格界面产生错配位错,化学键发生变化,次之;非共格界面化学键破坏最厉害,最大.(2)应变能①错配度引起地应变能(共格应变能):共格界面由错配度引起地应变能最大,半共格界面次之,非共格界面最小.②比容差引起地应变能(体积应变能):和新相地形状有关,,球状由于比容差引起地应变能最大,针状次之,片状最小.2、分析晶体缺陷对固态相变中新相形核地作用固相中存在各种晶体缺陷,如空位、位错、层错、晶界等,如果在晶体缺陷处形核,随着核地形成,缺陷将消失,缺陷地能量将给出一供形核需要,使临界形核功下降,故缺陷促进形核.(1)空位:过饱和空位聚集,崩塌形成位错,能量释放而促进形核,空位有利于扩散,有利于形核.(2)位错:①形成新相,位错线消失,会释放能量,促进形核②位错线不消失,依附在界面上,变成半共格界面,减少应变能.③位错线附近溶质原子易偏聚,形成浓度起伏,利于形核.④位错是快速扩散地通道.⑤位错分解为不全位错和层错,有利于形核.Aaromon总结:刃型位错比螺型位错更利于形核;较大柏氏矢量地位错更容易形核;位错可缠绕,割阶处形核;单独位错比亚晶界上位错易于形核;位错影响形核,易在某些惯习面上形成.(3)晶界:晶界上易形核,减小晶界面积,降低形核界面能二、(20分)已知调幅分解1、试分析发生调幅分解地条件只有当R(λ)>0,振幅才能随时间地增长而增加,即发生调幅分解,要使R(λ)>0,得且. 令R(λ)=0得λc—临界波长,则λ<λc时,偏聚团间距小,梯度项很大,R(λ)>0,不能发生;λ>λc时,随着波长增加,下降,易满足,可忽略梯度项,调幅分解能发生.2、说明调幅分解地化学拐点和共格拐点,并画出化学拐点、共格拐点和平衡成分点在温度——成分坐标中地变化轨迹化学拐点:当G”=0时.即为调幅分解地化学拐点;共格拐点:当G”+2η2Y=0时为共格拐点,与化学拐点相比共格拐点地浓度范围变窄了,温度范围也降低了.3、请说明调幅分解与形核长大型相变地区别调幅分解与形核长大型相变地区别调幅分解形核长大型变形成分连续变化,最后达到平衡始终保持平衡,不随时间变化相界面开始无明显相界面,最后才变明显始终都有明显地相界面组织形态两相大小分布规则,组织均匀,不呈球状大小不一,分布混乱,常呈球状,组织均匀性差结构结构与母相一致,成分与母相不同结构、成分均不同三、(20分)1、阐明建立马氏体相变晶体学表象理论地实验基础和基本原理(1)实验基础1 / 32 /3 ① 在宏观范围内,惯习面是不应变面(不转变、不畸变);② 在宏观范围内,马氏体中地形状变形是一个不变平面应变;③ 惯习面位向有一定地分散度(指不同片、不同成分地马氏体);④在微观范围内,马氏体地变形不均匀,内部结构不均匀,有亚结构存在(片状马氏体为孪晶,板条马氏体为位错).(2)基本原理在实验基础上,提出了马氏体晶体学表象理论,指出马氏体相变时所发生地整个宏观应变应是下面三种应变地综合:① 发生点阵应变(Bain 应变),形成马氏体新相地点阵结构.但是Bain 应变不存在不变平面,不变长度地矢量是在圆锥上,所以要进行点阵不变切变.② 简单切边,点阵不变非均匀切变,在马氏体内发生微区域变形,不改变点阵类型,只改变形状,通过滑移、孪生形成无畸变面.③ 刚体转动,①②得到地无畸变地平面转回到原来地位置去,得到不畸变、不转动地平面.用W-R-L 理论来表示:P 1=RPB,P 1为不变平面应变地形状变形,B 为Bain 应变、用主轴应变来表示,R 为刚体转动、可以用矩阵来表示,P 为简单应变.2、阐明马氏体相变热力学地基本设想和表达式地意义答:基本设想:马氏体相变先在奥氏体中形成同成分地体心核胚,然后体心核胚再转变为马氏体M.所以马氏体相变自由能表达式为:M M G G G γγαα→→→∆=∆+∆,式中:① M G γ→∆表示奥氏体转变为马氏体地自由能差.,此时温度为Ms 温度.② G γα→∆表示母相中形成同成分地体心核胚时地自由能变化,定义为T 0温度γ与α地平衡温度,,为T<T 0时,产生核胚地温度.③ M G α→∆表示体心核胚转变为马氏体M 而引起地自由能变化.消耗于以下几个方面:切变能(进行不变平面切变、改变晶体结构和形状地能量);协作形变能(周围地奥氏体产生形变地能量);膨胀应变能(由于比容变化而致);存储能(形成位错地应变能、形成孪晶地界面能);其他(表面能、缺陷能、能量场地影响等).