中考数学总复习教案 课时7 一元一次方程及其应用【教案】
初中数学中考总复习教案

初中数学中考总复习教案第一章:实数与代数1.1 有理数理解有理数的定义及分类掌握有理数的加减乘除运算规则能够进行有理数的乘方和开方运算1.2 整式与分式理解整式和分式的定义掌握整式和分式的加减乘除运算规则能够进行整式和分式的化简和求值第二章:函数与方程2.1 一次函数和二次函数理解一次函数和二次函数的定义和性质掌握一次函数和二次函数的图像和解析式能够解决一次函数和二次函数的实际问题2.2 一元一次方程和一元二次方程理解一元一次方程和一元二次方程的定义和解法掌握一元一次方程和一元二次方程的解法和应用能够解决一元一次方程和一元二次方程的实际问题第三章:几何与变换3.1 平面几何基本概念理解点、线、面的基本概念和性质掌握线段、射线、直线的性质和运算能够进行线段和角的大小比较3.2 三角形理解三角形的定义和性质掌握三角形的分类和判定方法能够解决三角形的相关问题第四章:统计与概率4.1 统计理解统计的基本概念和方法掌握数据的收集、整理和表示方法能够进行数据的分析和解释4.2 概率理解概率的基本概念和方法掌握事件的分类和概率的计算方法能够解决概率相关问题第五章:综合应用题5.1 实数与代数的综合应用题能够解决涉及实数与代数的综合应用题5.2 函数与方程的综合应用题能够解决涉及函数与方程的综合应用题5.3 几何与变换的综合应用题能够解决涉及几何与变换的综合应用题5.4 统计与概率的综合应用题能够解决涉及统计与概率的综合应用题第六章:实数与代数的综合应用题6.1 实数与代数的综合应用题能够解决涉及实数与代数的综合应用题,如面积、体积、距离等问题。
6.2 列代数式与求代数式的值能够根据实际问题列出相应的代数式能够求出代数式的值,包括解含绝对值、平方、立方等的代数式。
第七章:函数与方程的综合应用题7.1 一次函数和二次函数的综合应用题能够解决涉及一次函数和二次函数的综合应用题,如实际问题、图像分析等问题。
7.2 一元一次方程和一元二次方程的综合应用题能够解决涉及一元一次方程和一元二次方程的综合应用题,如实际问题、方程组等问题。
九年级数学下册 课时7一元一次方程及其应用教案 人教新课标版【教案】

第三章 方程(组)和不等式课时7.一元一次方程及其应用【课前热身】1.在等式367y -=的两边同时_________,得到313y =.2.方程538x -+=的解是__________.3.x 的5倍比x 的2倍大12可列方程为_____________________.4.写出一个以2-=x 为解的方程__________.5.如果x =-1是方程234x m -=的解,则m 的值是________.6.如果方程2130m x -+=是一元一次方程,则m =________.【知识整理】1.等式及其性质: ⑴ 等式:用等号“=”来表示_________关系的式子叫等式. ⑵ 性质:① 如果b a =,那么=±c a __________;② 如果b a =,那么=ac ______;如果b a =()0≠c ,那么=ca ______. 2. 方程、一元一次方程的概念:⑴ 方程:含有未知数的_______叫做方程;使方程左右两边值相等的_______________,叫做方程的解;求方程解的_______叫做解方程.⑵ 一元一次方程:在整式方程中,只含有_____个未知数,并且未知数的次数是________,系数不等于0的方程叫做一元一次方程;它的一般形式为_______________()0≠a .3. 解一元一次方程的步骤:①去________;②去________;③移______;④合并____________;⑤系数化为1.4.易错知识辨析:(1)判断一个方程是不是一元一次方程,首先在整式方程前提下,化简后满足只含有一个未知数,并且未知数的次数是1,系数不等于0的方程,像21=x,()1222+=+x x 就不是一元一次方程.