人教版八年级数学下册平行四边形(基础)典型例题讲解+练习及答案.doc

合集下载

平行四边形(含答案)

平行四边形(含答案)

平行四边形参考答案典型例题例1.证明:∵DM⊥AC, BN⊥AC,DM=BN,AM=CN ∴△ADM≌△CBN ∴AD=CB,∠DAM=∠BCN ∴AD∥CB ∴平行四边形ABCD是平行四边形例2.解:∵BC∥AD,BC=AD, ∴ED=BF∴四边形BFDE是平行四边形,所以EB与DF平行且相等①成立,因为ED=BF,四边形BFDE仍是平行四边形,所以EB与DF仍平行且相等②成立,只要ED=BF,就成立③成立。

∵∠ABC=∠ADC, ∠BAD=∠BCD, ∠ABE=∠CDF∴∠EBF=∠EDF, ∠BED=∠BFD∴四边形BFDE是平行四边形,所以EB与DF平行且相等例3.解:PF∥AB,PE∥AC,则四边形AEPF是平行四边形,其周长为2(PE+PF)点P是BC的三等分点,则13PF CPAB CB==,23PE BPAC BC==, 又AB=AC,所以2(PE+PF)=2*12()33+AB=2AB例4.解:①连结AC,BD②将AD和BC四等分,连结对应分点③连结AC,取BC和AD的中点分别为E、F,连结AE、CF例5.解:CF=BE ∵DE∥BC EF∥AC ∴四边形EDCF是平行四边形∴CF=ED ∵BD平分∠ABC, ∠CBD=∠BDE ∴∠DBE=∠BDE ∴BE=ED ∴CF=BE例6.解:连结BD,则GF∥BD,HE∥BD, GF=HE=12BD,所以四边形EFGH是平行四边形例7.(1)证明:旋转90°时,EF⊥AC,又AB⊥AC 则AB∥EF,又AF∥BE,所以四边形ABEF是平行四边形(2)∵AO=CO,∠AOF=∠COE, ∠OAF=∠OCE∴△AOF≌△COE ∴AF=CE(3)可能。

此时EF⊥BD,旋转的角度为∠AOF=90°-∠AOB, AC=2,AO=1=AB,所以∠AOB=45°,所以旋转的角度为45°双基练习1.19,112.1203.1444.185. 50°6.C7.D8.D9.解:∵∠AEB=∠DAE, ∠DAE=∠BAE∴AB=BE=BC-CE=3∴周长为2(AD+AB)=18巩固练习1.AO=CO或BO=DO2.C3.D4.C5.156.187.15,108.解:∵AO=CO,EO为公共边,∠AOE=∠COE∴△AOE≌△COE,∴AE=CE∴周长为CD+DE+CE=CD+AD=89.10.DF和AE相互平分。

人教版八年级下册 第18章《平行四边形》解答题培优专题练习(含答案解析) (1)

人教版八年级下册 第18章《平行四边形》解答题培优专题练习(含答案解析) (1)

人教版八年级下册第18章《平行四边形》解答题培优专题练习1.如图,已知平行四边形ABCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF ⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于点M、N.(1)求证:四边形CMAN是平行四边形(2)已知DE=8,FN=6,求BN的长.2.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF ∥BC交BE的延长线于点F.(1)求证:四边形ADCF是菱形;(2)若AC=12,AB=16,求菱形ADCF的面积.3.如图,在四边形ABCD中,AD∥BC,E为AD的中点,延长CE交BA的延长线上于点F,CE=EF.(1)如图1,求证:四边形ABCD是平行四边形;(2)如图2,若CE⊥AD,连接AC、DF,请直接写出图中和线段CD相等的所有线段.4.已知:如图,M为平行四边形ABCD边AD的中点,且MB=MC.求证:四边形ABCD 是矩形.5.如图,在四边形ABCD中,AD∥BC,AB=BC,对角线AC、BD交于点O,BD平分∠ABC,过点D作DE⊥BC,交BC的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若DC=2,AC=4,求OE的长.6.已知:如图,菱形ABCD的对角线AC与BD相交于点O,若∠CAD=∠DBC.(1)求证:四边形ABCD是正方形.(2)E是OB上一点,DH⊥CE,垂足为H,DH与OC相交于点F,求证:OE=OF.7.四边形ABCD的对角线AC和BD交于点O,AB=BC,AD=CD,分别过点C、D作CE ∥BD.DE∥AC,CE和DE交于点E.(1)如图1.求证:四边形ODEC是矩形;(2)如图2.连接OE,AD∥BC时.在不添加任何辅助线及字母的情况下.请直接写出图中所有的平行四边形.8.在▱ABCD中,E,F分别是AB,DC上的点,且AE=CF,连接DE,BF,AF.(1)求证:四边形DEBF是平行四边形;(2)若AF平分∠DAB,AE=3,DE=4,BE=5,求AF的长.9.如图,在▱ABCD中,AB=AD,DE平分∠ADC,AF⊥BC于点F交DE于G点,延长BC至H使CH=BF,连接DH.(1)证明:四边形AFHD是矩形;(2)当AE=AF时,猜想线段AB、AG、BF的数量关系,并证明.10.如图,已知四边形ABCD为正方形,AB=4,点E为对角线AC上一动点,连接DE、过点E作EF⊥DE.交BC点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.11.如图,已知四边形ABCD为正方形,点E为对角线AC上的一动点,连接DE,过点E 作EF⊥DE,交BC于点F,以DE,EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)判断CE,CG与AB之间的数量关系,并给出证明.12.已知:如图,在四边形ABCD中,点G在边BC的延长线上,CE平分∠BCD,CF平分∠GCD,EF∥BC交CD于点O.(1)求证:OE=OF;(2)若点O为CD的中点,求证:四边形DECF是矩形.13.如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,F A.(1)求证:四边形AECF是平行四边形.(2)若AF=EF,∠BAF=108°,∠CDF=36°,直接写出图中所有与AE相等的线段(除AE外).14.如图1,在正方形ABCD中,点P是对角线BD上的一点,点E在AD的延长线上,且P A=PE,PE交CD于点F,(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.15.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于F,以EC、CF为邻边作平行四边形ECFG.(1)证明平行四边形ECFG是菱形;(2)若∠ABC=120°,连结BG、CG、DG,①求证:△DGC≌△BGE;②求∠BDG的度数;(3)若∠ABC=90°,AB=8,AD=14,M是EF的中点,求DM的长.16.如图,点E是正方形ABCD对角线AC上一点,EF⊥AB,EG⊥BC,垂足分别为E,F,若正方形ABCD的周长是40cm.(1)求证:四边形BFEG是矩形;(2)求四边形EFBG的周长;(3)当AF的长为多少时,四边形BFEG是正方形?参考答案一.解答题(共16小题)1.【解答】(1)证明:∵AE⊥BD,CF⊥BD,∴AM∥CN,∵四边形ABCD是平行四边形,∴CM∥AN∴四边形CMAN是平行四边形;(2)解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADE=∠CBF,∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,在△ADE与△CBF中,∠ADE=∠CBF,∠AED=∠CFB,AD=BC,∴△ADE≌△CBF(AAS);∴DE=BF=8,∵FN=6,∴.2.【解答】(1)证明:∵E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,在△AEF和△DEB中,∵,∴△AEF≌△DEB(AAS),∴AF=DB,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=CD=BC,∴四边形ADCF是菱形;(2)解:设AF到CD的距离为h,∵AF∥BC,AF=BD=CD,∠BAC=90°,∴S菱形ADCF=CD•h=BC•h=S△ABC=AB•AC=×12×16=96.3.【解答】(1)证明:∵E是AD的中点,∴DE=AE,在△DEC和△AEF中,,∴△DEC≌△AEF(SAS),∴∠D=∠EDF,∴CD∥AB,又∵AD∥BC,∴四边形ABCD是平行四边形;(2)解:图中和线段CD相等的所有线段为AC、AF、DF、AB,理由如下:∵四边形ABCD是平行四边形,CE⊥AD,∴AB=CD,四边形ABCD是菱形,∴AC=AF=DF=CD,∴AC=AF=DF=CD=AB.4.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠A+∠D=180°,在△ABM和△DCM中,,∴△ABM≌△DCM(SSS),∴∠A=∠D=90°,即可得出平行四边形ABCD是矩形.5.【解答】(1)证明:∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AD=AB,∵AB=BC,∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,又∵AB=BC,∴四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形,∴AC⊥BD,OB=OD,OA=OC=AC=2,在Rt△OCD中,由勾股定理得:OD==4,∴BD=2OD=8,∵DE⊥BC,∴∠DEB=90°,∵OB=OD,∴OE=BD=4.6.