四、(20分)1、试解释沉淀相粒子地粗化机理由Gibbs-Thompson 定理知,在半径为r 地沉淀相周围界面处母相成分表达式: 2()()(1)m V C r C RTr αασ=∞-当沉淀相越小,其中每个原子分到地界面能越多,因此化学势越高,与它处于平衡地母相中地溶质原子浓度越高. 即:C (r 2)> C(r 1) .由此可见在大粒子r 1和小粒子r 2之间地基体中存在浓度梯度,因此必然有一个扩散流,在浓度梯度地作用下,大粒子通过吸收基体中地溶质而不断长大,小粒子则要不断溶解、收缩,放出溶质原子来维持这个扩散流.所以出现了大粒子长大、小粒子溶解地现象. 需要画图辅助说明!2、根据沉淀相粒子粗化公式:,分析粒子地生长规律(奥斯瓦尔德熟化)①当时,r=r ,rt ∂∂=0粒子不长大;②当时,r <r ,rt ∂∂<0小粒子溶解;③当时,r>r ,rt ∂∂>0粒子长大;④当时,r=2r ,rt ∂∂最大,长大最快;⑤长大过程中,小粒子溶解,大粒子长大,粒子总数减小,r 增加,更容易满足②,小粒子溶解更快;⑥温度T 升高,扩散系数D 增大,使rt ∂∂增大.所以当温度升高,大粒子长大更快, 小粒子溶解更快.五、(20分)已知新相地长大速度为:1、 试分析过冷度对长大速度地影响过冷度很小,∆gv 很小,∆gv 随过冷度地增加而增加,∆gv 越小长大速率越大,表明:长大速度u 与过冷度或者成正比,也就是当T 下降,过冷度增大,上升,长大速度u 增大.(1) 过冷度很很大,∆gv/kT 很大,exp(-∆gv/kT)→0,此时,温度越高长大速率越大,2、 求生长激活能过冷度很大时,exp(-∆gv/kT)→0,公式转化为0e x p ()Q kT μλν=-3 / 3 两边取对数,0exp()Q kT μλν=-则(ln )(1/)d Q K d T μ=-则为单个原子地扩散激活能,再乘以阿伏加德罗常数N 0,得生长激活能.。
固态相变习题

固态相变习题第一章自测题试卷1、固态相变是固态金属(包括金属与合金)在()和()改变时,()的变化。
2、相的定义为()。
3、新相与母相界面原子排列方式有三种类型,分别为()、()、(),其中()界面能最低,()应变能最低。
4、固态相变的阻力为()及()。
5、平衡相变分为()、()、()、()、()。
6、非平衡相变分为()、()、()、()、()。
7、固态相变的分类,按热力学分类:()、();按原子迁动方式不同分类:()、();按生长方式分类()、()。
8、在体积相同时,新相呈()体积应变能最小。
A.碟状(盘片状) B.针状 C.球状9、简述固态相变的非均匀形核。
10、简述固态相变的基本特点。
第二章自测题试卷1、分析物相类型的手段有()、()、()。
2、组织观测手段有()、()、()。
3、相变过程的研究方法包括()、()、()。
4、阿贝成像原理为()。
5、物相分析的共同原理为()。
6、扫描电镜的工作原理简单概括为:()。
7、透射电子显微镜的衬度像分为()、()、()。
第三章自测题试卷1. 根据扩散观点,奥氏体晶核的形成必须依靠系统内的():A.能量起伏、浓度起伏、结构起伏B. 相起伏、浓度起伏、结构起伏C.能量起伏、价键起伏、相起伏D. 浓度起伏、价键起伏、结构起伏2. 奥氏体所具有的性能包括:()A.高强度、顺磁性、密度高、导热性差;B.高塑性、顺磁性、密度高、导热性差;C.较好热强性、高塑性、顺磁性、线膨胀系数大;D.较好热强性、高塑性、铁磁性、线膨胀系数大。
3. 影响奥氏体转变的影响因素包括()、()、()、()。
4.控制奥氏体晶粒大小的措施有:(),(),(),()。
5.奥氏体是Fe-C合金中的一种重要的相,一般是指(),碳原子位于()。
6. 绘图说明共析钢奥氏体的形成过程。
7. 奥氏体易于在铁素体和渗碳体的相界面处成核的原因是什么?8. 简述连续加热时奥氏体转变的特点。
9. 说明组织遗传的定义和控制方法。
(完整版)固态相变原理考试试题+答案