(2)解方程的基本思想就是应用等式的基本性质进行转化,要注意:①方程两边不能乘以(或除以)含有未知数的整式,否则所得方程与原方程不同解;②去分母时,不要漏乘没有分母的项;③解方程时一定要注意“移项”要变号.【例题讲解】例1 解方程(1) 17)5.0(4=++x x (2)()()() 3175301x x x --+=+(3)263134x x +--= (4) 3.07416.015x x --=-例2 当m 取什么整数时,关于x 的方程15122323mx x -=-的解是正整数?例3 某商品因换季准备打折出售,若按定价的七五折出售将赔 25 元,若按定价的九折出售将赚20 元,则这种商品的定价为多少元?例4 七年级⑶班课外活动小组买了个篮球,若每人付 9 元,则多了 5 元,后来组长收了每人 8 元,自己多付了 2 元,问这个篮球价格是多少?例5 为节约能源,某单位按以下规定收取每月电费,用电不超过140度,按每度0.43元收费,如果超过140度,超过部分按每度0.57元收费. 若某用户四月份的电费平均每度0.5元,问该用户四月份应交电费多少元?【中考演练】1.若5x -5的值与2x -9的值互为相反数,则x =_____.2.关于x 的方程0)1(2=--a x 的解是3,则a 的值为________________.3. 若323m n x y +与2212m n x y -+互为同类项,则m =_____,n =____.4. 若规定:①{m }表示大于m 的最小整数,例如:{3}=4,{-2.4}=-2;②[m ]表示不大于m的最大整数,例如:[5]=5,[-3.6]=-4. 则使等式2{x }-[x ]=4成立的整数x =_______.5. 某商店销售一批服装,每件售价150元,可获利25%,求这种服装的成本价.设这种服装的成本价为x 元,则得到方程( )A. 15025%x =⨯B. 25%150x =C. 15025%x x -=D. 15025%x -=6. 小明编了这样一道题:我是四月出生的,我的年龄的2倍加上4,正好是我出生的那一月的天数. 你认为小明是( )A. 10岁B. 11岁C. 12岁D.13岁7.解方程16110312=+-+x x 时,去分母、去括号后,正确结果是( ) A. 111014=+-+x x B. 111024=--+x xC. 611024=--+x xD. 611024=+-+x x8.解下列方程:()()()(1) 3175301x x x --+=+; (2)121253x x x -+-=-.9. 当x 为何值时,代数式2313x +-与565x -互为相反数?10. 小丽的爸爸前年存了年利率为2.25%的二年期定期储蓄,今年到期后,扣除20%的利息税后,所得利息正好为小丽买了一个价值36元的计算器,问小丽爸爸前年存了多少元钱?11. 某工厂第一季度生产甲、乙两种机器共480台.改进生产技术后,计划第二季度生产这两种机器共554台,其中甲种机器产量要比第一季度增产10 % ,乙种机器产量要比第一季度增产20 %.该厂第一季度生产甲、乙两种机器各多少台?12. 民航规定:乘坐飞机普通舱旅客一人最多可免费携带20千克行李,超过部分每千克按飞机票价的1.5%购买行李票。
2015年广西中考数学总复习课件第7课时 一次方程组(共38张PPT)

┃考题回归教材┃ 购票中的学问 某班去看演出,甲种票每张24元,乙种票每张18元.如果35
名学生购票恰好用去750元,甲乙两种票各买了多少张?
第7课时
一次方程(组)
[ 点析 ] 利用二元一次方程组解决实际问题,解题的关键是
要读懂题目的意思,根据题目给出的条件,找出合适的等量关系
,建立方程模型. [ 解析 ] 设甲乙两种票各买了 x张, y 张,以“共买了 35张电 影票”“共用去750元”作为相等关系,列方程组即可求解.