【解答】(1)证明:∵四边形ABCD是菱形,∴AD∥BC,∠BAD=2∠DAC,∠ABC=2∠DBC,∴∠BAD+∠ABC=180°,∵∠CAD=∠DBC,∴∠BAD=∠ABC,∴2∠BAD=180°,∴∠BAD=90°,∴四边形ABCD是正方形;(2)证明:∵四边形ABCD是正方形,∴AC⊥BD,AC=BD,CO=AC,DO=BO,∴∠COB=∠DOC=90°,CO=DO,∵DH⊥CE,垂足为H,∴∠DHE=90°,∠EDH+∠DEH=90°,∵∠ECO+∠DEH=90°,∴∠ECO=∠EDH,在△ECO和△FDO中,,∴△ECO≌△FDO(ASA),∴OE=OF.7.【解答】(1)证明:∵AB=BC,AD=CD,∴BD垂直平分AC,∴∠COD=90°,∵CE∥BD,DE∥AC,∴四边形ODEC是平行四边形,∵∠COD=90°,∴四边形ODEC是矩形;(2)解:∵AB=BC,AD=CD,∴BD垂直平分AC,∴AO=OC,∠BOC=∠AOD,∵AD∥BC,∴∠BCO=∠DAO,∴△AOD≌△COB(ASA),∴AD=BC,∴四边形ABCD是平行四边形,∵CE∥BD.DE∥AC,∴四边形ODEC是平行四边形,∴DE=CO,∴DE=AO,∴四边形AOED是平行四边形,∴AD=OE,AD∥OE,∴BC=OE,BC∥OE,∴四边形OECB是平行四边形,综上所述,四边形ABCD,四边形ODEC,四边形AOED,四边形OECB是平行四边形.8.【解答】(1)证明:∵四边形ABCD是平行四边形,∴∠A=∠C,AD=CB,在△DAE和△BCF中,∴△DAE≌△BCF(SAS),∴DE=BF,∵AB=CD,AE=CF,∴AB﹣AE=CD﹣CF,即DF=BE,∵DE=BF,BE=DF,∴四边形DEBF是平行四边形;(2)解:∵AB∥CD,∴∠DF A=∠BAF,∵AF平分∠DAB,∴∠DAF=∠BAF,∴∠DAF=∠AFD,∴AD=DF,∵四边形DEBF是平行四边形,∴DF=BE=5,BF=DE=4,∴AD=5,∵AE=3,DE=4,∴AE2+DE2=AD2,∴∠AED=90°,∵DE∥BF,∴∠ABF=∠AED=90°,∴AF===4.9.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵CH=BF,∴FH=BC,∴AD=FH,∴四边形AFHD是平形四边形,∵AF⊥BC,∴∠AFH=90°,∴平行四边形AFHD是矩形;(2)猜想:AB=BF+AG,证明:如图,延长BF到M,使HM=AG,连接DM,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠1=∠2,∵DE平分∠ADC,∴∠2=∠3,∴∠1=∠3,∴AE=AD,∵AE=AF,∴AF=AD,四边形AFHD是正方形,∴AD=DH,∠GAD=∠DHM=90°,在△DAG和△DHM中,∴△DAG≌△DHM(SAS),∴∠2=∠3=∠HDM,∠AGD=∠M,∵AF∥DH,∴∠AGD=∠HDG=∠2+∠CDH=∠MDH+∠CDH,∴∠M=∠CDM,∴CD=CM=CH+HM,∵BC=AD=FH,∴BC﹣CF=FH﹣CF,∴BF=CH,∵AB=CD,HM=AG,∴AB=BF+AG.10.【解答】解:(1)如图所示,过E作EM⊥BC于M点,过E作EN⊥CD于N点,∵正方形ABCD,∴∠BCD=90°,∠ECN=45°,∴∠EMC=∠ENC=∠BCD=90°,且NE=NC,∴四边形EMCN为正方形,∵四边形DEFG是矩形,∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°,∴∠DEN=∠MEF,又∠DNE=∠FME=90°,在△DEN和△FEM中,,∴△DEN≌△FEM(ASA),∴ED=EF,∴矩形DEFG为正方形,(2)CE+CG的值为定值,理由如下:∵矩形DEFG为正方形,∴DE=DG,∠EDC+∠CDG=90°,∵四边形ABCD是正方形,∵AD=DC,∠ADE+∠EDC=90°,∴∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴AE=CG,∴AC=AE+CE=AB=×4=8,∴CE+CG=8是定值.11.【解答】证明:(1)过E作EM⊥BC于M点,过E作EN⊥CD于N点,如图所示:∵四边形ABCD是正方形,∴∠BCD=90°,∠ECN=45°,∴∠EMC=∠ENC=∠BCD=90°,且NE=NC,∴四边形EMCN为正方形,∵四边形DEFG是矩形,∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°,∴∠DEN=∠MEF,又∠DNE=∠FME=90°,在△DEN和△FEM中,∴△DEN≌△FEM(ASA),∴ED=EF,∴矩形DEFG为正方形;(2)∵矩形DEFG为正方形,∴DE=DG,∠EDC+∠CDG=90°,∵四边形ABCD是正方形,∴AD=DC,∠ADE+∠EDC=90°,∴∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴AE=CG,∴在Rt△ABC中,,∴12.【解答】证明:(1)∵CE平分∠BCD、CF平分∠GCD,∴∠BCE=∠DCE,∠DCF=∠GCF,∵EF∥BC,∴∠BCE=∠FEC,∠EFC=∠GCF,∴∠DCE=∠FEC,∠EFC=∠DCF,∴OE=OC,OF=OC,∴OE=OF;(2)∵点O为CD的中点,∴OD=OC,又OE=OF,∴四边形DECF是平行四边形,∵CE平分∠BCD、CF平分∠GCD,∴∠DCE=∠BCD,∠DCF=∠DCG∴∠DCE+∠DCF=(∠BCD+∠DCG)=90°,即∠ECF=90°,∴四边形DECF是矩形.13.【解答】(1)证明:如图,连接AC交BD于点O,在▱ABCD中,OA=OC,OB=OD,∵BE=DF,∴OB﹣BE=OD﹣DF,即OE=OF,∴四边形AECF是平行四边形(对角线互相平分的四边形是平行四边形);(2)解:∵AB∥CD,∴∠ABF=∠CDF=36°,∵AF=EF,∴∠F AE=∠FEA=72°,∵∠AEF=∠EBA+∠EAB,∴∠EBA=∠EAB=36°,∴EA=EB,同理可证CF=DF,∵AE=CF,∴与AE相等的线段有BE、CF、DF.14.【解答】(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴P A=PC,∵P A=PE,∴PC=PE;(2)解:由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵P A=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPE=∠EDF=90°(3)解:AP=CE;理由如下:在菱形ABCD中,AB=BC,∠ABP=∠CBP=60°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴P A=PC,∠BAP=∠BCP,∵P A=PE,∴PC=PE,∴∠DAP=∠DCP,∵P A=PC,∴∠DAP=∠AEP,∴∠DCP=∠AEP∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠AEP,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等边三角形,∴PC=CE,∴AP=CE.15.【解答】解:(1)证明:∵AF平分∠BAD,∴∠BAF=∠DAF,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,∠BAF=∠CFE,∴∠CEF=∠CFE,∴CE=CF,又∵四边形ECFG是平行四边形,∴四边形ECFG为菱形;(2)①∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,AD∥BC,∵∠ABC=120°,∴∠BCD=60°,∠BCF=120°由(1)知,四边形CEGF是菱形,∴CE=GE,∠BCG=∠BCF=60°,∴CG=GE=CE,∠DCG=120°,∵EG∥DF,∴∠BEG=120°=∠DCG,∵AE是∠BAD的平分线,∴∠DAE=∠BAE,∵AD∥BC,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD,∴△DGC≌△BGE(SAS);②∵△DGC≌△BGE,∴BG=DG,∠BGE=∠DGC,∴∠BGD=∠CGE,∵CG=GE=CE,∴△CEG是等边三角形,∴∠CGE=60°,∴∠BGD=60°,∵BG=DG,∴△BDG是等边三角形,∴∠BDG=60°;(3)如图2中,连接BM,MC,∵∠ABC=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECFG为菱形,∠ECF=90°,∴四边形ECFG为正方形.∵∠BAF=∠DAF,∴BE=AB=DC,∵M为EF中点,∴∠CEM=∠ECM=45°,∴∠BEM=∠DCM=135°,在△BME和△DMC中,∵,∴△BME≌△DMC(SAS),∴MB=MD,∠DMC=∠BME.∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,∴△BMD是等腰直角三角形.∵AB=8,AD=14,∴BD=2,∴DM=BD=.16.【解答】解:(1)证明:∵四边形ABCD为正方形,∴AB⊥BC,∠B=90°.∵EF⊥AB,EG⊥BC,∴EF∥GB,EG∥BF.∵∠B=90°,∴四边形BFEG是矩形;(2)∵正方形ABCD的周长是40cm,∴AB=40÷4=10cm.∵四边形ABCD为正方形,∴△AEF为等腰直角三角形,∴AF=EF,∴四边形EFBG的周长C=2(EF+BF)=2(AF+BF)=20cm.(3)若要四边形BFEG是正方形,只需EF=BF,∵AF=EF,AB=10cm,∴当AF=5cm时,四边形BFEG是正方形.。