固态相变原理考试试题一、(20分)1、试对固态相变地相变阻力进行分析固态相变阻力包括界面能和应变能,这是由于发生相变时形成新界面,比容不同都需要消耗能量.(1)界面能:是指形成单位面积地界面时,系统地赫姆霍茨自由能地变化值.与大小和化学键地数目、强度有关.共格界面地化学键数目、强度没有发生大地变化,最小;半共格界面产生错配位错,化学键发生变化,次之;非共格界面化学键破坏最厉害,最大.(2)应变能①错配度引起地应变能(共格应变能):共格界面由错配度引起地应变能最大,半共格界面次之,非共格界面最小.②比容差引起地应变能(体积应变能):和新相地形状有关,,球状由于比容差引起地应变能最大,针状次之,片状最小.2、分析晶体缺陷对固态相变中新相形核地作用固相中存在各种晶体缺陷,如空位、位错、层错、晶界等,如果在晶体缺陷处形核,随着核地形成,缺陷将消失,缺陷地能量将给出一供形核需要,使临界形核功下降,故缺陷促进形核.(1)空位:过饱和空位聚集,崩塌形成位错,能量释放而促进形核,空位有利于扩散,有利于形核.(2)位错:①形成新相,位错线消失,会释放能量,促进形核②位错线不消失,依附在界面上,变成半共格界面,减少应变能.③位错线附近溶质原子易偏聚,形成浓度起伏,利于形核.④位错是快速扩散地通道.⑤位错分解为不全位错和层错,有利于形核.Aaromon总结:刃型位错比螺型位错更利于形核;较大柏氏矢量地位错更容易形核;位错可缠绕,割阶处形核;单独位错比亚晶界上位错易于形核;位错影响形核,易在某些惯习面上形成.(3)晶界:晶界上易形核,减小晶界面积,降低形核界面能二、(20分)已知调幅分解1、试分析发生调幅分解地条件只有当R(λ)>0,振幅才能随时间地增长而增加,即发生调幅分解,要使R(λ)>0,得且. 令R(λ)=0得λc—临界波长,则λ<λc时,偏聚团间距小,梯度项很大,R(λ)>0,不能发生;λ>λc时,随着波长增加,下降,易满足,可忽略梯度项,调幅分解能发生.2、说明调幅分解地化学拐点和共格拐点,并画出化学拐点、共格拐点和平衡成分点在温度——成分坐标中地变化轨迹化学拐点:当G”=0时.即为调幅分解地化学拐点;共格拐点:当G”+2η2Y=0时为共格拐点,与化学拐点相比共格拐点地浓度范围变窄了,温度范围也降低了.3、请说明调幅分解与形核长大型相变地区别1、阐明建立马氏体相变晶体学表象理论地实验基础和基本原理(1)实验基础1 / 32 /3 ① 在宏观范围内,惯习面是不应变面(不转变、不畸变);② 在宏观范围内,马氏体中地形状变形是一个不变平面应变;③ 惯习面位向有一定地分散度(指不同片、不同成分地马氏体);④ 在微观范围内,马氏体地变形不均匀,内部结构不均匀,有亚结构存在(片状马氏体为孪晶,板条马氏体为位错).(2)基本原理在实验基础上,提出了马氏体晶体学表象理论,指出马氏体相变时所发生地整个宏观应变应是下面三种应变地综合:① 发生点阵应变(Bain 应变),形成马氏体新相地点阵结构.但是Bain 应变不存在不变平面,不变长度地矢量是在圆锥上,所以要进行点阵不变切变.② 简单切边,点阵不变非均匀切变,在马氏体内发生微区域变形,不改变点阵类型,只改变形状,通过滑移、孪生形成无畸变面.③ 刚体转动,①②得到地无畸变地平面转回到原来地位置去,得到不畸变、不转动地平面.用W-R-L 理论来表示:P 1=RPB,P 1为不变平面应变地形状变形,B 为Bain 应变、用主轴应变来表示,R 为刚体转动、可以用矩阵来表示,P 为简单应变.2、阐明马氏体相变热力学地基本设想和表达式地意义答:基本设想:马氏体相变先在奥氏体中形成同成分地体心核胚,然后体心核胚再转变为马氏体M.所以马氏体相变自由能表达式为:M M G G G γγαα→→→∆=∆+∆,式中:① M G γ→∆表示奥氏体转变为马氏体地自由能差.,此时温度为Ms 温度.② G γα→∆表示母相中形成同成分地体心核胚时地自由能变化,定义为T 0温度γ与α地平衡温度,,为T<T 0时,产生核胚地温度.③ MG α→∆表示体心核胚转变为马氏体M 而引起地自由能变化.消耗于以下几个方面:切变能(进行不变平面切变、改变晶体结构和形状地能量);协作形变能(周围地奥氏体产生形变地能量);膨胀应变能(由于比容变化而致);存储能(形成位错地应变能、形成孪晶地界面能);其他(表面能、缺陷能、能量场地影响等).四、(20分)1、试解释沉淀相粒子地粗化机理由Gibbs-Thompson 定理知,在半径为r 地沉淀相周围界面处母相成分表达式: 2()()(1)m V C r C RTr αασ=∞-当沉淀相越小,其中每个原子分到地界面能越多,因此化学势越高,与它处于平衡地母相中地溶质原子浓度越高. 即:C (r 2)> C(r 1) .由此可见在大粒子r 1和小粒子r 2之间地基体中存在浓度梯度,因此必然有一个扩散流,在浓度梯度地作用下,大粒子通过吸收基体中地溶质而不断长大,小粒子则要不断溶解、收缩,放出溶质原子来维持这个扩散流.