2.解一元一次方程的步骤:
第7课时
一次方程(组)
常用步骤 去分母 去括号 移项
具体做法 在方程两边都乘各分母的最小公倍数
注意事项 防止漏乘(尤其是整数 项),注意添括号 注意变号,防止漏乘
一般先去小括号,再去中括号,最后 去大括号
把含有未知数的项都移到方程的一边, 移项要变号,不移不变 其他项都移到方程的另一边 号 计算要仔细,不要出差 错
)
第7课时
一次方程(组)
1 5.解方程:x+8= (x+6). 3
x=-9
2x+y=5, 6.解方程组: x-y=4.
x=3, y=-1
第7课时
一次方程(组)
┃考向互动探究┃ 类型题展示 ► 类型之一 一元一次方程的解法
例1
1 方程 x+5= (x+3)的解是________. 2
一次方程(组)
2.下列方程组中,是二元一次方程组的是( A
x+y=4, A. 2x+3y=7
2 x =9, C. y=2x 2 2b -3b=11, B . 5b-4c=6
)
x+y=8, D. x-z=4
3.二元一次方程 5a-11b=21( B )
一元一次方程教案(通用11篇)

一元一次方程教案一元一次方程教案(通用11篇)作为一名老师,就不得不需要编写教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。
怎样写教案才更能起到其作用呢?以下是小编精心整理的一元一次方程教案范文,希望对大家有所帮助。
一元一次方程教案篇1教学目标:1、能说出什么叫一元一次方程;2、知道“元”和“次”的含义;3、熟练掌握最简一元一次方程的解法及理论依据;能力目标:1、培养学生准确运算的能力;2、培养学生观察、分析和概括的能力;3、通过解方程的教学,了解化归的数学思想.德育目标:1、渗透由特殊到一般的辩证唯物主义思想;2、通过对方程的解进行检验的习惯的培养,培养学生严谨、细致的学习习惯和责任感;3、在学习和探索知识中提高学生的学习能力、合作精神及勇于探索的精神;重点:1、一元一次方程的概念;2、最简方程的解法;难点:正确地解最简方程。
教学方法:引导发现法教学过程一、旧知识的复习:1.什么叫等式?等式具有哪些性质?2.什么叫方程?方程的解?解方程?二、新知识的教学:(1)只含有一个未知数;(2)未知数的次数都是一次。
想一想:(1)你认为最简单的一元一次方程是什么样的?(2)怎样求最简方程(其中是未知数)的解?三、巩固练习1、通过练习,请你总结一下,解方程(是未知数)把系数化为1时,怎样运用等式的性质2,使计算比较简单。
2、检测:3、课堂小结:四、本节学习的主要内容1、一元一次方程定义;2、最简方程(其中是未知数);3、解最简方程的主要思路和解题的关键步骤及依据。
五、课堂作业。
一元一次方程教案篇2一、活动内容:课本第110页111页活动1和活动3二、活动目标:1、知识与技能:运用一元一次方程解决现实生活中的问题,进一步体会建模思想方法。
2、过程与方法:(1)通过数学活动使学生进一步体会一元一次方程和实际问题中的关系,通过分析问题中的数量关系,进行预测、判断。
(2)运用所学过的数学知识进行分析,演练、合作探究,体会数学知识在社会活动中的运用,提高应用知识的能力和社会实践能力。
中考一轮复习教案:一元一次方程与二元一次方程组

一元一次方程与二元一次方程组辅导教案1.了解等式、方程、一元一次方程和二元一次方程(组)的概念,掌握等式的基本性质.2.掌握一元一次方程的标准形式,熟练掌握一元一次方程和二元一次方程组的解法.3.会列方程(组)解决实际问题.3.我州某校计划购买甲、乙两种树苗共1000株用以绿化校园,甲种树苗每株25元,乙种树苗每株30元,通过调查了解,甲,乙两种树苗成活率分别是90%和95%.(1)若购买这种树苗共用去28000元,则甲、乙两种树苗各购买多少株?(2)要使这批树苗的总成活率不低于92%,则甲种树苗最多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.4.海南五月瓜果飘香,某超市出售的“无核荔枝”和“鸡蛋芒果”单价分别为每千克26元和22元.李叔叔购买这两种水果共30千克,共花了708元.请问李叔叔购买这两种水果各多少千克?五、牛刀小试1、若代数式x+2的值为1,则x等于()A.1 B.