八年级数学平行四边形30道经典题(含答案和解析)

八年级数学平行四边形30道经典题(含答案和解析)

八年级数学平行四边形30道经典题(含答案和解析)1.如图,平行四边形ABCD中,AB=3,BC=5,AE平分∠BAD交BC于点E,则CE的长为().A.1B.2C.3D.4答案:B.解析:∵平行四边形ABCD,AE平分∠BAD交BC于点E.∴∠BAE=∠EAD,∠EAD=∠AEB.∴∠BAE=∠AEB.∴AB=BE=3.∴EC=2.所以答案为B.考点:三角形——全等三角形——角平分线的性质定理.四边形——平行四边形——平行四边形的性质.2.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,若BF=12,AB=10,则AB的长为().A.13B.14C.15D.16答案:D解析:∵平行四边形ABCD,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F.∴四边形ABEF为平行四边形.∴∠FAB+∠ABE=180°,∠FAE=∠EAB,∠ABF=∠FBE. ∴∠BAE+∠ABF=90°,AE⊥BF.∴四边形ABEF为菱形.设AE,BF交点为点O,则点O平分线段AE,BF.在△ABO中,AO2+BO2=AB2,(12AE)2+(12BF)2=AB2.∵BF=12,AB=10.解得AE=16.所以答案为D.考点:三角形——直角三角形——勾股定理.四边形——平行四边形——平行四边形的性质.四边形——菱形——菱形的判定.3.如图,已知平行四边形纸片ABCD的周长为20,将纸片沿某条直线折叠,使点D与点B重合,折痕交AD于点E,交BC于点F,连接BE,则△ABE的周长为.答案:10.解析:依题可知,翻折轴对称BE=DE,△ABE的周长=AB+AE+BE=AB+AD=10.考点:四边形——平行四边形.几何变换——图形的对称——翻折变换(折叠问题).4.下列条件中,不能判断四边形是平行四边形的是().A. AB∥CD,AD∥BCB. AB=CD,AD∥BCC. AB∥CD,AB=CDD. ∠A=∠C,∠B=∠D答案:B.解析:如图:A选项,∵AB∥CD,AD∥BC .∴四边形ABCD是平行四边形,正确,故本选项错误.B选项,根据AB=CD和AD∥BC 可以是等腰梯形,错误,故本选项正确.C选项,∵AB∥CD,AB=CD.∴四边形ABCD是平行四边形,正确,故本选项错误.D选项,∵∠A=∠C,∠B=∠D.∴四边形ABCD是平行四边形,正确,故本选项错误.故选B.考点:四边形——平行四边形——平行四边形的判定.5.阅读下面材料:在数学课上,老师提出如下问题:尺规作图:过直线外一点作已知直线的平行线.已知:直线l及其外一点A.求作:l的平行线,使它经过点A.小云的作法如下:(1)在直线l上任取一点B,以点B为圆心,任意长为半径作弧,交直线l于点C.(2)分别以A,C为圆心,以BC,AB的长为半径作弧,两弧相交于点D.(3)作直线AD.所以直线AD即为所求.老师说:“小云的作法正确.”请回答:小云的作图依据是.答案:两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线. 解析:两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线.考点:四边形——平行四边形——平行四边形的判定.尺规作图——过一点作已知直线的平行线.6.如图所示,平行四边形ABCD中,∠ABC=60°,点E,F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,CF=√3.(1)求证:四边形ABDE是平行四边形.(2)求AB的长.答案:(1)证明见解析.(2)AB=√3.解析:(1)∵四边形ABCD是平行四边形.∴AB∥DC,AB=CD.∵AE∥BD.∴四边形ABDE是平行四边形.(2)由(1)知,AB=DE=CD.即D为CE中点.∵EF⊥BC.∴∠EFC=90°.∵AB∥CD.∴∠DCF=∠ABC=60°.∴∠CEF=30°.∴CE=2CF=2√3.∴AB=CD=√3.考点:三角形——直角三角形——含30°角的直角三角形.四边形——平行四边形——平行四边形的性质——平行四边形的判定.7.如图,在矩形ABCD中,E是BC边的中点,沿直线AE翻折△ABE,使B点落在点F处,连结CF并延长交AD于G点.(1)依题意补全图形.(2)连接BF 交AE 于点O ,判断四边形AECG 的形状并证明.(3)若BC =10,AB =203,求CF 的长.答案:(1)画图见解析. (2)四边形AECG 是平行四边形,证明见解析.(3)CF =6.解析:(1)依题意补全图形,如图:(2)依翻折的性质可知,点O 是BF 中点.∵E 是BC 边的中点. ∴EO ∥CG. ∵AG ∥CE.∴四边形AECG 是平行四边形.(3)在Rt △ABE 中.∵BE =12BC =5,AB =203.∴AE =253.∵S △BAE =12AB×BE =12AE×BO.∴BO =4. ∴BF =2BO =8. ∵BF ⊥AE ,AE ∥CG. ∴∠BFC =90°. ∴CF =6.考点:三角形——直角三角形——勾股定理.四边形——平行四边形——平行四边形的判定.几何变换——图形的对称——作图:轴对称变换.8.如图,平行四边形ABCD的周长为40,△BOC的周长比△AOB的周长多10,则AB为().A.20B.15C.10D.5答案:D.解析:∵平行四边形的周长为40.∴AB+BC=20.又∵△BOC的周长比△AOB的周长多10.∴BC-AB=10.解得:AB=5,BC=15.故答案为:D.考点:四边形——平行四边形——平行四边形的性质.9.如图,将矩形ABCD沿对角线BD所在直线折叠,点C落在同一平面内,落点记为C′和B C′与AD交于点E,若AB=3,BC=4,则DE的长为.答案:25.8解析:由折叠得,∠CBD=∠EBD.由AD∥BC得,∠CBD=∠EDB.∴∠EDB=∠EBD.∴DE=BE.设DE=BE=x,则AE=4-x.在Rt△ABE中.AE2+AB2=BE2.(4−x)2+32=x2..解得x=258∴DE的长为25.8考点:三角形——直角三角形——勾股定理.四边形——矩形——矩形的性质.几何变换——图形的对称——翻折变换(折叠问题).10.如图,矩形ABCD的对角线AC,BD交于点O,DE∥AC交BA的延长线于点E,点F在BC上,BF=BO,且AE=6,AD=8.(1)求BF的长.(2)求四边形OFCD的面积.答案:(1)BF=5..(2)S四边形OFCD=332解析:(1)∵四边形ABCD是矩形.∴∠BAD=90°.∴∠EAD=180°-∠BAD=90°.∵在Rt△EAD中,AE=6,AD=8.∴DE=√AE2+AD2=10.∵DE∥AC,AB∥CD.∴四边形ACDE 是平行四边形. ∴AC =DE =6.在Rt △ABC 中,∠ABC =90°. ∵OA =OC. ∴BO =12AC =5.∵BF =BO. ∴BF =5. (2)取BC 中点为O.∴BG =CG.∵四边形ABCD 是矩形.∴OB =OD ,∠BCD =90°,CD ⊥BC . ∴OG 是△BCD 的中位线. ∴OG ∥CD .由(1)知,四边形ACDE 是平行四边形,AE =6. ∴CD =AE =6. ∴OG =12CD =3.∵AD =8. ∴BC =AD =8.∴S △BCD =12BC×CD =24,S △BOF =12BF×OG =152. ∴S 四边形OFCD =S △BCD -S △BOF =332.考点:三角形——三角形基础——三角形中位线定理.直角三角形——勾股定理.四边形——平行四边形——平行四边形的性质——平行四边形的判定. 矩形——矩形的性质. 四边形基础——四边形面积.11. 如图,在菱形ABCD 中,∠B =60°,AB =1,延长AD 到点E ,使DE =AD ,延长CD 到点F ,使DF =CD ,连接AC 、CE 、EF 、AF .(1)求证:四边形ACEF是矩形.(2)求四边形ACEF的周长.答案:(1)证明见解析.(2)四边形ACEF的周长为:2+2√3.解析:(1)∵DE=AD,DF=CD.∴四边形ACEF是平行四边形.∵四边形ABCD为菱形.∴AD=CD.∴AE=CF.∴四边形ACEF是矩形.(2)∵△ACD是等边三角形.∴AC=1.∴EF=AC=1.过点D作DG⊥AF于点G,则AG=FG=AD×cos30°=√3.2∴AF=CE=2AG=√3.∴四边形ACEF的周长为:AC+CE+EF+AF=1+√3+1+√3=2+2√3.考点:三角形——等腰三角形——等边三角形的判定.锐角三角函数——解直角三角形.四边形——平行四边形——平行四边形的判定.矩形——矩形的判定.菱形——菱形的性质.四边形基础——四边形周长.12.如图,矩形ABCD的对角线AC,BD相交于点O,点E,F,M,N分别是OA,OB,OC,OD的中点,连接EF,FM,MN,NE.(1)依题意,补全图形. (2)求证:四边形EFMN 是矩形.(3)连接DM ,若DM ⊥AC 于点M ,ON =3,求矩形ABCD 的面积.答案:(1)答案见解析. (2)证明见解析.(3)36√3.解析:(1)(2)∵点 E ,F 分别为OA ,OB 的中点.∴EF ∥AB ,EF =12AB .同理,NM ∥DC ,NM =12DC .∵四边形ABCD 是矩形. ∴AB ∥DC ,AB =DC ,AC =BD. ∴EF ∥NM ,EF =NM.∴四边形EFMN 是平行四边形.∵点E ,F ,M ,N 分别OA ,OB ,OC ,OD 的中点. ∴OE =12OA ,OM =12OC . 在矩形ABCD 中.OA =OC =12AC ,OB =OD =12BD.∴EM =OE +OM =12AC . 同理可证FN =12BD . ∴EM =FN .∴四边形EFMN 是矩形.(3)∵DM ⊥AC 于点M.由(2)可知,OM =12OC. ∴OD =CD . 在矩形ABCD 中.OA =OC =12AC ,OB =OD =12BD ,AC =BD. ∴OA =OB =OC =OD. ∴△COD 是等边三角形. ∴∠ODC =60°. ∵NM ∥DC.∴∠FNM =∠ODC =60°. 在矩形EFMN 中,∠FMN =90°. ∴∠NFM =90°-∠FNM =30°. ∵ON =3.∴FN =2ON =6,FM =3√3,MN =3. ∵点F ,M 分别OB ,OC 的中点. ∴BC =2FM =6√3.∴矩形ABCD 的面积为BC×CD =36√3.考点:直线、射线、线段——直线、射线、线段的基本概念——线段中点、等分点.三角形——三角形基础——三角形中位线定理. 直角三角形——含30°角的直角三角形——勾股定理. 四边形——矩形——矩形的性质——矩形的判定.13. 如图,在平面直角坐标系xOy 中,若菱形ABCD 的顶点A ,B 的坐标分别为(-3,0) ,(2,0),点D 在y 轴正半轴上,则点C 的坐标是 .答案:(5,4).解析:由题意及菱形性质,得:AO=3,AD=AB=DC=5.根据勾股定理,得DO=√AD2−AO2=√52−32=4.∴点C的坐标是(5,4).考点:三角形——直角三角形——勾股定理的应用.四边形——菱形——菱形的性质.14.如图,在矩形ABCD中,边AB的长为3,点E,F分别在AD,BC上,连接BE,DF,EF,BD.若四边形BFDE是菱形,且EF=AE+FC,则边BC的长为().√3A. 2√3B.3√3C. 6√3D.92答案:B.解析:∵四边形ABCD是矩形.∴∠A=90°,AD=BC,AB=DC=3.∵四边形BEDF是菱形.∴EF⊥BD,∠EBO=∠DBF,ED=BE=BF.∴AD-DE=BC-BF,即AE=CF.∵EF=AE+FC,EO=FO.∴AE=EO=CF=FO.∴△ABE≌△OBE.∴AB=BO=3,∠ABE=∠EBO.∴∠ABE=∠EBD=∠DBC=30°.∴在Rt△BCD中,BD=2DC=6.∴BC=√BD2−DC2=3√3.考点:三角形——直角三角形——勾股定理.四边形——矩形——矩形的性质.菱形——菱形的性质.15.如图,在给定的一张平行四边形纸片上作一个菱形.小米的作法是:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM 是菱形.则小米的依据是.答案:一组对边平行且相等的四边形是平行四边形;对角线互相垂直的平行四边形是菱形.解析:根据平行四边形定义可知,一组对边平行且相等的四边形是平行四边形;根据菱形的定义可知对角线互相垂直的平行四边形是菱形,所以答案为一组对边平行且相等的四边形是平行四边形;对角线互相垂直的平行四边形是菱形.考点:四边形——平行四边形——平行四边形的判定.菱形——菱形的判定.16.在数学课上,老师提出如下问题:如图1:将锐角三角形纸片ABC(BC>AC)经过两次折叠,得到边AB,BC,CA上的点D,E,F.使得四边形DECF恰好为菱形.