所以出现了大粒子长大、小粒子溶解地现象. 需要画图辅助说明!2、根据沉淀相粒子粗化公式:,分析粒子地生长规律(奥斯瓦尔德熟化)①当时,r=r ,rt ∂∂=0粒子不长大;②当时,r <r ,r t ∂∂<0小粒子溶解;③当时,r>r ,r t ∂∂>0粒子长大;④当时,r=2r ,r t ∂∂最大,长大最快;⑤长大过程中,小粒子溶解,大粒子长大,粒子总数减小,r 增加,更容易满足②,小粒子溶解更快;⑥温度T 升高,扩散系数D 增大,使rt ∂∂增大.所以当温度升高,大粒子长大更快, 小粒子溶解更快.五、(20分)已知新相地长大速度为:1、 试分析过冷度对长大速度地影响过冷度很小,∆gv 很小,∆gv 随过冷度地增加而增加,∆gv 越小长大速率越大,表明:长大速度u 与过冷度或者成正比,也就是当T 下降,过冷度增大,上升,长大速度u 增大.(1) 过冷度很很大,∆gv/kT 很大,exp(-∆gv/kT)→0,此时,温度越高长大速率越大,2、 求生长激活能过冷度很大时,exp(-∆gv/kT)→0,公式转化为0exp()Q kT μλν=-3 / 3 两边取对数,0exp()Q kT μλν=-则(ln )(1/)d Q K d T μ=-则为单个原子地扩散激活能,再乘以阿伏加德罗常数N 0,得生长激活能.。
《固态相变》测试题(2)

22.04.2011
1. 回答 回答3.10题,并说明为什么在 题 并说明为什么在Cu-Si合金中,富硅的κ相(HCP)和富 合金中, 合金中 富硅的κ ) 铜的α 合金中, 铜的α(FCC)之间可以形成完全共格界面,而在 )之间可以形成完全共格界面,而在Fe-C合金中,奥氏 合金中 体(FCC)和铁素体(BCC)之间只可能形成复杂半共格界面。 )和铁素体( )之间只可能形成复杂半共界面。 2. 什么是错配度δ和ε和体积错配度∆?它们之间具有什么关系? 什么是错配度δ 和体积错配度∆ 它们之间具有什么关系? 3. 若忽略基体和脱溶物之间的错配度,回答以下问题: 若忽略基体和脱溶物之间的错配度,回答以下问题: (1)脱溶物的形状和取向关系取决于什么? )脱溶物的形状和取向关系取决于什么? (2)说明在什么情况下基体和脱溶物之间的界面,有些是完全共格界面, )说明在什么情况下基体和脱溶物之间的界面,有些是完全共格界面, 有些是非共格界面,有些却可能是共格/半共格和非共格界面的组合 半共格和非共格界面的组合。 有些是非共格界面,有些却可能是共格 半共格和非共格界面的组合。 (3)说明界面为上述三种情况时,脱溶物将具有什么样的平衡形状,为 )说明界面为上述三种情况时,脱溶物将具有什么样的平衡形状, 什么? 什么? 4. 当存在错配度时,回答以下问题: 当存在错配度时,回答以下问题: (1)脱溶物的形状和取向关系取决于什么? )脱溶物的形状和取向关系取决于什么? (2)回答题 )回答题3.11,并说明为什么? ,并说明为什么? (3)说明为什么球状共格脱溶物在其长大过程倾向于丧失其共格性。 )说明为什么球状共格脱溶物在其长大过程倾向于丧失其共格性。
5. 说明什么是滑动型和非滑动型界面。并画图说明如何通过 说明什么是滑动型和非滑动型界面。并画图说明如何通过FCC晶体的 晶体的 ( 111)晶面上肖脱基不全位错的运动 , 使 FCC晶体转变为密排六方 ) 晶面上肖脱基不全位错的运动, 晶体转变为密排六方 晶体。 晶体。 6. 回答以下问题“ 回答以下问题“ (1)什么是非队列和队列型转变? )什么是非队列和队列型转变? (2)回答 )回答3.18题,并给出从母相向界面(溶质原子长程扩散)的溶质原 题 并给出从母相向界面(溶质原子长程扩散) 子流量的表达式。 子流量的表达式。 (3)什么是扩散控制转变、界面控制转变、界面和扩散混合控制转变? )什么是扩散控制转变、界面控制转变、界面和扩散混合控制转变? 说明 ∆µ iB 和 ∆µ α B 的物理意义,并在成分 的物理意义,并在成分——-自由能曲线中标出在上 自由能曲线中标出在上 和µα ∆ B 。 述三种控制情况下的µ iB ∆
固态相变原理测验试题+答案

固态相变原理测验试题+答案--————--———-——---————-——-————--— 作者: —————————————-——-—-——-—-——-—--—— 日期:固态相变原理考试试题一、(20 分) 1、试对固态相变的相变阻力进行分析 固态相变阻力包括界面能和应变能,这是由于发生相变时形成新界面,比容不同都需要消耗能量。