﹣1 C.3 D.﹣32、某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x3、某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚(2)甲的套餐费用为199元,其中含600MB 的月流量;丙的套餐费用为244.2元,其中包含1GB 的月流量,二人均定制了超过1000分钟的每月通话时间,并且丙的语音通话时间比甲多300分钟,求m 的值.巩固练习1.方程x +5=4的解是( )A .B .C .D . 2.方程3x+2(1-x)=4的解是( )A.x=52B.x=65C.x=2D.x=13.我国古代名著《九章算术》中有一题“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”(凫:野鸭)设野鸭大雁与从北海和南海同时起飞,经过x 天相遇,可列方程为( )A .(9﹣7)x =1B .(9+7)x =1C .11()179x -= D .11()179x += 4.若单项式22a bx y+与413a b x y --是同类项,则a ,b 的值分别为( ) A .a=3,b=1 B .a=﹣3,b=1 C .a=3,b=﹣1 D .a=﹣3,b=﹣1 5.方程2x 13-=的解是( ) A .-1 B .C .1D .2 6.一种饮料有两种包装,5大盒、4小盒共装148瓶,2大盒、5小盒共装100瓶,大盒与小盒每盒各装多少瓶?设大盒装x 瓶,小盒装y 瓶,则可列方程组33-11-12强化提升1.某种商品每件的标价为240元,按标价的八折销售时,每件仍能获利20%,则这种商品每件的进价为元.2.已知关于x的方程2x+a﹣5=0的解是x=2,则a的值为.3.七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x 人,可列方程为.4.服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多元.5.方程组的解是.6.已知:若代数式x﹣5与2x﹣1的值相等,则x的值是.7.某城市现有42万人口,计划一年后城镇人口增加0.8%,农人口增加1.1%,这样全市人口将增加1%,求这个城市现有的城镇人口数与农村人口数.若设城镇现有人口为x万,农村现有人口为y万,则所列方程组为。
七年级数学一元一次方程的教案推荐7篇

七年级数学一元一次方程的教案推荐7篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如心得体会、工作报告、工作总结、工作计划、申请书、读后感、作文大全、合同范本、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as insights, work reports, work summaries, work plans, application forms, post reading reviews, essay summaries, contract templates, speech drafts, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!七年级数学一元一次方程的教案推荐7篇本文将为大家推荐七年级数学一元一次方程的教案,共计7篇。
七年级数学《一元一次方程》教案【4篇】

七年级数学《一元一次方程》教案【4篇】七年级数学《一元一次方程》教案篇一2.自主探索、合作交流:先由学生独立思考求解,再小组合作交流,师生共同评价分析。
方法1:解:方程两边都加上2,得5x-2+2=8+2也就是5x=8+2合并同类项,得5x=10所以,x=23.理性归纳、得出结论(让学生通过观察、归纳,独立发现移项法则。
)比较方程5x=8+2与原方程5x-2=8,可以发现,这个变形相当于5x-2=85x=8+2即把原方程中的-2改变符号后,从方程的一边移到另一边,这种变形叫做移项。
教学建议:关于移项法则,不应只强调记忆,更应强调理解。
学生开始时也许仍习惯于利用逆运算而不利用移项法则来求解方程,可借助例题、练习题使相互逐步体会到移项的优越性)。