小明的折叠方法如下:如图2:(1)AC边向BC边折叠,使AC边落在BC边上,得到折痕交AB于D.(2)c点向AB边折叠,使C点与D点重合,得到折痕交BC边于E,交AC边于F.老师说:“小明的作法正确.”请回答:小明这样折叠得到菱形的依据是.答案:CD和EF是四边形DECF对角线,而CD和EF互相垂直且平分(答案不唯一).解析:如图,连接DF、DE.根据折叠的性质知,CD⊥EF,且OD=OC,OE=OF.则四边形DECF恰为菱形.考点:四边形——菱形——菱形的判定.几何变换——图形的对称——翻折变换(折叠问题).17.如图,在平行四边形ABCD中,点E,M分别在边AB,CD上,且AE=CM.点F,N分别在边BC,AD上,且DN=BF.(1)求证:△AEN≌△CMF.(2)连接EM,FN,若EM⊥FN,求证:四边形EFMN是菱形.答案:(1)证明见解析.(2)证明见解析.解析:(1)∵四边形ABCD是平行四边形.∴AD=BC,∠A=∠C.∵ND=BF.∴AD-ND=BC-BF.即AN=CF.在△AEN和△CMF中.{AN=CM ∠A=∠C AN=CF.∴△AEN ≌△CMF.(2)由(1)△AEN ≌△CMF.∴EN=FM.同理可证:△EBF ≌△MDB.∴EF=MN.∵EN=FM,EF=MN.∴四边形EFMN是平行四边形.∵EM⊥FN.∴四边形EFMN是菱形.考点:三角形——全等三角形——全等三角形的判定.四边形——平行四边形——平行四边形的性质.菱形——菱形的判定.18.如图,Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,分别过点A,C作AE∥DC和CE∥AB,两线交于点E.(1)求证:四边形AECD是菱形.(2)若∠B=60°,BC=2,求四边形AECD的面积.答案:(1)证明见解析.(2)S菱形AECD=2√3.解析:(1)∵AE∥DC,CE∥AB.∴四边形AECD是平行四边形.∵Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线.∴CD=AD.∴四边形AECD是菱形.(2)连结DE.∵∠ACB=90°,∠B=60°.∴∠BAC=30°.∴AB=4,AC=2√3.∵四边形AECD是菱形.∴EC=AD=DB.又∵CE∥DB.∴四边形ECBD是平行四边形. ∴ED=CB=2.∴S菱形AECD=AC×ED2=2√3×22=2√3.考点:四边形——平行四边形——平行四边形的性质——平行四边形的判定.菱形——菱形的性质——菱形的判定.四边形基础——四边形面积.19.如图,正方形ABCD的面积是2,E,F,P分别是AB,BC,AC上的动点,PE+PF的最小值等于.答案:√2.解析:∵线段AC是正方形ABCD的对角线.∴F对线段AC的对称点永远落在线段DC上.如图所示,做F对线段AC的对称点于F’,连接EF’,EF’的长就是PE+PF的值.根据两平行线的距离定义,从一条平行线上的任意一点到另外一条直线做垂线,垂线段的长度叫两条平行线之间的距离.∴PE+PF的最小值等于垂线段EH的长度.根据平行线间的距离处处相等,可知EH=AD.∵正方形ABCD的面积是2.∴AD=EH=√2.所以答案为√2.考点:几何变换——图形的对称——轴对称与几何最值.20.如图,正方形ABCD的边长为2,点E在AB边上,四边形EFGB也为正方形,设△AFC的面积为S,则().A. S=2B. S=2.4C. S=4D. S随BE长度的变化而变化答案:A.解析:法一:∵AC∥BF.∴S△AFC=S△ABC=2.法二:∵S△AFC=S正方形ABCD+S正方形EFGB+S△AEF-S△FGC-S△ADC.∴设正方形EFGB的边长为a.∴S△AFC=2×2+a2+12a(2−a)−12(2+a)a−12×2×2.=4+a2+a−12a2−a−12a2−2.=2.考点:三角形——三角形基础——三角形面积及等积变换.四边形——正方形.21.将正方形A的一个顶点与正方形的对角线交点重合,如图1位置,则阴影部分面积是正方形A面积的18,将正方形A与B按图2放置,则阴影部分面积是正方形B面积的.(几分之几)答案:12.解析:在图1中,∠GBF +∠DBF =∠CBD +∠DBF =90°.∴∠GBF =∠CBD ,∠BGF =∠CDB =45°,BD =BG. ∴ △FBG ≌△CBD.∴阴影部分的面积等于△DGB 的面积,且是小正方形的面积的14,是大正方形面积的18.设小正方形的边长为x ,大正方形的边长为y. 则有14X 2=18y 2. ∴y =√2x .同上,在图2中,阴影部分的面积是大正方形的面积的14,为14y 2=12x 2.∴阴影部分的面积是正方形B 面积的12.考点:三角形——全等三角形——全等三角形的性质——全等三角形的判定.四边形——正方形——正方形的性质.22. 如图,正方形 的对角线交于O ,OE ⊥AB ,EF ⊥OB ,FG ⊥EB .若△BGF 的面积为1,则正方形ABCD 的面积为 .答案:32.解析:∵两条对角线将正方形分成四个全等的等腰直角三角形.且OE ⊥AB 于点E ,EF ⊥OB 于点F ,FG ⊥EB 于点G. ∴E 为AB 的中点,F 为BO 的中点,G 为EB 的中点. ∴AB =EB =EO =12AB ,EF =BF =FO ,GF =BG =EG =12EB .∴BGAB =14.∴S△BGFS△BAD =(BGAB)2=116.∴S△BAD=16.∴S正方形ABCD=2S△ABD=32.故答案为32.考点:三角形——相似三角形——相似三角形的性质.四边形——正方形——正方形的性质.23.在数学兴趣小组活动中,小明进行数学探究活动.将边长为2的正方形ABCD与边长为3的正方形AEFG按图1位置放置,AD与AE在同一条直线上,AB与AG在同一条直线上.(1)小明发现DG=BE且DG⊥BE,请你给出证明.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时△ADG的面积.答案:(1)证明见解析.(2)1+12√14.解析:(1)如图1,延长EB交DG于点H.∵四边形ABCD与四边形AEFG是正方形.∴AD=AB,∠DAG=∠BAE=90°,AG=AE.∴△ABC≌△ABE(SAS).∴∠AGD=∠AEB,DG=BE.∵△ADG中,∠AGD+∠ADG=90°.∴∠AEB+∠ADG=90°.∴△DEH中,∠AEB+∠ADG+∠DHE=180°.∴∠DHE=90°.∴DG⊥BE.(2)如图2,过点A作AM⊥DG交DG于点M.∴∠AMD=∠AMG=90°.∵BD是正方形ABCD的对角线.∴∠MDA=45°.在Rt△AMD中.∵∠MDA=45°,AD=2.∴AM=DM=√2.在Rt△AMG中.∵AM2+GM2=AG2.∴GM=√7.∵DG=DM+GM=√2+√7.∴S△ADG=12×DG×AM=12×(√2+√7)×√2=1+12√14.考点:三角形——全等三角形——全等三角形的性质——全等三角形的判定.直角三角形——勾股定理.四边形——正方形——正方形的性质.24.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°.若AB=5,BC=8,则EF的长为.答案:32.解析:∵DE 为△ABC 的中位线.∴DE =12BC =4,点D 是线段AB 的中点. 又∵∠AFB =90°. ∴DF =12AB =52. ∴EF =DE −DF =32.所以答案为32.考点:三角形——三角形基础——三角形中位线定理.直角三角形——直角三角形斜边上的中线.25. 如图,在四边形ABCD 中,对角线AC ⊥BD ,点E 、F 、G 、H 分别为AB 、BC 、CD 、DA的中点.若AC =8,BD =6,则四边形EFGH 的面积为( ).A. 14B. 12C. 24D.48 答案:B解析:∵点E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点.∴EF =HG =12AC =4,FG =EH =12BD =3,EF ∥HG ,FG ∥EH. ∴四边形EFGH 是平行四边形.∵AC⊥BD.∴EF⊥FG.∴四边形EFGH是矩形.∴四边形EFGH的面积为3×4=12.考点:三角形——三角形基础——三角形中位线定理.四边形——矩形——矩形的判定.四边形基础——四边形面积.26.如图,在Rt△ABC中,∠ACB=90°,D,E,F分别是AB、BC、CA的中点,若CD=6cm,则EF=cm .答案:6.解析:由题意,得:EFAB =12.在Rt△ABC中,D是AB的中点.∴CD=EF=12AB.又∵CD=6.∴EF=CD=6cm.考点:三角形——三角形基础——三角形中位线定理.直角三角形——直角三角形斜边上的中线.27.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点.那么CH的长是.答案:√5.解析:∵正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3.∴AB=BC=1,CE=EF=3,∠E=90°.延长AD交EF于M,连接AC、CF.则AM=BC+CE=1+3=4,FM=EF-AB=3-1=2.∵四边形ABCD和四边形GCEF是正方形.∴∠ACD=∠GCF=45°.∴∠ACF=90°.∵H为AF的中点.AF.∴CH=12在Rt△AMF中,由勾股定理得:AF=√AM2+FM2=√42+22=2√5.∴CH=√5.故答案为:√5.考点:三角形——直角三角形——直角三角形斜边上的中线——勾股定理.四边形——正方形——正方形的性质.28.用两个全等的直角三角形无缝隙不重叠地拼下列图形:①矩形;②菱形;③正方形;④等腰三角形;⑤等边三角形.一定能够拼成的图形是(填序号).答案:①④.解析:由于菱形和正方形中都有四边相等的特点,而直角三角形不一定有两边相等,故两个全等的直角三角形不一定能拼成菱形和正方形.由于等边三角形三个角均为60°,而直角三角形不一定含60°角,故个全等的直角三角形不一定能拼成等边三角形.两个全等的直角三角形一定能拼成矩形和等腰三角形,如图.考点:三角形——等腰三角形——等腰三角形的判定——等边三角形的判定.四边形——矩形——矩形的判定.菱形——菱形的判定——正方形——正方形的判定.29. 边长为a 的菱形是由边长为a 的正方形“形变”得到的,若这个菱形一组对边之间的距离为h ,则称ah 为这个菱形的“形变度”.(1)一个“形变度”为3的菱形与其“形变”前的正方形的面积之比为 . (2)如图,A 、B 、C 为菱形网格(每个小菱形的边长为1,“形变度”为98)中的格点,则△ABC 的面积为 .答案:(1)1:3.(2)12. 解析:(1)如图所示.∵“形变度”为3. ∴ah =3,即h =13a .∴一个“形变度”为3的菱形与其“形变”前的正方形的面积之比为aℎa 2=ℎa =13. (2)在正方形网格中,△ABC 的面积为:6×6−12×3×3-12×3×6−12×3×6=272.由(1)可得,在菱形网格中,△ABC的面积为89×272=12.考点:式——探究规律——定义新运算.三角形——三角形基础——三角形面积及等积变换.四边形——菱形——菱形的性质.30.有这样一个问题:如图,在四边形ABCD中,AB=AD,CB=CD,我们把这种两组邻边分别相等的四边形叫做筝形.请探究筝形的性质与判定方法.小南根据学习四边形的经验,对筝形的性质和判定方法进行了探究.下面是小南的探究过程:(1)由筝形的定义可知,筝形的边的性质是:筝形的两组邻边分别相等,关于筝形的角的性质,通过测量,折纸的方法,猜想:筝形有一组对角相等,请将下面证明此猜想的过程补充完整.已知:如图,在筝形ABCD中,AB=AD,CB=CD.求证:___________________________.证明:由以上证明可得,筝形的角的性质是:筝形有一组对角相等.(2)连接筝形的两条对角线,探究发现筝形的另一条性质:筝形的一条对角线平分另一条对角线.结合图形,写出筝形的其他性质(一条即可):.(3)筝形的定义是判定一个四边形为筝形的方法之一.试判断命题“一组对角相等,一条对角线平分另一条对角线的四边形是筝形”是否成立,如果成立,请给出证明:如果不成立,请举出一个反例,画出图形,并加以说明.答案:(1)求证:∠B=∠D.证明见解析.(2)筝形的两条对角线互相垂直.(3)不成立.解析:(1)求证:∠B =∠D .已知:如图,筝形ABCD 中,AB =AD ,CB =CD .求证:∠B =∠D . 证明:连接AC ,如图. 在△ABC 和△ADC 中.{AB =AD CB =CD AC =AC.∴△ABC ≌△ADC . ∴∠B =∠D .(2)筝形的其他性质.①筝形的两条对角线互相垂直. ②筝形的一条对角线平分一组对角. ③筝形是轴对称图形.(3)不成立.反例如图2所示.在平行四边形ABCD 中,AB≠AD ,对角线AC ,BD 相交于点O .由平行四边形性质可知此图形满足∠ABC =∠ADC ,AC 平分BD ,但该四边形不是筝形.考点:四边形——平行四边形.。