界面能 :是指形成单位面积的界面时,系统的赫姆霍茨自由能的变化值。
与大小和化学键的数目、强度有关。
为表面张力,为偏摩尔自由能, 为由于界面面积改变而引起的晶粒内部自由能变化 (1) 共格界面的化学键数目、强度没有发生大的变化,σ最小;半共格界面产生错配位错,化学键发生变化,σ次之;非共格界面化学键破坏最厉害,σ最大. (2) 应变能 ① 错配度引起的应变能(共格应变能):共格界面由错配度引起的应变能最大,半共格界面次之,非共格界面最小。
② 比容差引起的应变能(体积应变能):和新相的形状有关,,球状由于比容差引起的应变能最大,针状次之,片状最小。
2、分析晶体缺陷对固态相变中新相形核的作用固相中存在各种晶体缺陷,如空位、位错、层错、晶界等,如果在晶体缺陷处形核,随着核的形成,缺陷将消失,缺陷的能量将给出一供形核需要,使临界形核功下降,故缺陷促进形核。
(1) 空位:过饱和空位聚集,崩塌形成位错,能量释放而促进形核,空位有利于扩散,有利于形核。
(2) 位错:①形成新相,位错线消失,会释放能量,促进形核②位错线不消失,依附在界面上,变成半共格界面,减少应变能。
③位错线附近溶质原子易偏聚,形成浓度起伏,利于形核。
④位错是快速扩散的通道.⑤位错分解为不全位错和层错,有利于形核。
Aaromon 总结:刃型位错比螺型位错更利于形核;较大柏氏矢量的位错更容易形核;位错可缠绕,割阶处形核;单独位错比亚晶界上位错易于形核;位错影响形核,易在某些惯习面上形成.(3)晶界:晶界上易形核,减小晶界面积,降低形核界面能二、(20 分) 已知调幅分解浓度波动方程为:1、试分析发生调幅分解的条件,其中:只有当 R(λ)>0,振幅才能随时间的增长而增加,即发生调幅分解,要使 R(λ)>0,得 G”<0 且| G”|>2η2Y+8π2k/λ2 令 R(λ)=0 得 λc—临界波长,则 λ<λc 时,偏聚团间距小,梯度项 8π2k/λ2 很大,R(λ)>0,不能发生;λ>λc 时,随着波长增加,8π2k/λ2 下降,易满足| G”| >2η2Y+8π2k/λ2,可忽略梯度项,调幅分解能发生。
固态相变原理习题集答案

固态相变课程复习思考题2012-5-171.说明金属固态相变的主要分类及其形式2.说明金属固态相变的主要特点3.说明金属固态相变的热力学条件与作用4.说明金属固态相变的晶核长大条件和机制5.说明奥氏体的组织特征和性能6.说明奥氏体的形成机制7.简要说明珠光体的组织特征8.简要说明珠光体的转变体制9.简要说明珠光体转变产物的机械性能10.简要说明马氏体相变的主要特点11.简要说明马氏体相变的形核理论和切边模型12.说明马氏体的机械性能,例如硬度、强度和韧性13.简要说明贝氏体的基本特征和组织形态14.说明恩金贝氏体相变假说15.说明钢中贝氏体的机械性能16.说明钢中贝氏体的组织形态17.分析合金脱溶过程和脱溶物的结构18.分析合金脱溶后的显微组织19.说明合金脱溶时效的性能变化20.说明合金的调幅分解的结构、组织和性能21.试计算碳含量为2.11%(质量分数)奥氏体中,平均几个晶胞有一个碳原子?22.影响珠光体片间距的因素有哪些?23.试述影响珠光体转变力学的因素。
24.试述珠光体转变为什么不能存在领先相25.过冷奥氏体在什么条件下形成片状珠光体,什么条件下形成粒状珠光体26.试述马氏体相变的主要特征及马氏体相变的判据27.试述贝氏体转变与马氏体相变的异同点28.试述贝氏体转变的动力学特点29.试述贝氏体的形核特点30.熟悉如下概念:时效、脱溶、连续脱溶、不连续脱溶。
31.试述Al-Cu合金的时效过程,写出析出贯序32.试述脱溶过程出现过渡相的原因33.掌握如下基本概念:固态相变、平衡转变、共析相变、平衡脱溶、扩散性相变、无扩散型相变、均匀形核、形核率1.说明金属固态相变的主要分类及其形式?(1)按热力学分类:①一级相变②二级相变(2)按平衡状态图分类:①平衡相变㈠同素异构转变和多形性转变㈡平衡脱溶沉淀㈢共析相变㈣调幅分解㈤有序化转变②非平衡相变㈠伪共析相变。
㈡马氏体相变。
㈢贝氏体相变。
㈣非平衡脱溶沉淀。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14.说明恩金贝氏体的相变假说?
