分式乘除法教学设计

合集下载

分式的乘除_教案(教学设计)

分式的乘除_教案(教学设计)

分式的乘除【教学目标】1.让学生通过实践总结分式的乘除法,并能较熟练地进行式的乘除法运算。

2.使学生理解分式乘方的原理,掌握乘方的规律,并能运用乘方规律进行分式的乘方运算。

3.引导学生通过分析、归纳,培养学生用类比的方法探索新知识的能力。

【教学重难点】1.重点:分式的乘除法、乘方运算。

2.难点:分式的乘除法、混合运算,以及分式乘法,除法、乘方运算中符号的确定。

【教学过程】一、复习提问:(1)什么叫做分式的约分?约分的根据是什么?(2)下列各式是否正确?为什么?二、探索分式的乘除法的法则1.回忆: 计算:10965⨯; 4365÷。

2.例1计算:(1)x b ay by x a 2222⋅; (2)222222xb yz a z b xy a ÷。

由学生先试着做,教师巡视。

3.概括:分式的乘除法用式子表示即是:4. 例2计算:493222--⋅+-x x x x 。

分析:①本题是几个分式在进行什么运算?②每个分式的分子和分母都是什么代数式?③在分式的分子、分母中的多项式是否可以分解因式,怎样分解?④怎样应用分式乘法法则得到积的分式? 解:原式=)2)(2()3)(3(32-+-+⋅+-x x x x x x =23+-x x 。

5.练习: 计算:2()x y xy x xy --÷ 三、探索分式的乘方的法则1.思考我们都学过了有理数的乘方,那么分式的乘方该是怎样运算的呢?先做下面的乘法:(1)=∙∙=⎪⎭⎫ ⎝⎛b a b a b a b a 3=∙∙∙∙b b b a a a 33b a ; (2)=∙∙∙=⎪⎭⎫ ⎝⎛b a b a b a b a n n n b a 。

2.仔细观察这两题的结果,你能发现什么规律?与同伴交流一下,然后完成下面的填空: (mn )(k ) =___________(k 是正整数)。

3.22212(1)441x x x x x x x-+÷+⨯++-4.练习:(1)判断下列各式正确与否:(2)计算下列各题:【作业布置】1.怎样进行分式的乘除法?2.怎样进行分式的乘方?。

分式的乘除法教案

分式的乘除法教案

分式的乘除法教案一、教学目标:1. 让学生理解分式的乘法和除法运算规则。

2. 培养学生运用分式的乘除法解决实际问题的能力。

3. 提高学生对分式运算的兴趣和自信心。

二、教学内容:1. 分式的乘法运算:分子乘分子,分母乘分母;2. 分式的除法运算:将除法转化为乘法,即乘以倒数;3. 特殊情况的处理:分式的值为0和不存在的情况。

三、教学重点与难点:1. 教学重点:分式的乘法运算规则和除法运算规则;2. 教学难点:特殊情况下分式的处理和实际应用。

四、教学方法:1. 采用直观演示法,通过例题展示分式的乘除法运算过程;2. 采用归纳法,引导学生总结分式的乘除法运算规则;3. 采用小组讨论法,让学生合作解决实际问题。