人教版八年级下册 第18章《平行四边形》解答题培优专题练习(含答案解析)

人教版八年级下册 第18章《平行四边形》解答题培优专题练习(含答案解析)

人教版八年级下册第18章《平行四边形》解答题培优专题练习1.如图,已知平行四边形ABCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF ⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于点M、N.(1)求证:四边形CMAN是平行四边形(2)已知DE=8,FN=6,求BN的长.2.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF ∥BC交BE的延长线于点F.(1)求证:四边形ADCF是菱形;(2)若AC=12,AB=16,求菱形ADCF的面积.3.如图,在四边形ABCD中,AD∥BC,E为AD的中点,延长CE交BA的延长线上于点F,CE=EF.(1)如图1,求证:四边形ABCD是平行四边形;(2)如图2,若CE⊥AD,连接AC、DF,请直接写出图中和线段CD相等的所有线段.4.已知:如图,M为平行四边形ABCD边AD的中点,且MB=MC.求证:四边形ABCD 是矩形.5.如图,在四边形ABCD中,AD∥BC,AB=BC,对角线AC、BD交于点O,BD平分∠ABC,过点D作DE⊥BC,交BC的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若DC=2,AC=4,求OE的长.6.已知:如图,菱形ABCD的对角线AC与BD相交于点O,若∠CAD=∠DBC.(1)求证:四边形ABCD是正方形.(2)E是OB上一点,DH⊥CE,垂足为H,DH与OC相交于点F,求证:OE=OF.7.四边形ABCD的对角线AC和BD交于点O,AB=BC,AD=CD,分别过点C、D作CE ∥BD.DE∥AC,CE和DE交于点E.(1)如图1.求证:四边形ODEC是矩形;(2)如图2.连接OE,AD∥BC时.在不添加任何辅助线及字母的情况下.请直接写出图中所有的平行四边形.8.在▱ABCD中,E,F分别是AB,DC上的点,且AE=CF,连接DE,BF,AF.(1)求证:四边形DEBF是平行四边形;(2)若AF平分∠DAB,AE=3,DE=4,BE=5,求AF的长.9.如图,在▱ABCD中,AB=AD,DE平分∠ADC,AF⊥BC于点F交DE于G点,延长BC至H使CH=BF,连接DH.(1)证明:四边形AFHD是矩形;(2)当AE=AF时,猜想线段AB、AG、BF的数量关系,并证明.10.如图,已知四边形ABCD为正方形,AB=4,点E为对角线AC上一动点,连接DE、过点E作EF⊥DE.交BC点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.11.如图,已知四边形ABCD为正方形,点E为对角线AC上的一动点,连接DE,过点E 作EF⊥DE,交BC于点F,以DE,EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)判断CE,CG与AB之间的数量关系,并给出证明.12.已知:如图,在四边形ABCD中,点G在边BC的延长线上,CE平分∠BCD,CF平分∠GCD,EF∥BC交CD于点O.(1)求证:OE=OF;(2)若点O为CD的中点,求证:四边形DECF是矩形.13.如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,F A.(1)求证:四边形AECF是平行四边形.(2)若AF=EF,∠BAF=108°,∠CDF=36°,直接写出图中所有与AE相等的线段(除AE外).14.如图1,在正方形ABCD中,点P是对角线BD上的一点,点E在AD的延长线上,且P A=PE,PE交CD于点F,(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.15.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于F,以EC、CF为邻边作平行四边形ECFG.(1)证明平行四边形ECFG是菱形;(2)若∠ABC=120°,连结BG、CG、DG,①求证:△DGC≌△BGE;②求∠BDG的度数;(3)若∠ABC=90°,AB=8,AD=14,M是EF的中点,求DM的长.16.如图,点E是正方形ABCD对角线AC上一点,EF⊥AB,EG⊥BC,垂足分别为E,F,若正方形ABCD的周长是40cm.(1)求证:四边形BFEG是矩形;(2)求四边形EFBG的周长;(3)当AF的长为多少时,四边形BFEG是正方形?参考答案一.解答题(共16小题)1.【解答】(1)证明:∵AE⊥BD,CF⊥BD,∴AM∥CN,∵四边形ABCD是平行四边形,∴CM∥AN∴四边形CMAN是平行四边形;(2)解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADE=∠CBF,∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,在△ADE与△CBF中,∠ADE=∠CBF,∠AED=∠CFB,AD=BC,∴△ADE≌△CBF(AAS);∴DE=BF=8,∵FN=6,∴.2.【解答】(1)证明:∵E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,在△AEF和△DEB中,∵,∴△AEF≌△DEB(AAS),∴AF=DB,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=CD=BC,∴四边形ADCF是菱形;(2)解:设AF到CD的距离为h,∵AF∥BC,AF=BD=CD,∠BAC=90°,∴S菱形ADCF=CD•h=BC•h=S△ABC=AB•AC=×12×16=96.3.【解答】(1)证明:∵E是AD的中点,∴DE=AE,在△DEC和△AEF中,,∴△DEC≌△AEF(SAS),∴∠D=∠EDF,∴CD∥AB,又∵AD∥BC,∴四边形ABCD是平行四边形;(2)解:图中和线段CD相等的所有线段为AC、AF、DF、AB,理由如下:∵四边形ABCD是平行四边形,CE⊥AD,∴AB=CD,四边形ABCD是菱形,∴AC=AF=DF=CD,∴AC=AF=DF=CD=AB.4.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠A+∠D=180°,在△ABM和△DCM中,,∴△ABM≌△DCM(SSS),∴∠A=∠D=90°,即可得出平行四边形ABCD是矩形.5.【解答】(1)证明:∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AD=AB,∵AB=BC,∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,又∵AB=BC,∴四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形,∴AC⊥BD,OB=OD,OA=OC=AC=2,在Rt△OCD中,由勾股定理得:OD==4,∴BD=2OD=8,∵DE⊥BC,∴∠DEB=90°,∵OB=OD,∴OE=BD=4.6.【解答】(1)证明:∵四边形ABCD是菱形,∴AD∥BC,∠BAD=2∠DAC,∠ABC=2∠DBC,∴∠BAD+∠ABC=180°,∵∠CAD=∠DBC,∴∠BAD=∠ABC,∴2∠BAD=180°,∴∠BAD=90°,∴四边形ABCD是正方形;(2)证明:∵四边形ABCD是正方形,∴AC⊥BD,AC=BD,CO=AC,DO=BO,∴∠COB=∠DOC=90°,CO=DO,∵DH⊥CE,垂足为H,∴∠DHE=90°,∠EDH+∠DEH=90°,∵∠ECO+∠DEH=90°,∴∠ECO=∠EDH,在△ECO和△FDO中,,∴△ECO≌△FDO(ASA),∴OE=OF.7.【解答】(1)证明:∵AB=BC,AD=CD,∴BD垂直平分AC,∴∠COD=90°,∵CE∥BD,DE∥AC,∴四边形ODEC是平行四边形,∵∠COD=90°,∴四边形ODEC是矩形;(2)解:∵AB=BC,AD=CD,∴BD垂直平分AC,∴AO=OC,∠BOC=∠AOD,∵AD∥BC,∴∠BCO=∠DAO,∴△AOD≌△COB(ASA),∴AD=BC,∴四边形ABCD是平行四边形,∵CE∥BD.DE∥AC,∴四边形ODEC是平行四边形,∴DE=CO,∴DE=AO,∴四边形AOED是平行四边形,∴AD=OE,AD∥OE,∴BC=OE,BC∥OE,∴四边形OECB是平行四边形,综上所述,四边形ABCD,四边形ODEC,四边形AOED,四边形OECB是平行四边形.8.【解答】(1)证明:∵四边形ABCD是平行四边形,∴∠A=∠C,AD=CB,在△DAE和△BCF中,∴△DAE≌△BCF(SAS),∴DE=BF,∵AB=CD,AE=CF,∴AB﹣AE=CD﹣CF,即DF=BE,∵DE=BF,BE=DF,∴四边形DEBF是平行四边形;(2)解:∵AB∥CD,∴∠DF A=∠BAF,∵AF平分∠DAB,∴∠DAF=∠BAF,∴∠DAF=∠AFD,∴AD=DF,∵四边形DEBF是平行四边形,∴DF=BE=5,BF=DE=4,∴AD=5,∵AE=3,DE=4,∴AE2+DE2=AD2,∴∠AED=90°,∵DE∥BF,∴∠ABF=∠AED=90°,∴AF===4.9.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵CH=BF,∴FH=BC,∴AD=FH,∴四边形AFHD是平形四边形,∵AF⊥BC,∴∠AFH=90°,∴平行四边形AFHD是矩形;(2)猜想:AB=BF+AG,证明:如图,延长BF到M,使HM=AG,连接DM,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠1=∠2,∵DE平分∠ADC,∴∠2=∠3,∴∠1=∠3,∴AE=AD,∵AE=AF,∴AF=AD,四边形AFHD是正方形,∴AD=DH,∠GAD=∠DHM=90°,在△DAG和△DHM中,∴△DAG≌△DHM(SAS),∴∠2=∠3=∠HDM,∠AGD=∠M,∵AF∥DH,∴∠AGD=∠HDG=∠2+∠CDH=∠MDH+∠CDH,∴∠M=∠CDM,∴CD=CM=CH+HM,∵BC=AD=FH,∴BC﹣CF=FH﹣CF,∴BF=CH,∵AB=CD,HM=AG,∴AB=BF+AG.10.【解答】解:(1)如图所示,过E作EM⊥BC于M点,过E作EN⊥CD于N点,∵正方形ABCD,∴∠BCD=90°,∠ECN=45°,∴∠EMC=∠ENC=∠BCD=90°,且NE=NC,∴四边形EMCN为正方形,∵四边形DEFG是矩形,∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°,∴∠DEN=∠MEF,又∠DNE=∠FME=90°,在△DEN和△FEM中,,∴△DEN≌△FEM(ASA),∴ED=EF,∴矩形DEFG为正方形,(2)CE+CG的值为定值,理由如下:∵矩形DEFG为正方形,∴DE=DG,∠EDC+∠CDG=90°,∵四边形ABCD是正方形,∵AD=DC,∠ADE+∠EDC=90°,∴∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴AE=CG,∴AC=AE+CE=AB=×4=8,∴CE+CG=8是定值.11.【解答】证明:(1)过E作EM⊥BC于M点,过E作EN⊥CD于N点,如图所示:∵四边形ABCD是正方形,∴∠BCD=90°,∠ECN=45°,∴∠EMC=∠ENC=∠BCD=90°,且NE=NC,∴四边形EMCN为正方形,∵四边形DEFG是矩形,∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°,∴∠DEN=∠MEF,又∠DNE=∠FME=90°,在△DEN和△FEM中,∴△DEN≌△FEM(ASA),∴ED=EF,∴矩形DEFG为正方形;(2)∵矩形DEFG为正方形,∴DE=DG,∠EDC+∠CDG=90°,∵四边形ABCD是正方形,∴AD=DC,∠ADE+∠EDC=90°,∴∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴AE=CG,∴在Rt△ABC中,,∴12.【解答】证明:(1)∵CE平分∠BCD、CF平分∠GCD,∴∠BCE=∠DCE,∠DCF=∠GCF,∵EF∥BC,∴∠BCE=∠FEC,∠EFC=∠GCF,∴∠DCE=∠FEC,∠EFC=∠DCF,∴OE=OC,OF=OC,∴OE=OF;(2)∵点O为CD的中点,∴OD=OC,又OE=OF,∴四边形DECF是平行四边形,∵CE平分∠BCD、CF平分∠GCD,∴∠DCE=∠BCD,∠DCF=∠DCG∴∠DCE+∠DCF=(∠BCD+∠DCG)=90°,即∠ECF=90°,∴四边形DECF是矩形.13.【解答】(1)证明:如图,连接AC交BD于点O,在▱ABCD中,OA=OC,OB=OD,∵BE=DF,∴OB﹣BE=OD﹣DF,即OE=OF,∴四边形AECF是平行四边形(对角线互相平分的四边形是平行四边形);(2)解:∵AB∥CD,∴∠ABF=∠CDF=36°,∵AF=EF,∴∠F AE=∠FEA=72°,∵∠AEF=∠EBA+∠EAB,∴∠EBA=∠EAB=36°,∴EA=EB,同理可证CF=DF,∵AE=CF,∴与AE相等的线段有BE、CF、DF.14.【解答】(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴P A=PC,∵P A=PE,∴PC=PE;(2)解:由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵P A=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPE=∠EDF=90°(3)解:AP=CE;理由如下:在菱形ABCD中,AB=BC,∠ABP=∠CBP=60°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴P A=PC,∠BAP=∠BCP,∵P A=PE,∴PC=PE,∴∠DAP=∠DCP,∵P A=PC,∴∠DAP=∠AEP,∴∠DCP=∠AEP∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠AEP,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等边三角形,∴PC=CE,∴AP=CE.15.【解答】解:(1)证明:∵AF平分∠BAD,∴∠BAF=∠DAF,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,∠BAF=∠CFE,∴∠CEF=∠CFE,∴CE=CF,又∵四边形ECFG是平行四边形,∴四边形ECFG为菱形;(2)①∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,AD∥BC,∵∠ABC=120°,∴∠BCD=60°,∠BCF=120°由(1)知,四边形CEGF是菱形,∴CE=GE,∠BCG=∠BCF=60°,∴CG=GE=CE,∠DCG=120°,∵EG∥DF,∴∠BEG=120°=∠DCG,∵AE是∠BAD的平分线,∴∠DAE=∠BAE,∵AD∥BC,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD,∴△DGC≌△BGE(SAS);②∵△DGC≌△BGE,∴BG=DG,∠BGE=∠DGC,∴∠BGD=∠CGE,∵CG=GE=CE,∴△CEG是等边三角形,∴∠CGE=60°,∴∠BGD=60°,∵BG=DG,∴△BDG是等边三角形,∴∠BDG=60°;(3)如图2中,连接BM,MC,∵∠ABC=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECFG为菱形,∠ECF=90°,∴四边形ECFG为正方形.∵∠BAF=∠DAF,∴BE=AB=DC,∵M为EF中点,∴∠CEM=∠ECM=45°,∴∠BEM=∠DCM=135°,在△BME和△DMC中,∵,∴△BME≌△DMC(SAS),∴MB=MD,∠DMC=∠BME.∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,∴△BMD是等腰直角三角形.∵AB=8,AD=14,∴BD=2,∴DM=BD=.16.【解答】解:(1)证明:∵四边形ABCD为正方形,∴AB⊥BC,∠B=90°.∵EF⊥AB,EG⊥BC,∴EF∥GB,EG∥BF.∵∠B=90°,∴四边形BFEG是矩形;(2)∵正方形ABCD的周长是40cm,∴AB=40÷4=10cm.∵四边形ABCD为正方形,∴△AEF为等腰直角三角形,∴AF=EF,∴四边形EFBG的周长C=2(EF+BF)=2(AF+BF)=20cm.(3)若要四边形BFEG是正方形,只需EF=BF,∵AF=EF,AB=10cm,∴当AF=5cm时,四边形BFEG是正方形.。

人教版数学八年级下册:第十八章 平行四边形 专题练习(附答案)

人教版数学八年级下册:第十八章  平行四边形   专题练习(附答案)