方法2;解:移项,得5x=8+2合并同类项,得5x=10方程两边都除以5,得x=24.运用反思、拓展创新[例1]解下列方程:(1)2x+6=1(2)3x+3=2x+7教学建议:先鼓励学生自己尝试求解方程,教师要注意发现学生可能出现的错误,然后组织学生进行讨论交流。
[例2]解方程:教学建议:①先放手让学生去做,学生可能采取多种方法,教学时,不要拘泥于教科书中的解法,只要学生的解法合理,就应给予鼓励。
②在移项时,学生常会犯一些错误,如移项忘记变号等。
这时,教士不要急于求成,而要引导学生反思自己的解题过程。
必要时,可让学生利用等式的性质和移项法则两种方法解例1、例2中的方程,并将两者加以对照,进而使学生加深对移项法则的理解,并自觉地改正错误。
5.小结回顾:学生谈本节课的收获与体会。
师强调:移项法则。
七年级数学《一元一次方程》教案篇二教学内容:人教版七年级上册3.1.1一元一次方程教学目标:知识与技能:1、理解一元一次方程,以及一元一次方程解的概念。
2、会从题目中找出包含题目意思的一个相等关系,列出简单的方程。
3、掌握检验某个数值是不是方程解的方法。
过程与方法:在实际问题的过程中探讨概念,数量关系,列出方程的方法,训练学生运用新知识解决实际问题的能力。
一元一次方程教案最新7篇

一元一次方程教案最新7篇元一次方程教学设计篇一一、教材分析1、教材地位和作用本节课是义务教育课程标准实验教科书数学六年级上册第五章《一元一次方程》中第一节课的内容。
是小学与初中知识的衔接点,学生在小学已经初步接触过方程,了解了什么是方程,什么是方程的解,并学会了用逆运算法解一些简单的方程。
并在前一章刚学过整式的概念及其运算的基础上,本节课将带领学生继续学习方程、一元一次方程等内容。
要求教师帮助学生在现实情境中,通过对多种实际问题的分析,感受方程作为刻画现实世界的模型的意义,建立方程归纳得出一元一次方程的概念并用尝试检验法来求解,同时也为学生进一步学习一元一次方程的解法和应用起到铺垫作用。
2、教学目标综上分析及教学大纲要求,本课时教学目标制定如下:⒈.通过对多种实际问题的分析,感受方程作为刻画现实世界的有效模型的意义⒈.会根据简单数量关系列方程,通过观察、归纳一元一次方程的概念⒈.体会解决问题的一种重要的思想方法----尝试检验法⒈.回顾理解等式的两个性质,并初步学会利用等式的两个性质解一元一次方程3、教学重点和难点重点:一元一次方程的概念和用尝试检验法求方程的解难点:利用等式的两个性质解一元一次方程二、教法与学法分析:教法方法与手段:本节课利用多媒体教学平台,在概念教学设计中,注意遵循人们认识事物的规律,从具体到抽象,从特殊到一般,由浅入深。
从学生熟悉的实际问题开始,将实际问题“数学化”建立方程模型。
采用教师引导,学生自主探索、观察、归纳的教学方式。
利用多媒体和天平演示等教学设备辅助教学,充分调动学生的积极性。
学法指导:根据本节课的内容特点及学生的心理特征,在学法上,极力倡导了新课程的自主探究、合作交流的学习方法。
通过对学生原有知识水平的分析,创设情境,使数学回到生活,鼓励学生思考,探索情境中的所包含的数量关系,学生在经历“建立方程模型”这一数学化的过程后,理解学习方程和一元一次方程的意义,培养学生抽象概括等能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时7.一元一次方程及其应用
【课前热身】
1.在等式367y -=的两边同时 ,得到313y =.
2.方程538x -+=的根是 .
3.x 的5倍比x 的2倍大12可列方程为 .
4.写一个以2-=x 为解的方程 .
5.如果1x =-是方程234x m -=的根,则m 的值是 .
6.如果方程2130m x -+=是一元一次方程,则m = .
【考点链接】
1.等式及其性质 ⑴ 等式:用等号“=”来表示 关系的式子叫等式. ⑵ 性质:① 如果b a =,那么=±c a ;
② 如果b a =,那么=ac ;如果b a =()0≠c ,那么
=c a . 2. 方程、一元一次方程的概念
⑴ 方程:含有未知数的 叫做方程;使方程左右两边值相等的 ,叫做方程的解;求方程解的 叫做解方程. 方程的解与解方程不同.