五、教学准备:1. 教案、PPT、黑板;2. 练习题;3. 教学工具:多媒体设备。

【教学环节】1. 导入:通过生活实例引入分式的乘除法运算,激发学生兴趣。

2. 新课讲解:讲解分式的乘法运算规则,举例说明,让学生跟随老师一起动手操作。

3. 课堂练习:布置练习题,让学生独立完成,巩固新知识。

4. 讲解分式的除法运算:讲解除法转化为乘法的原理,举例说明。

5. 课堂练习:布置练习题,让学生独立完成,巩固新知识。

6. 特殊情况处理:讲解分式的值为0和不存在的情况,举例说明。

7. 课堂练习:布置练习题,让学生独立完成,巩固新知识。

8. 总结:让学生总结分式的乘除法运算规则,加深印象。

9. 课堂小测:进行课堂小测,了解学生掌握情况。

10. 课后作业:布置课后作业,让学生巩固所学知识。

六、教学评估:1. 通过课堂练习和小测,评估学生对分式乘除法的理解和应用能力。

2. 观察学生在小组讨论中的表现,了解他们的合作能力和解决问题的策略。

3. 收集学生的课后作业,分析他们的错误类型和解决问题的思路。

七、教学反思:1. 反思教学过程中的有效性和学生的参与度,考虑如何改进教学方法以提高学生的学习兴趣。

2. 分析学生的学习困难,针对性地调整教学内容和策略。

八年级分式的乘除说课稿9篇

八年级分式的乘除说课稿9篇

八年级分式的乘除说课稿9篇八年级分式的乘除说课稿(精选篇1)教学目标(一)教学知识点1.分式乘除法的运算法则,2.会进行分式的乘除法的运算。

(二)能力训练要求1.类比分数乘除法的运算法则。

探索分式乘除法的运算法则。

2.在分式乘除法运算过程中,体会因式分解在分式乘除法中的作用,发展有条理的思考和语言表达能力。

3.用分式的乘除法解决生活中的实际问题,提高“用数学”的意识。

(三)情感与价值观要求1.通过师生共同交流探讨,使学生在掌握知识的基础上,认识事物之间的内在联系,获得成就感。

2.培养学生的创新意识和应用数学的意识。

教学重点让学生掌握分式乘除法的法则及其应用。

教学难点分子分母是多项式的分式的乘除法的运算。

教学方法引导启发探求教具准备投影片四张第一张:探索交流,(记作§3.2 A);第二张:例1,(记作§3.2 B);第三张:例2,(记作§3.2 C);第四张:做一做,(记作§3.2 D)。

教学过程Ⅰ。

创设情境,引入新课[师]上节课,我们学习了分式的基本性质,我们可以发现它与分数的基本性质类似,那么分式的运算是否也和分数的运算类似呢?下面我们看投影片(§3.2 A)探索交流--观察下列算式:× = , × = ,÷ = × = , ÷ = × = .猜一猜× =? ÷ =?与同伴交流。

[生]观察上面运算,可知:两个分数相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分数相除,把除数的分子和分母颠倒位置后,再与被除数相乘。

即× = ;÷ = × = .这里字母a,b,c,d都是整数,但a,c,d不为零。

[师]如果让字母代表整式,那么就得到类似于分数的分式的乘除法。

Ⅱ。

讲授新课1.分式的乘除法法则[师生共析]分式的乘除法法则与分数的乘除法法则类似:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。

初中数学_《分式的乘法除法》教学设计学情分析教材分析课后反思

初中数学_《分式的乘法除法》教学设计学情分析教材分析课后反思

分式的乘除法教学设计课型:新授 教师姓名:教学目标: 1、理解分式的乘除运算法则2、会进行简单的分式的乘除法运算教学重点:分式的乘除法运算教学难点:1、分式的乘除法法则的理解2、分子与分母是多项式的分式乘除法运算一、复习回顾1、化简:(1)bc a ac 22142- (2)aa a 2422+- 设计意图:当分子与分母是单项式的时候,可以直接进行约分化简;但当分子与分母是多项式的时候,就要先进行因式分解,然后再约去公因式化简,所以设计这一题考查学生对约分的定义的理解,约分一定要求在分子与分母是乘法的状态下才能进行。

2、计算:(1),10932⨯ (2)211075÷ 3、思考:(1)说出分数的乘除法的法则;分数乘以分数,用分子的积做积的分子,分母的积做积的分母;分数除以分数,把除数的分子分母颠倒位置,与被除数相乘.(2)试一试计算:猜一猜:=⨯c d a b;=÷cd a b 你能总结分式乘除法的法则吗?与同伴交流。

c bd a c d b a ⨯⨯=⨯, db c a d c b a c d b a ⨯⨯=⨯=÷ 二、小组讨论与归纳通过类比分数的乘除法的法则,你能得到分式的乘除法的法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.设计意图:通过分数的乘除法运算,帮助学生回顾分数的乘除法法则,让学生体会一下类比的数学思想,从而讨论归纳出分式的乘除法法则。