第十八章平行四边形专题练习专题1平行四边形的证明思路类型1若已知(已证)四边形中边的关系(1)已知一组对边平行,可以证这一组对边相等或另一组对边平行;(2)已知一组对边相等,可以证这一组对边平行或另一组对边相等1.如图,在△ABC中,AB=AC,点D在AB上,过点D作BC的平行线,与AC相交于点E,点F在BC上,EF=EC.求证:四边形DBFE是平行四边形.2.如图,在▱ABCD中,点O是对角线AC,BD的交点,点E是边CD的中点,点F在BC的延长线上,且CF=12BC,求证:四边形OCFE是平行四边形.3.如图,点B,E,C,F在一条直线上,已知AB∥DE,AC∥DF,BE=CF,连接AD.求证:四边形ABED是平行四边形.4.如图,在▱ABCD中,分别以AD,BC为边向内作等边△ADE和等边△BCF,连接BE,DF.求证:四边形BEDF是平行四边形.5.如图,已知点D,E,F分别在△ABC的边BC,AB,AC上,且DE∥AF,DE=AF,将FD延长到点G,使FG=2DF,连接AG,则ED与AG互相平分吗?请说明理由.6.如图,在▱ABCD中,E,F分别是AD,BC的中点,AF与BE交于点G,CE与DF交于点H,求证:四边形EGFH是平行四边形.类型2若已知条件(已证结论)与对角线有关,则可以通过证明对角线互相平分得到平行四边形7.如图,▱ABCD的对角线相交于点O,直线EF经过点O,分别与AB,CD的延长线交于点E,F.求证:四边形AECF是平行四边形.8.如图,在▱ABCD 中,点O 是对角线AC 的中点,EF 过点O,与AD,BC 分别相交于点E,F,GH 过点O,与AB,CD 分别相交于点G,H,连接EG,FG,FH,EH.求证:四边形EGFH 是平行四边形.专题2与正方形有关的四个常考模型模型1正方形中相交垂线段问题——教材P68复习题T8的变式与应用1.如图,ABCD是一个正方形花园,E,F是它的两个门,且DE=CF.要修建两条路BE和AF,这两条路等长吗?它们有什么位置关系?为什么?【探究】若去掉“DE=CF”这一条件,将两个结论中的一个作为条件能推出另一个结论成立吗?(1)若已知BE=AF,则BE⊥AF成立吗?正方形内,分别连接两组对边上任意两点,得到的两条线段(如:图1中的线段AF与BE,图2中的线段AF与EG,图3中的线段HF与EG)满足:若垂直,则相等.模型2正方形中过对角线交点的直角问题2.如图,正方形ABCD的对角线AC和BD相交于点O,O又是正方形A1B1C1O的一个顶点,OA1交AB于点E,OC1交BC于点F.(1)求证:△AOE≌△BOF;(2)如果两个正方形的边长都为a,那么这两个正方形重叠部分的面积等于多少?为什么?【变式1】如图,正方形ABCD的边长为4,点O在对角线DB上运动(不与点B,D重合),连接OA,作OP⊥OA,交直线BC于点P.判断线段OA,OP的数量关系,并说明理由.【变式2】如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…,A n分别是正方形的中心,则这n个正方形重叠部分的面积之和是( )A.n B.n-1 C.4(n-1) D.4n正方形ABCD中,O为两条对角线的交点,点E,F分别在AB,BC上.若∠EOF为直角,OE,OF分别与DA,AB的延长线交于点G,H,则△AOE≌△BOF,△AOG≌△BOH,△OGH是等腰直角三角形,且S四边形OEBF=14S正方形ABCD.模型3正方形中三垂直全等模型——教材P69复习题T14的变式与应用3.正方形ABCD的边长为6,点P在对角线BD上,点E是线段AD上或AD的延长线上的一点,且PE⊥PC.(1)如图1,点E在线段AD上,求证:PE=PC;(2)如图2,点E在线段AD的延长线上,请补全图形,并判断(1)中的结论是否仍然成立?请说明理由.模型4正方形中的半角模型4.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?(1)如图,正方形ABCD中,若∠EAF=45°,则:①EF=BE+DF;②△CEF的周长为正方形ABCD边长的2倍;③FA平分∠DFE,EA平分∠BEF.(2)如图,正方形ABCD中,若∠EAF=45°,FA平分∠DFE,则EF=DF-BE.专题3特殊平行四边形的性质与判定1.如图,在菱形ABCD中,点P是BC边上一点,连接AP,点E,F是AP上的两点,连接DE,BF,使得∠AED=∠ABC,∠ABF=∠BPF.求证:(1)△ABF≌△DAE;(2)DE=BF+EF.2.如图,四边形ABCD,BEFG均为正方形,连接AG,CE.求证:(1)AG=CE;(2)AG⊥CE.3.如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB 边上一点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)请求出AM的长为何值时,四边形AMDN是矩形,并说明理由.4.已知:如图,四边形ABCD四条边上的中点分别为E,F,G,H,顺次连接EF,FG,GH,HE,得到四边形EFGH(即四边形ABCD的中点四边形).(1)四边形EFGH的形状是,证明你的结论;(2)当四边形ABCD的对角线满足条件时,四边形EFGH是矩形;(3)你学过的哪种特殊四边形的中点四边形是矩形?.5.如图,在矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.6.如图所示,在▱ABCD中,E,F分别是AB,CD的中点,AF与DE相交于点G,CE与BF相交于点H.(1)你能说明四边形EHFG是平行四边形吗?(2)当四边形ABCD满足什么条件时,四边形EHFG是一个菱形?(3)四边形EHFG会成为一个正方形吗?专题4四边形中的动点问题——教材P68复习题T13的变式与应用【例】如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8 cm,AD=12 cm,BC =18 cm,点P从点A出发,以1 cm/s的速度向点D运动;点Q从点C同时出发,以2 cm/s 的速度向点B运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设点P,Q运动的时间为t s.(1)CD边的长度为cm,t的取值范围为;(2)从运动开始,当t取何值时,PQ∥CD?(3)从运动开始,当t取何值时,PQ=CD?【拓展变式1】在整个运动过程中是否存在t值,使得四边形PQCD是菱形?若存在,请求出t值;若不存在,请说明理由.【拓展变式2】从运动开始,当t取何值时,四边形PQBA是矩形?【拓展变式3】在整个运动过程中是否存在t值,使得四边形PQBA是正方形?若存在,请求出t值;若不存在,请说明理由.【拓展变式4】是否存在t,使得△DQC是等腰三角形?若存在,请求出t值;若不存在,请说明理由.专题5特殊平行四边形中的折叠问题——教材P64“数学活动”的变式与应用【例】如图1,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;再次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN,MN.请你观察图1,猜想∠MBN的度数是多少,并证明你的结论.图1【拓展延伸】再沿MN所在的直线折叠,点B落在AD上的点B′处,得到折痕MG,同时得到线段B′G,展开如图2.探究四边形MBGB′的形状,并证明你的结论.图2在折叠问题中,原图形与折叠后图形中所隐含的相等线段与相等角常常是解决问题的关键,注意翻折变换的性质的灵活运用,折叠前后,重叠部分是全等形,另外注意勾股定理等知识在求折叠图形的线段中的适当运用.1.如图,将矩形ABCD 折叠,使点C 和点A 重合,折痕为EF ,EF 与AC 交于点O.若AE =5,BF =3,则AO 的长为( )A . 5B .32 5 C .2 5 D .452.如图,将边长为6 cm 的正方形纸片ABCD 折叠,使点D 落在AB 边中点E 处,点C 落在点Q 处,折痕为FH ,则线段AF 的长是 cm .3.如图,将一张菱形纸片ABCD 的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH.若EF =4,EH =3,则AB = .4.如图,在矩形ABCD 中,AB>AD ,把矩形沿对角线AC 所在直线折叠,使点B 落在点E 处,AE 交CD 于点F ,连接DE.求证: (1)△ADE ≌△CED ; (2)△DEF 是等腰三角形.专题6特殊平行四边形中的最值问题【例】如图,正方形ABCD的边长为4,E为BC上的一点,BE=1,F为AB的中点,P 为AC上一个动点,求PF+PE的最小值.【思路点拨】(1)先确定点P的位置:作点E关于AC的对称点E′,连接FE′,交AC于点P,则点P即为所求;(2)求E′F的长度:将E′F放到一个直角三角形中,利用勾股定理求出E′F的长,即求出了PF+PE的最小值.求线段和最小时,若已知的两点在动点所在直线的同侧,将动点所在直线当作对称轴,作出其中一点的对称点,再将另一点与这个对称点连接,则其与直线的交点即为所求动点所在位置,再求出所连接的线段长即为所求.1.如图,菱形ABCD的边长为2,∠DAB=60°,点E为BC边的中点,点P为对角线AC上一动点,则PB+PE的最小值为.2.如图,在矩形ABCD 的边AD 上找一点P ,使得点P 到B ,C 两点的距离之和最短,则点P 的位置应该在 .3.如图,四边形ABCD 是菱形,AB =8,且∠ABC =60°,M 为对角线BD(不含B 点)上任意一点,则AM +12BM 的最小值为 .4.如图,以边长为2的正方形的对角线的交点O 为端点,引两条相互垂直的射线,分别与正方形的边交于A ,B 两点,求线段AB 的最小值.参考答案:专题1 平行四边形的证明思路1.证明:∵AB =AC ,∴∠B =∠C. ∵EF =EC ,∴∠EFC =∠C. ∴∠B =∠EFC. ∴AB ∥EF. 又∵DE ∥BC ,∴四边形DBFE 是平行四边形.2.证明:∵四边形ABCD 是平行四边形, ∴点O 是BD 的中点. 又∵点E 是边CD 的中点, ∴OE 是△BCD 的中位线. ∴OE ∥BC ,且OE =12BC.又∵CF =12BC ,∴OE =CF.又∵点F 在BC 的延长线上, ∴OE ∥CF.∴四边形OCFE 是平行四边形. 3.证明:∵AB ∥DE ,∴∠B =∠DEF. ∵AC ∥DF ,∴∠ACB =∠F.∵BE =CF ,∴BE +CE =CF +CE ,即BC =EF. 在△ABC 和△DEF 中,⎩⎨⎧∠B =∠DEF ,BC =EF ,∠ACB =∠F ,∴△ABC ≌△DEF(ASA ).∴AB =DE. ∵AB ∥DE ,∴四边形ABED 是平行四边形.4.证明:∵四边形ABCD 是平行四边形, ∴CD =AB ,AD =CB ,∠DAB =∠BCD. 又∵△ADE 和△BCF 都是等边三角形,∴DE =AD =AE ,CF =BF =BC ,∠DAE =∠BCF =60°. ∴BF =DE ,CF =AE.∵∠DCF =∠BCD -∠BCF ,∠BAE =∠DAB -∠DAE , ∴∠DCF =∠BAE. 在△DCF 和△BAE 中,⎩⎨⎧CD =AB ,∠DCF =∠BAE ,CF =AE ,∴△DCF ≌△BAE(SAS ). ∴DF =BE. 又∵BF =DE ,∴四边形BEDF 是平行四边形. 5.解:ED 与AG 互相平分. 理由:连接EG ,AD. ∵DE ∥AF ,DE =AF , ∴四边形AEDF 是平行四边形. ∴AE ∥DF ,AE =DF. 又∵FG =2DF , ∴DG =DF. ∴AE =DG. 又∵AE ∥DG ,∴四边形AEGD 是平行四边形. ∴ED 与AG 互相平分.6.证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC.∵E ,F 分别是AD ,BC 的中点, ∴AE =12AD ,FC =12BC.∴AE ∥FC ,AE =FC.∴四边形AECF 是平行四边形. ∴GF ∥EH.同理可证:ED ∥BF 且ED =BF. ∴四边形BFDE 是平行四边形. ∴GE ∥FH.∴四边形EGFH 是平行四边形.7.证明:∵四边形ABCD 是平行四边形, ∴OD =OB ,OA =OC ,AB ∥CD. ∴∠DFO =∠BEO ,∠FDO =∠EBO. 在△FDO 和△EBO 中,⎩⎨⎧∠DFO =∠BEO ,∠FDO =∠EBO ,OD =OB ,∴△FDO ≌△EBO(AAS). ∴OF =OE . 又∵OA =OC ,∴四边形AECF 是平行四边形.8.证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC. ∴∠EAO =∠FCO. ∵O 为AC 的中点, ∴OA =OC.在△OAE 和△OCF 中,⎩⎨⎧∠EAO =∠FCO ,OA =OC ,∠AOE =∠COF ,∴△OAE ≌△OCF(ASA ). ∴OE =OF.同理可证:OG =OH.∴四边形EGFH 是平行四边形.专题2 与正方形有关的四个常考模型1.