⑵ 一元一次方程:在整式方程中,只含有 个未知数,并且未知数的次数是 ,系数不等于0的方程叫做一元一次方程;它的一般形式为 ()0≠a .
3. 解一元一次方程的步骤:
①去 ;②去 ;③移 ;④合并 ;⑤系数化为1.
4.易错知识辨析:
(1)判断一个方程是不是一元一次方程,首先在整式方程前提下,化简后满足只含有一个未知数,并且未知数的次数是1,系数不等于0的方程,像
21=x
,()1222+=+x x 等不是一元一次方程.
(2)解方程的基本思想就是应用等式的基本性质进行转化,要注意:①方程两边不能乘
以(或除以)含有未知数的整式,否则所得方程与原方程不同解;②去分母时,不要漏乘没有分母的项;③解方程时一定要注意“移项”要变号.
【典例精析】
例1 解方程
(1)()()() 3175301x x x --+=+; (2)
21101136x x ++-=.
例2 当m 取什么整数时,关于x 的方程
1514()2323
mx x -=-的解是正整数?
例3 (08福州)今年5月12日,四川汶川发生了里氏8.0级大地震,给当地人民造成了巨
大的损失.“一方有难,八方支援”,我市锦华中学全体师生积极捐款,其中九年级的3个班学生的捐款金额如下表:
吴老师统计时不小心把墨水滴到了其中两个班级的捐款金额上,但他知道下面三条信息:
信息一:这三个班的捐款总金额是7700元;
信息二:(2)班的捐款金额比(3)班的捐款金额多300元;
信息三:(1)班学生平均每人捐款的金额大于..48元,小于..51元.
请根据以上信息,帮助吴老师解决下列问题:
(1)求出(2)班与(3)班的捐款金额各是多少元;
(2)求出(1)班的学生人数.
【中考演练】
1.若5x -5的值与2x -9的值互为相反数,则x =_____.
2. 关于x 的方程0)1(2=--a x 的解是3,则a 的值为________________.
3. 某商店销售一批服装,每件售价150元,可获利25%,求这种服装的成本价.设这种服装的成本价为x 元,则得到方程( )
A.15025%x =⨯
B. 25%150x ⋅=
C.
%25150=-x x D. 15025%x -= 4.解方程16
110312=+-+x x 时,去分母、去括号后,正确结果是( ) A. 111014=+-+x x B. 111024=--+x x
C. 611024=--+x x
D. 611024=+-+x x
5.解下列方程:
()()()(1) 3175301x x x --+=+; (2)
121253
x x x -+-=-.
6. 某工厂第一季度生产甲、乙两种机器共480台.改进生产技术后,计划第二季度生产这两种机器共554台,其中甲种机器产量要比第一季度增产10 % ,乙种机器产量要比第一季度增产20 %.该厂第一季度生产甲、乙两种机器各多少台?
7. 苏州地处太湖之滨,有丰富的水产养殖资源,水产养殖户李大爷准备进行大闸蟹与河虾的混合养殖,他了解到如下信息:
①每亩水面的年租金为500元,水面需按整数亩出租;
②每亩水面可在年初混合投放4公斤蟹苗和20公斤虾苗;
③每公斤蟹苗的价格为75元,其饲养费用为525元,当年可获1400元收益;
④每公斤虾苗的价格为15元,其饲养费用为85元,当年可获160元收益;
(1) 若租用水面 亩,则年租金共需__________元;
(2) 水产养殖的成本包括水面年租金、苗种费用和饲养费用,求每亩水面蟹虾混合养殖
的年利润(利润=收益-成本);
(3) 李大爷现在奖金25000元,他准备再向银行贷不超过25000元的款,用于蟹虾混合
养殖.已知银行贷款的年利率为8%,试问李大爷应该租多少亩水面,并向银行贷款多少元,可使年利润超过35000元?。