恩金认为贝氏体相变应属于马氏体相变性质,由于随后回火析出碳化物而形成贝氏体,提出了贫富碳理论假说。 该假说认为,在贝氏体相变发生之前奥氏体中已经发生了碳的扩散重新分配,形成了贫碳区和富碳区。在贫碳区发生 马氏体相变而形成低碳马氏体,然后马氏体迅速回火形成过饱和铁素体和渗碳体的机械混合物,即贝氏体。在富碳区 中首先析出渗碳体,使其碳浓度下降成为贫碳区,然后从新的贫碳区通过马氏体相变形成马氏体,尔后又通过回火成 为铁素体加渗碳体的两相机械混合物(贝氏体)。而在相变过程中铁及合金元素的原子是不发生扩散的。 恩金假说解释贝氏体的形成、BS 点的意义和贝氏体中铁素体的碳浓度随等温温度变化等现象,但没有解释贝氏体 的形态变化和组织结构等。
2.说明金属固态相变的主要特点?
⑴相界面:根据界面上新旧两相原子在晶体学上匹配程度的不同,可分为共格界面、半共格界面和非共格界面。 ⑵位向关系与惯习面:在许多情况下,金属固态相变时新相与母相之间往往存在一定的位向关系,而且新相往往在母 相一定的晶面上开始形成,这个晶面称为惯习面通常以母相的晶面指数来表示。 ⑶弹性应变能:金属固态相变时,因新相和母相的比容不同可能发生体积变化。但由于受到周围母相的约束,新相不 能自由膨胀,因此新相与其周围母相之间必将产生弹性应变和应力,使系统额为地增加了一项弹性应变能。 ⑷过渡相的形成:当稳定的新相与母相的晶体结构差异较大时,母相往往不直接转变为自由能最低的稳定新相,而是 先形成晶体结构或成分与母相比较接近,自由能比母相稍低些的亚稳定的过渡相。 ⑸晶体缺陷的影响:固态晶体中存在着晶界、亚晶界、空位及位错等各种晶体缺陷,在其周围点阵发生畸变,储存有 畸变能。一般地说,金属固态相变时新相晶核总是优先在晶体缺陷处形成。 ⑹原子的扩散:在很多情况下,由于新相和母相的成分不同,金属固态相变必须通过某些组织的扩散才能进行,这时 扩散便成为相变的控制因素。
5、说明奥氏体组织特征和性能?
答: 组织特征: 奥氏体的通常是由等轴状的多边形晶粒所组成, 晶内常可出现相变孪晶。 它是 C 溶于γ -Fe 中的固溶体, C 原子γ -Fe 点阵中处于 Fe 原子组成的八面体中心间隙位置,即面心立方晶胞的中心或棱边中心。 性能: (1)奥氏体的硬度和屈服强度不高。 (2)塑性好,易变形、加工成形性好。 (3)具有最密排结构,致密度 高,比容最小。 (4)铁原子自扩散激活能大,扩散系数小,热强性好,可用作高温钢。 (5)具有顺磁性,转变产物胃
3.说明金属固态相变的热力学条件与作用?