解:BE =AF 且BE ⊥AF ,理由: ∵四边形ABCD 是正方形,∴AB =AD =CD ,∠BAD =∠D =90°. 又∵DE =CF ,∴AE =DF. ∴△ABE ≌△DAF(SAS ). ∴BE =AF ,∠ABE =∠DAF.∵∠DAF +∠BAF =90°,∴∠ABE +∠BAF =90°. ∴∠AGB =90°,即BE ⊥AF.【探究】解:成立.理由:∵四边形ABCD 是正方形, ∴∠BAD =∠D =90°,AB =AD. 在Rt △ABE 和Rt △DAF 中,⎩⎨⎧AB =DA ,BE =AF ,∴Rt △ABE ≌Rt △DAF(HL ). ∴∠ABE =∠DAF.∵∠DAF +∠BAF =90°,∴∠ABE +∠BAF =90°.∴∠AGB =90°,即BE ⊥AF. (2)若已知BE ⊥AF ,则BE =AF 成立吗? 解:成立.理由:∵四边形ABCD 是正方形, ∴AB =AD ,∠BAD =∠D =90°. 又∵BE ⊥AF ,∴∠AGB =90°. ∴∠ABE +∠BAF =90°.∵∠DAF +∠BAF =90°,∴∠ABE =∠DAF. ∴△ABE ≌△DAF(ASA ). ∴BE =AF.2.解:(1)证明:在正方形ABCD 中,AO =BO ,∠AOB =∠A 1OC 1=90°,∠OAB =∠OBC =45°. ∴∠AOE +∠EOB =90°,∠BOF +∠EOB =90°. ∴∠AOE =∠BOF. 在△AOE 和△BOF 中,⎩⎨⎧∠OAE =∠OBF ,OA =OB ,∠AOE =∠BOF ,∴△AOE ≌△BOF(ASA ).(2)两个正方形重叠部分的面积等于14a 2.理由如下:∵△AOE ≌△BOF ,∴S 四边形OEBF =S △EOB +S △BOF =S △EOB +S △AOE =S △AOB =14S 正方形ABCD =14a 2.【变式1】 解:OA =OP ,理由:过点O 作OG ⊥AB 于点G ,过点O 作OH ⊥BC 于点H ,∵四边形ABCD 是正方形, ∴∠ABO =∠CBO ,AB =BC. ∴OG =OH.∵∠OGB =∠GBH =∠BHO =90°, ∴四边形OGBH 是正方形. ∴∠GOH =90°.∵∠AOP =∠GOH =90°,∴∠AOG =∠POH. ∴△AGO ≌△PHO(ASA ). ∴OA =OP. 【变式2】 B3.解:(1)证明:过点P 作FG ∥DC 分别交AD ,BC 于点F ,G. 易得∠PFD =∠CGP =90°. ∵BD 为正方形ABCD 的对角线, ∴∠BDF =∠FPD =45°. ∴PF =FD.又∵FG ∥DC ,FD ∥GC ,∠ADC =90°, ∴四边形FGCD 为矩形. ∴DF =CG. ∴PF =CG. ∵PE ⊥PC ,∴∠FPE +∠GPC =90°. ∵∠FEP +∠FPE =90°, ∴∠FEP =∠GPC. ∴在△PFE 和△CGP 中,⎩⎨⎧∠PFE =∠CGP ,∠FEP =∠GPC ,PF =CG ,∴△PFE ≌△CGP(AAS ). ∴PE =CP.(2)成立.理由:过点P 作FG ∥DC 分别交AD ,BC 于点F ,G. 同理可证△PFE ≌△CGP(AAS ). ∴PE =PC.4.解:(1)证明:∵四边形ABCD 是正方形, ∴BC =CD ,∠B =∠CDF.又∵BE =DF ,∴△CBE ≌△CDF(SAS ).∴CE =CF.(2)GE =BE +GD 成立.理由:由(1)得,△CBE ≌△CDF ,∴∠BCE =∠DCF.∴∠BCE +∠ECD =∠DCF +∠ECD ,即∠BCD =∠ECF =90°.又∵∠GCE =45°,∴∠GCF =∠GCE =45°.∵CE =CF ,∠GCE =∠GCF ,GC =GC ,∴△ECG ≌△FCG(SAS ).∴GE =GF.∴GE =DF +GD =BE +GD.专题3 特殊平行四边形的性质与判定1.证明:(1)∵四边形ABCD 是菱形,∴AB =AD ,AD ∥BC.∴∠BPF =∠DAE.∵∠ABC =∠AED ,∴∠BAF =∠ADE.∵∠ABF =∠BPF ,∴∠ABF =∠DAE.∵AB =DA ,∴△ABF ≌△DAE(ASA ).(2)∵△ABF ≌△DAE ,∴AE =BF ,DE =AF.∵AF =AE +EF =BF +EF ,∴DE =BF +EF.2.证明:(1)∵四边形ABCD ,BEFG 均为正方形,∴AB =CB ,∠ABC =∠GBE =90°,BG =BE.∴∠ABG =∠CBE.在△ABG 和△CBE 中,⎩⎨⎧AB =CB ,∠ABG =∠CBE ,BG =BE ,∴△ABG ≌△CBE(SAS ).∴AG =CE.(2)设AG 交BC 于点M ,交CE 于点N.∵△ABG ≌△CBE ,∴∠BAG =∠BCE.∵∠ABC =90°,∴∠BAG +∠AMB =90°.∵∠AMB =∠CMN ,∴∠BCE +∠CMN =90°.∴∠CNM =90°.∴AG ⊥CE.3.解:(1)证明:∵四边形ABCD 是菱形,∴ND ∥AM.∴∠NDE =∠MAE ,∠DNE =∠AME.又∵点E 是AD 边的中点,∴DE =AE.∴△NDE ≌△MAE(AAS ).∴ND =MA.∴四边形AMDN 是平行四边形.(2)当AM 的长为1时,四边形AMDN 是矩形.理由如下:∵AM =1=12AD =AE ,∠DAB =60°, ∴△AEM 是等边三角形.∴∠AME =∠AEM =60°,EM =AE =ED.∴∠EMD =∠EDM =30°.∴∠AMD =∠AME +∠EMD =90°.∴四边形AMDN 是矩形.4.(1)四边形EFGH 的形状是平行四边形,证明你的结论;(2)当四边形ABCD 的对角线满足互相垂直条件时,四边形EFGH 是矩形;(3)你学过的哪种特殊四边形的中点四边形是矩形?菱形.证明:连接BD.∵E ,H 分别是AB ,AD 中点,∴EH ∥BD ,EH =12BD. 同理FG ∥BD ,FG =12BD , ∴EH ∥FG ,EH =FG.∴四边形EFGH 是平行四边形.5.解:(1)证明:由题意得△BCE ≌△BFE ,∴∠BEC =∠BEF ,FE =CE.∵FG ∥CE ,∴∠FGE =∠BEC.∴∠FGE =∠BEF.∴FG =FE.∴FG =EC.∴四边形CEFG 是平行四边形.又∵CE =FE ,∴四边形CEFG 是菱形.(2)∵矩形ABCD 中,AB =6,AD =10,BC =BF ,∴∠BAF =90°,AD =BC =BF =10.∴AF =BF 2-AB 2=8.∴DF =2.设EF =x ,则CE =x ,DE =6-x.∵∠FDE =90°,∴22+(6-x)2=x 2.解得x =103.∴CE =103. ∴S 四边形CEFG =CE·DF =103×2=203. 6.解:(1)能说明四边形EHFG 是平行四边形.∵四边形ABCD 是平行四边形,∴AB 綊CD.而AE =12AB ,CF =12CD , ∴AE 綊CF.∴四边形AECF 是平行四边形.∴GF ∥EH.同理可得GE ∥HF.∴四边形EHFG 是平行四边形.(2)当四边形ABCD 是矩形时,四边形EHFG 是菱形.由(1)知,四边形EHFG 是平行四边形.连接EF.当四边形ABCD 是矩形时,四边形EBCF 也是矩形,∴EH =FH ,∴四边形EHFG 是菱形.(3)当四边形ABCD 是矩形且AB =2AD 时,四边形EHFG 是正方形.由(2)知,当四边形ABCD 是矩形时,四边形EHFG 是菱形.又由AB =2AD 可知,四边形EBCF 是正方形.根据正方形的性质知,EC⊥BF,即∠EHF=90°,∴四边形EHFG是正方形.专题4四边形中的动点问题【例】(1)CD边的长度为10cm,t的取值范围为0≤t≤9;解:(2)设经过t s时,PQ∥CD,此时四边形PQCD为平行四边形,则PD=CQ.∵PD=(12-t)cm,CQ=2t cm,∴12-t=2t.∴t=4.∴当t=4时,PQ∥CD.(3)设经过t s时,PQ=CD,分别过点P,D作BC边的垂线PE,DF,垂足分别为E,F.当CF=EQ时,四边形PQCD为梯形(腰相等)或者平行四边形.∵∠B=∠A=∠DFB=90°,∴四边形ABFD是矩形.∴AD=BF.∵AD=12 cm,BC=18 cm,∴CF=BC-BF=6 cm.①当四边形PQCD为梯形(腰相等)时,PD+2(BC-AD)=CQ,∴(12-t)+12=2t.∴t=8.∴当t=8时,PQ=CD;②当四边形PQCD为平行四边形时,由(2)知当t=4 s时,PQ=CD.综上,当t=4或t=8时,PQ=CD.【拓展变式1】解:不存在.理由:要使四边形PQCD是菱形,则四边形PQCD一定是平行四边形.由例知当t=4 s时,四边形PQCD是平行四边形.此时DP=12-t=8≠10,即DP≠DC,所以按已知速度运动,四边形PQCD只能是平行四边形,不可能是菱形.【拓展变式2】解:如图,由题意,得AP =t ,DP =12-t ,CQ =2t ,BQ =18-2t.要使四边形PQBA 是矩形,已有∠B =90°,AD ∥BC ,即AP ∥BQ ,只需满足AP =BQ ,即t =18-2t ,解得t =6.所以当t =6时,四边形PQBA 是矩形.【拓展变式3】 解:不存在.理由:要使四边形PQBA 是正方形,则四边形PQBA 一定是矩形.由变式2知,当t =6时,四边形PQBA 是矩形.此时AP =t =6≠8,即AP ≠AB ,所以按已知速度运动,四边形PQBA 只能是矩形,不可能是正方形.【拓展变式4】 解:△DQC 是等腰三角形时,分三种情况讨论:图1 图2 图3①如图1,当QC =DC 时,即2t =10,∴t =5.②如图2,当DQ =DC 时,过点D 作DH ⊥CQ ,则QH =CH =12CQ =t. 在矩形ABHD 中,BH =AD =12,∴CH =BC -BH =6,∴t =6.③如图3,当QD =QC 时,过点D 作DH ⊥CQ ,DH =8,CH =6,DC =10,CQ =QD =2t ,QH =|2t -6|.在Rt △DQH 中,DH 2+QH 2=DQ 2.∴82+|2t -6|2=(2t)2.解得t =256. 综上,当t =5或6或256时,△DQC 是等腰三角形专题5 特殊平行四边形中的折叠问题【例】 解:∠MBN =30°.证明:连接AN .∵直线EF 是AB 的垂直平分线,点N 在EF 上,∴AN =BN .由折叠可知,BN =AB ,∴△ABN 是等边三角形.∴∠ABN =60°.∴∠MBN =∠ABM =12∠ABN =30°. 【拓展延伸】 解:四边形MBGB′是菱形.证明:∵∠ABM =30°,∠A =∠ABC =90°,∴∠MBG =∠AMB =60°.根据折叠的性质,得BM =MB′,BG =B′G ,∠BMN =∠AMB.∴∠BMN =∠MBG =60°.∴△MBG 是等边三角形.∴BM =BG.∴BM =MB′=BG =B′G.∴四边形MBGB′是菱形.1.C2. 94cm . 3.5.4.证明:(1)由折叠相关性质可知,AE =AB ,CE =CB.∵四边形ABCD 是矩形,∴AE =AB =DC ,CE =CB =AD.在△ADE 和△CED 中,⎩⎨⎧AD =CE ,AE =CD ,DE =ED ,∴△ADE ≌△CED(SSS ).(2)由(1)知,△ADE ≌△CED ,∴∠AED =∠CDE.∴△DEF 是等腰三角形.小专题(十) 特殊平行四边形中的最值问题【例】 解:作点E 关于直线AC 的对称点E′(易知点E′在CD 上),连接E′F ,交AC 于点P.则PE =PE′,CE ′=CE.∴PE +PF =PE′+PF =E′F.∴P 即为所求的使PF +PE 最短的点.∵正方形ABCD 的边长为4,BE =1,F 为AB 的中点, ∴BF =2,CE =CB -BE =3.∴CE ′=CE =3.过点F 作FG ⊥CD 于点G ,则∠FGE′=∠FGC =90°. ∵四边形ABCD 是正方形,∴∠B =∠BCD =∠FGC =90°.∴四边形FBCG 是矩形.∴CG =BF =2,FG =BC =4.∴E ′G =E′C -CG =1.∴在Rt △E ′FG 中,E ′F =FG 2+E′G 2=42+12=17. ∴PF +PE 的最小值为17.12.AD 的中点.34.解:∵四边形CDEF 是正方形,∴∠OCA =∠ODB =45°,∠COD =90°,OC =OD. ∵AO ⊥OB ,∴∠AOB =90°.∴∠COA +∠AOD =90°,∠AOD +∠DOB =90°. ∴∠COA =∠DOB.在△COA 和△DOB 中,⎩⎨⎧∠OCA =∠ODB ,OC =OD ,∠COA =∠DOB ,∴△COA ≌△DOB(ASA ).∴OA =OB.∵∠AOB =90°,∴△AOB 是等腰直角三角形. 由勾股定理,得AB =OA 2+OB 2=2OA ,要使AB 最小,只要OA 取最小值即可,根据垂线段最短,得OA ⊥CD 时,OA 最小,∵四边形CDEF 是正方形,∴OD =OC.又∵OA ⊥CD ,∴CA =DA.∴OA =12CF =1.∴AB = 2.∴AB的最小值为 2.。