三、例题学习,计算:例题1:(1)226283a y y a⋅ 例题2(1)x y xy 2262÷ 注意:计算结果一定要化为最简分式四、巩固练习,计算:化简:(1)2a b b a⋅ (2) )(x y y x x y -⋅÷ (3)xy xy 3232÷- (4))21()3(43x y x y x -⋅-÷ 5、先观察下面分式的分子与分母与第1到第4题有什么不同之处,然后做一做: aa a a 21222+•-+ 尝试之后老师提问:1、按法则来做分子乘以分子,分母乘以分母,你是先做乘法运算吗?2、分子与分母能进行约分吗?3、总结:当分子与分母是多项式的分式的乘除法运算应注意哪些细节?五、例题学习,计算:1、 bb a a b -+•-2239 2、41441222--÷+--a a a a a注意:当分式的分子与分母都是单项式时:(1)乘法运算步骤是,①用分子的积做积的分子,分母的积做积的分母;②约分(2)除法的运算步骤是,把除式中的分子与分母颠倒位置后,与被除式相乘,其它与乘法运算步骤相同。

3.3《分式的乘法与除法》教学案2

3.3《分式的乘法与除法》教学案2

3.3 分式的乘法与除法 教学案【教学目标】1.通过与分数乘除法法则的类比经,探索分式的乘除法运算法则。

2.运用分式的乘除运算法则,进行分式的简单运算。

【教学重点】运用分式的乘除法运算法则,进行简单分式的乘除运算。

【学习过程】第一部分 预习设计【预习目标】1.通过与分数乘除法法则的类比经,探索分式的乘除法运算法则。

2.运用分式的乘除运算法则,进行分式的简单运算。

学习任务一:自学教材78交流与发现,类比分数乘除法的运算法则,探索分式乘除法的运算法则。

1、类比分数的乘除法则计算:⑴b a ·d c = ⑵b a ÷d c= 2、由以上算式我们可得到分式的乘法和除法的运算法则分别是:乘法法则:除法法则:学习任务二:自学教材第79-80页内容,会进行简单分式的乘除运算。

1、分析例1和例2,仿照例题做下面的题目,理解分式乘除法的解法。

(1)235bc a -·223ab c - (2)222235b a c b a -÷ (3)242x x -+÷24x x - 思考:1)在运算过程中应进行 ,把结果化为 ;2)在进行分式的乘除运算时,如果分子与分母是多项式,应当先进行2、注意:分式的分子或分母中带有负号时要注意商的符号!预习检测:计算:1)m n ·n m2)4x ÷3x3)2a b -÷22a b4)1a a -·1b a - 5)24a x -÷22a x - 6)422643xy yx ÷- 7)abc bc a 853)2(22⋅ 8)()x y xy 3232÷- 预习质疑:第二部分课中实施 一、问题收集二、问题处理,精讲点拨1、讲解学生预习中的共性问题2、典型例题解析课本79页例2和80页例3三、反思拓展:四、计算:(1)2214m m m -+-·241m m --(2)x xx x x x x x x -+∙-÷+++-33944962222五、强化训练课本练习1、2、3题六、系统总结:。