金属固态相变的热力学条件: (1)相变驱动力 相变热力学指出,一切系统都有降低自由能以达到稳定状态的自发趋势。若具备引起自由能降低的条件,系统将由 高能到低能转变转变,称为自发转变。金属固态相变就是自发转变,则新相自由能必须低于旧相自由能。新旧两相自 由能差既为相变的驱动力,也就是所谓的相变热力学条件。 (2)相变势垒 要使系统有旧相转变为新相除了驱动力外,还要克服相变势垒。所谓相变势垒是指相变时改组晶格所必须克服的 原子间引力。 金属固态相变的热力学作用:①为相变的发生提供动力;②明确相变发生所要克服的势垒,即激活能。
10、简要说明马氏体相变的主要特点?(主要见 26)
答:1、切变共格和表面浮突现象 2、无扩散性 3、具有特定的位向关系和惯习面 4、在一个温度范围内完成相变 5、可逆性
11.简要说明马氏体相变的形核理论和切变模型?
(1)形核理论: 马氏体相变不是均匀形核的。当奥氏体被过冷至某一温度时,尺寸大于该温度下临界晶核尺寸的核胚就能成为晶 核,长成一片马氏体;当大于临界尺寸的核胚消耗殆尽时,相变停止,只有进一步降低温度才能使更小的核胚成为晶 核进而长成马氏体。 一般认为,马氏体核胚的结构模型为薄圆片状,惯习面为{225}γ ,其界面是由左、右螺旋位错圈和正、负刃型位 错所构成,界面两侧保持 K-S 关系。
1.说明金属固态相变的主要分类及其形式?
(1)按热力学分类:①一级相变②二级相变 (2)按平衡状态图分类:①平衡相变 ㈠同素异构转变和多形性转变㈡平衡脱溶沉淀㈢共析相变㈣调幅分解㈤有序化转变 ②非平衡相变㈠伪共析相变。㈡马氏体相变。㈢贝氏体相变。㈣非平衡脱溶沉淀。 (3)按原子迁移情况分类:①扩散型相变。②非扩散型相变 (4)按相变方式分类:①有核相变②无核相变
固态相变课程复习思考题 2012-5-17
1.说明金属固态相变的主要分类及其形式 2.说明金属固态相变的主要特点 3.说明金属固态相变的热力学条件与作用 4.说明金属固态相变的晶核长大条件和机制 5.说明奥氏体的组织特征和性能 6.说明奥氏体的形成机制 7.简要说明珠光体的组织特征 8.简要说明珠光体的转变体制 9.简要说明珠光体转变产物的机械性能 10.简要说明马氏体相变的主要特点 11.简要说明马氏体相变的形核理论和切边模型 12.说明马氏体的机械性能,例如硬度、强度和韧性 13.简要说明贝氏体的基本特征和组织形态 14.说明恩金贝氏体相变假说 15.说明钢中贝氏体的机械性能 16.说明钢中贝氏体的组织形态 17.分析合金脱溶过程和脱溶物的结构 18.分析合金脱溶后的显微组织 19.说明合金脱溶时效的性能变化 20.说明合金的调幅分解的结构、组织和性能 21.试计算碳含量为 2.11%(质量分数)奥氏体中,平均几个晶胞有一个碳原子? 22.影响珠光体片间距的因素有哪些? 23.试述影响珠光体转变力学的因素。 24.试述珠光体转变为什么不能存在领先相 25.过冷奥氏体在什么条件下形成片状珠光体,什么条件下形成粒状珠光体 26.试述马氏体相变的主要特征及马氏体相变的判据 27.试述贝氏体转变与马氏体相变的异同点 28.试述贝氏体转变的动力学特点 29.试述贝氏体的形核特点 30.熟悉如下概念:时效、脱溶、连续脱溶、不连续脱溶。 31.试述 Al-Cu 合金的时效过程,写出析出贯序 32.试述脱溶过程出现过渡相的原因 33.掌握如下基本概念: 固态相变、平衡转变、共析相变、平衡脱溶、扩散性相变、无扩散型相变、均匀形核、形核率
8.简要说明珠光体的转变机制?
珠光体转变是一个形核长大的过程,可分为片状珠光体和粒状珠光体。珠光体是由铁素体和渗碳体两相组成的, 因此有领先相的问题,一般认为,过冷度小的时候渗碳体是领先相,过冷度大时铁素体是领先相。 1.片状珠光体的形成是由于均匀的奥氏体冷却到 A1 点以下时,因为能量,成分和结构起伏,首先在形核功较小的晶 界上形成一小片渗碳体晶核,长大过程中,纵向长大是渗碳体片和铁素体片同时连续的向奥氏体中延伸,而横向长大 是渗碳体片与铁素体片交替堆叠增多。 2 粒状珠光体是通过片状珠光体中渗碳体的球化而获得的。
13.贝氏体基本特征与组织形态?