人教版数学八年级上册15.2.1分式的乘除(第2课时)教学设计

人教版数学八年级上册15.2.1分式的乘除(第2课时)教学设计
2.教师通过具体的例题,演示分式乘除法的运算步骤,强调注意事项,如符号处理和化简方法。
3.教师引导学生观察分式乘除法与整式乘除法之间的联系,如乘法分配律、交换律等,帮助学生更好地理解分式乘除法。
4.教师通过讲解典型例题,让学生了解分式乘除法在实际问题中的应用,培养学生将数学知识应用于解决实际问题的能力。
2.学生分享自己在学习分式乘除法过程中的收获和感悟,以及遇到的困难和问题。
3.教师针对学生的反馈,进行针对性的解答和指导,巩固学生的知识点。
4.教师布置课后作业,要求学生在课后继续巩固所学知识,为下一节课的学习做好准备。
五、作业布置
为了巩固本节课所学的分式乘除知识,培养学生的数学思维能力,特布置以下作业:
(三)学生小组讨论
1.教师将学生分成小组,每组挑选一道具有代表性的分式乘除题目进行讨论。
2.学生在小组内部分享自己的解题思路和方法,互相交流,共同探讨。
3.各小组在讨论过程中,教师巡回指导,关注学生的解题过程,及时发现问题并给予指导。
4.讨论结束后,各小组派代表进行汇报,分享本组的讨论成果和心得体会。
5.练习巩固:设计难易程度不同的练习题,让学生独立完成,巩固所学知识。针对学生的错误,教师要及时给予指导和纠正。
6.知识拓展:引导学生将分式乘除法与整式乘除法进行对比,总结它们之间的联系与区别,提高学生的数学思维能力。
7.总结反馈:在教学结束时,教师对本节课的内容进行总结,强调重点和难点。同时,鼓励学生分享自己的学习心得,以便教师了解学生的学习情况。
4.实践题:结合生活实际,设计一道与分式乘除相关的实际问题,要求学生运用所学知识解决问题,并简要说明解题思路。此举旨在培养学生的知识运用能力和创新意识。
5.小组讨论题:以小组为单位,共同探讨以下问题:“分式乘除法在生活中的应用有哪些?”并撰写一篇简要的讨论报告,培养学生的合作意识和沟通能力。

《分式的乘除》教案

《分式的乘除》教案

《分式的乘除》教案分式的乘除教案一、教学目标1. 理解分式的定义和基本概念。

2. 掌握分式的乘法和除法运算规则。

3. 能够解决与分式有关的实际问题。

二、教学重点1. 分式的乘法和除法运算规则。

2. 实际问题的解决。

三、教学难点实际问题的解决。

四、教学准备1. 教师准备:课本、黑板、粉笔。

2. 学生准备:课本、笔记。

五、教学过程1. 概念解释和引入(老师在黑板上写下分式的定义)分式是由分子和分母组成的数,通常用a/b的形式表示,其中a为分子,b为分母,b不等于0。

2. 分式的乘法运算规则(老师在黑板上写下分式的乘法运算规则)分式的乘法运算规则:两个分式相乘时,分子与分子相乘,分母与分母相乘。

例如: 2/3 × 4/5 = (2 × 4)/(3 × 5)= 8/153. 分式的除法运算规则(老师在黑板上写下分式的除法运算规则)分式的除法运算规则:两个分式相除时,分子与分子相乘,分母与分母相乘,然后将被除数的倒数变为乘数。

例如: 2/3 ÷ 4/5 = (2/3)×(5/4)= (2 × 5)/(3 × 4)= 10/12 = 5/64. 例题讲解和练习(老师在黑板上列出一些练习题,学生们进行解答,并逐一讲解)例题1:计算 3/5 × 7/8解答: 3/5 × 7/8 = (3 × 7)/(5 × 8)= 21/40例题2:计算 4/9 ÷ 2/3解答: 4/9 ÷ 2/3 = (4/9)×(3/2)= (4 × 3)/(9 × 2)= 12/18 =2/3例题3:计算 5/6 × 2/5 ÷ 3/4解答: 5/6 × 2/5 ÷ 3/4 = (5/6)×(2/5)÷(3/4)= (5 × 2)/(6 ×5)÷(3/4)= 10/30 ÷(3/4)= 10/30 ×(4/3)= (10 × 4)/(30 × 3)= 40/90 = 4/95. 实际问题解决(老师给出一些与分式有关的实际问题,并帮助学生思考和解决)例题4:小明做了1/3个小时的作业,他又做了2/5个小时的作业,他总共做了多长时间的作业?解答:首先计算出1/3 + 2/5 = (1 × 5 + 2 × 3)/(3 × 5)= (5 + 6)/15 = 11/15,所以小明总共做了11/15个小时的作业。

5.2.分式的乘除法(教案)