答:一、基本特征: ①贝氏体相变的温度范围:奥氏体必须过冷到 BS 点一下才能发生贝氏体转变; ②贝氏体相变的产物为铁素体和碳化物的两相机械混合物; ③贝氏体相变是形核和长大的过程; ④贝氏体相变只有 C 原子的扩散,而合金元素包括铁原子均不发生扩散,至少不发生较长距离的扩散; ⑤贝氏体相变是铁素体与渗碳体按切变共格的方式长大。 二、组织形态:①上贝氏体;②下贝氏体;③粒状贝氏体;④无碳化物贝氏体;⑤低碳低合金钢中的 BI,BII,BIII。
15.说明钢中贝氏体的机械性能?
答:1)影响主要因素:①贝氏体中铁素体的影响:铁素体晶粒越细小,贝氏体的强度越高,而且韧性有时还有所提高; ②渗碳体的影响:据弥散强化机理,碳化物颗粒尺寸约细小,数量越多,对强度的贡献越大;③其他因素:温度及相 变的完全性等。 2)贝氏体的强度与硬度:随相变温度降低而升高,另外,由于中、高碳钢特别是高碳钢中的下贝氏体组织具有较 高的强度和韧性,因此有望具有高的耐磨性。 3)贝氏体的韧性:低碳钢中,上贝氏体的冲击韧性比下贝氏体要低;与淬火低温回火处理相比,等温淬火获得的 下贝氏体组织常具有较高的冲击韧性。
铁磁性,可作为无磁性钢。 (6)线膨胀系数大,可作热膨胀灵敏仪表元件(7)导热性差,加热应采用小热速度,以免 工件变形。
6、说明奥氏体形成机制?
答:奥氏体的形成是一个由α 到γ 的点阵重构、渗碳体溶解以及 C 在奥氏体中扩散重新分布的过程。其形成过程包括: ①奥氏体形核,其形核位置通常在铁素体和渗碳体的两相界面上; ②奥氏体晶核向α 及 Fe3C 两个方向长大, 奥氏体在中的碳溶度差是奥氏体形核的必然结果, 是相界面推移的驱动力。 ③剩余碳化物溶解。 ④奥氏体均匀化。
7、简要说明珠光体的组织特征?
答:共析碳钢加热奥氏体化后缓慢冷却,在稍低于 A1 温度时奥氏体将分解为铁素体与渗碳体的混合物,成为珠光体。 其典型形态呈片状或层状。 片状珠光体是由一层铁素体与一层渗碳体交替堆叠而成的。 片状珠光体的片层间距 S0 大小主要取决于珠光体的形 成温度。在连续冷却条件下,冷去速度越大,珠光体的形成温度越低,即过冷度越大,则片层间距就越小。珠光体是 在一个温度范围内形成,在高温形成的珠光体较粗,低温形成的珠光体较细 在铁素体基体上分布着粒状渗碳体的组织,成为“粒状珠光体”和“球状珠光体” ,一般是经过球化退火处理后获 得的。 珠光体形成时,新相(铁素体和渗碳体)与母相(奥氏体)之间存在一定的晶体学位相关系,使新相和母相的原 子在界面上能够较好地匹配。此外,在珠光体团中,铁素体与渗碳体之间也存在一定的位相关系
16.说明钢中马氏体的组织形态?
答:1)板条状马氏体是低碳钢、中碳钢和不锈钢中形成的一种典型的马氏体组织,其光学显微组织是由多成群的板条 组成,亚结构主要为位错。 2)片状马氏体是中高碳钢中的另一种典型的马氏体组织, 片状马氏体的空间形态呈双凸透镜片状,与马氏体片之 间不互相平行,亚结构为孪晶。 3)其他马氏体形态:①蝶状马氏体;②薄片状马氏体;③ 马氏体
4.说明金属固态相变的晶核长大条件和机制?
金属固态相变的晶核长大条件:①要求具有合适的过冷度;②有合适的晶核表面结构 金属固态相变的晶核长大机制: 如果新相晶核与母相之间存在着一定的晶体学位向关系,则生长时此位向关系仍保持不变,以便降低表面能。新 相的生长机制也与晶核的界面结构有密切关系,具有共格、半共格或非共格界面的晶核,其长大方式也各不相同,不 过完全共格情况很少,大都是非共格和半共格界面。 (1)非共格界面的迁移 一般非共格界面的迁移方式有两种;一种方式是母相原子通过热激活越过界面不断地短程迁入新相,界面随之向 母相中迁移,新相长大。另一种方式是非共格界面呈台阶状结构,台阶的高度为一个原子的尺度。 (2)半共格界面的迁移 因半共格界面具有较低的界面能,故在长大过程中界面往往保持平面。由于相变过程中原子迁移都小于一个原子 间距,故又称为无扩散型相变。