5.2.分式的乘除法(教案)
在讲授过程中,我特别强调了分式乘除法则,并且用了一些具体的案例来说明。但是,从学生们的反馈来看,可能还需要更多不同类型的例题来帮助他们更好地理解和消化这些规则。
小组讨论的环节,我发现学生们在交流中能够互补不足,互相学习。但是,也有个别小组在讨论时偏离了主题,这提醒我在今后的教学中,需要更加明确讨论的目标和范围,确保讨论的有效性。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解分式乘除法的基本概念。分式乘除法是指对两个或多个分式进行乘法或除法运算的方法。它在数学运算中非常重要,可以帮助我们解决生活中的许多实际问题。
2.案例分析:接下来,我们来看一个具体的案例。假设我们要计算两个物体的速度比,我们可以通过分式乘除法来得到答案。这个案例展示了分式乘除法在实际中的应用,以及它如何帮助我们解决问题。
5.2.分式的乘除法(教案)
一、教学内容
本节课选自教材第五章第二节“分式的乘除法”。主要内容包括:
1.掌握分式乘法的法则,能够正确进行分式的乘法运算。
-分式乘法法则:a/b × c/d = ac/bd(b、d不为0)
2.掌握分式除法的法则,能够正确进行分式的除法运算。
-分式除法法则:a/b ÷ c/d = a/b × d/c(b、c、d不为0)
3.重点难点解析:在讲授过程中,我会特别强调分式乘法法则和分式除法法则这两个重点。对于难点部分,比如分式乘除混合运算的顺序和符号处理,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与分式乘除法相关的实际问题,如计算购物打折后的价格。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,比如使用代数式的分式乘除法来计算几何图形的面积比。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式的乘除法教学设计
课题:分式的乘除法
课型:新授 授课班级:______ 日/月:________ 教学目标: 1、理解分式的乘除运算法则
2、会进行简单的分式的乘除法运算
教学重点:分式的乘除法运算
教学难点:1、分式的乘除法法则的理解
2、分子与分母是多项式的分式乘除法运算
一、复习回顾
1、化简:(1)、bc a ac 22142- (2)、a
a a 2422+-
设计意图:当分子与分母是单项式的时候,可以直接进行约分化简;但当分子与分母是多项式的时候,就要先进行因式分解,然后再约去公因式化简,所以设计这一题考查学生对约分的定义的理解,约分一定要求在分子与分母是乘法的状态下才能进行。

2、计算:
(1)
,10932⨯ (2)21
1075÷
3、思考:(1)说出分数的乘除法的法则; (2)试一试计算:=⨯2
2
10932a b b a 2)
1(2110)1(75+÷+x x 设计意图:通过分数的乘除法运算,帮助学生回顾分数的乘除法法则,另个第3题完全按照第2题的结构加入一些单项式与多项式,让学生体会一下类比的数学思想,从而讨论归纳出分式的乘除法法则。

二、小组讨论与归纳(书本P74页)
通过类比分数的乘除法的法则,你能得到分式的乘除法的法则:
三、例题学习,计算:
1、223243a y y a •
2、x y xy 2263÷
3、)8(5122y x a
xy -÷
注意:计算结果一定要化为
四、巩固练习,计算:
1、
2a b b a • 2、c
b a a b
c 222•
3、x y xy 3232÷-
4、y x a
y x 236512÷
5、先观察下面分式的分子与分母与第1到第4题有什么不同之处,然后做一做: a
a a a 21222+•-+
尝试之后老师提问:
1、按法则来做分子乘以分子,分母乘以分母,你是先做乘法运算吗?
2、分子与分母能进行约分吗?
3、总结:当分子与分母是多项式的分式的乘除法运算应注意哪些细节?
五、例题学习,计算:
1、 b
b a a b -+•-2239 2、41441222--÷+--a a a a a
注意:当分式的分子、分母中有多项式,先分解因式再约分。

六、巩固练习与测评
计算下列各式:
1、 y x xy y x xy x -÷-+2
2、 ab
a a
b a b a b a -+•+-22 3、)4(2442222y x y x y xy x -÷++-
七、有效拓展
已知:a a a •=2,则=2)(b a ___________=_________ 类比得:=n
b a
)(___________ 计算:(1)32224)2(c b a a b • (2)2)(b a b b a a -•- 3、)3(2
962y y y y -÷++-
八、布置作业:完成课后习题。

相关文档
最新文档