人教版八级数学下册平行四边形知识点及同步练习、含答案

人教版八级数学下册平行四边形知识点及同步练习、含答案

学科:数学教学内容:平行四边形的特征【学习目标】1.探索并掌握平行四边形的特征.2.灵活运用平行四边形的特征解决问题.3.平行四边形一般转化成三角形的问题来解决.【基础知识概述】1.平行四边形:(1)平行四边形的定义:两组对边分别平行的四边形是平行四边形.(2)平行四边形的表示:平行四边形用符号“”表示.平行四边形ABCD记作,读作平行四边形ABCD.(3)平行四边形定义的作用:①由定义知平行四边形的两组对边分别平行.②由定义可以得出只要四边形中两组对边分别平行,那么这个四边形是平行四边形.2.平行四边形的特征:(1)平行四边形的邻角互补,对角相等.(2)平行四边形的对边平行且相等.(3)平行四边形的对角线互相平分.(4)平行四边形是中心对称图形,对角线的交点为对称中心.(5)若一条直线过平行四边形两对角线的交点,则这直线被一组对边截下的线段以对角线的交点为中点,且这条直线二等分平行四边形的面积.注意:①特征:都是通过连对角线把四边形问题转化成三角形问题来处理的,即通过平移或旋转,利用重合来证明的.②夹在两条平行线间的平行线段是指端点分别在两条平行线上的平行线段.③互相平分指两条线段有公共的中点.3.平行四边形特征的作用:可以用来证明线段相等、角相等及两直线平行等.如图12-1-1,有如下结论:⎪⎪⎩⎪⎪⎨⎧==∠=∠∠=∠==(对角线互相平分),(对角相等),(对边相等),(对边平行),是平行四边形,则如果四边形DO BO CO AO D B C A AD BC CD AB AD //BC CD //AB ABCD 4.两条平行线间的距离:(1)定义:两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离.(2)两平行线间的距离处处相等.注意:距离是指垂线段的长度,是大于0的.①平行线的位置确定后,它们的距离是定值,不随垂线段的位置改变.②平行线间的距离处处相等,因此在作平行四边形的高时,可根据需要灵活选择位置.5.平行四边形的面积:(1)如图12-1-2①,.也就是 (a是平行四边形任何一边长,h必须是a边与其对边的距离).(2)同底(等底)同高(等高)的平行四边形面积相等.如图12-1-2②,有公共边BC,则.注意:这里的底是相对而言的,也就是高所在的边,平行四边形任意一边都可以作底,底确定后,高也就确定了.【例题精讲】例1如图12-1-3,已知的对角线相交于点O,过O作直线交AB于E,交CD于F,可得OE=OF.为什么?分析:要得到OE=OF,可先证得它们所在△AEO与△CFO(△BEO与△DFO)重合.解:在中,∵AB∥CD,OD=OB,∴∠1=∠2,∠3=∠4,∴将△BOE绕点O旋转180度后与△DOF重合.∴OE=OF.注意:把线段与角归结为平行四边形的边,对角线或对角,利用平行四边形的特征证明.例2 (1)在中,∠A︰∠B=2︰3,求各角的度数.(2)已知的周长为28cm,AB︰BC=3︰4,求它的各边的长.分析:(1)在平行四边形中,邻角是互补的,而对角是相等的,所以∠A与∠B必是邻角,其和为180°,可据此列式求出角度.(2)平行四边形的对边相等,所以周长为邻边之和的2倍,可以据此列式求出各边长.解:(1)由于∠A、∠B是平行四边形的两个邻角,所以∠A+∠B=180°.又因为∠A︰∠B=2︰3,不妨可设∠A=2k,∠B=3k,那么2k+3k=180°,可以解得k=36°,则∠A=∠C=72°,∠B=∠D=108°.(2)由于在中,AB=CD,BC=AD.所以AB+BC+CD+AD=28,即AB+BC=14.由题意得AB︰BC=3︰4,因此可设AB=3k,BC=4k,那么有3k+4k=14,解得k=2,则AB=CD=6cm,BC=AD=8cm.例3如图12-1-4,已知的周长为60 cm,对角线AC、BD相交于点O,△AOB的周长比△BOC的周长长8cm,求这个四边形各边长.分析:由平行四边形对边相等知AB+BC=平行四边形周长的一半=30cm,又由△AOB的周长比△BOC的周长长8 cm知AB—BC=8cm,由此两式,可得各边长.解:∵四边形ABCD为平行四边形,∴AB=CD,AD=CB,AO=CO.∵AB+CD+AD+CB=60,AO+AB+OB-(OB+BC+OC)=8,∴AB十BC=30,AB-BC=8,∴AB=CD=19,BC=AD=11.答:这个四边形各边长分别为19 cm,11 cm,19 cm,11 cm.注意:①平行四边形的邻边之和等于平行四边形周长的一半.②平行四边形被对角线分成四个小三角形,相邻两个三角形周长之差等于邻边之差.思考:如图12-1-4,如果△AOB与△AOD的周长之差为8,而AB∶AD=3∶2,那么的周长为多少?提示:周长为80.设AB=3x,则AD=2x,依题意有3x-2x=8,∴x=8,∴AB=3x=3×8=24,AD=2x=2×8=16.∴周长=2(24+16)=80.例4 如图12-1-5,在中,∠B=120°,DE⊥AB,垂足为E,DF⊥BC,垂足为F.求∠ADE,∠EDF,∠FDC的度数.分析:由平行四边形对角相等、邻角互补得∠A=∠C,∠A+∠B=180°,再由垂直得到角为90°即可.解:在中,∵∠A=∠C,AD∥BC,∴∠A+∠B=180°.∴∠A=180°-∠B=60°.∴∠C=60°.∵DE⊥AB,DF⊥BC,∴∠ADE=∠FDC=90°-∠A=90°-60°=30°.注意:在平行四边形中求角的度数时,一般运用平行四边形的特征,即对角相等、邻角互补来进行求解.【中考考点】会利用平行四边形证明角相等,线段相等及直线平行.【命题方向】多以中档题型出现,填空、选择、计算、证明等各种形式都会涉及.【常见错误分析】例7如图12-1-7,中,AC和BD交于O,OE⊥AD于E,OF⊥BC于F,则OE=OF.为什么?错解:∵,∴OA=OC,∵OE⊥AD,OF⊥BC,∴∠AOE=∠COF.又∠1=∠2,∴△AOE旋转180°后与△COF重合,∴OE=OF.误区分析:错误出于∠AOE=∠COF这一步骤,原因在于默认了E,O,F三点共线,而已知条件中并没有这个结论,其实E,O,F三点共线在证题过程中应该加以证明,否则就犯了推理没有根据,理由不充足的逻辑错误.正解:解法一:∵,∴AD∥BC,∴∠3=∠4.又OA=OC,∠AEO=∠CFO=90°,∴△AOE旋转180°后与△COF重合,∴OE=OF.解法二:∵AD∥BC,OE⊥AD∴OE⊥BC.又OF⊥BC,∴直线OE与OF重合,即E,O,F三点共线,∴∠1=∠2.又∵OA=OC,∠AEO=∠CFO=90°,∴△AOE旋转180°后与△COF重合,∴OE=OF.此命题可推广如下:已知中,AC和BD交于O,过点O作直线EF交AD于F,交BC于F,则OE=OF.求解(略).这个推广后的命题,是平行四边形中一个十分重要的基本命题,利用它的结果可以证明很多问题成立.【学习方法指导】1.学习平行四边形的特征时,按照对角、对边、对角线的顺序去理解,便于记忆和应用.2.本节主要内容是平行四边形的定义及特征,并且要重点理解两条平行线间的距离的概念.【同步达纲练习】一、填空题1.若一个平行四边形相邻的两内角之比为2︰3,则此平行四边形四个内角的度数分别为____________.2.在中,周长为28,两邻边之比为3︰4,则各边长为____________.3.在中,∠A=30°,AB=7 cm,AD=6 cm,则=____________.4.一个平行四边形的一边长是8,一条对角线长是6,则它的另一条对角线x的取值范围为____________.5.中,周长为20cm,对角线AC交BD于点O,△OAB比△OBC的周长多4,则边AB=____________,BC =____________.6.平行四边形的边长等于5和7,这个平行四边形锐角的平分线把长边分成两条线段长各是____________.7.已知等腰△ABC 的一腰AB =9 cm ,过底边上任一点P 作两腰平行线分别交AB 于M ,交AC 于N ,则AN 十PN =____________.8.平行四边形两邻边分别是4和6,其中一边上的高是3,则平行四边形的面积是____________.9.平行四边形邻边长是4 cm 和8cm ,一边上的高是5 cm ,则另一边上的高是____________.10.如图12-1-8,中,E 是AD 的中点,BD 与EC 相交于F ,若2S EFD =∆,则BFC S ∆=____________.11.已知P 为内一点,,则PCD PAB S S ∆∆+=____________. 12.已知的对角线相交于点O ,它的周长为10 cm ,△BCO 的周长比△AOB 的周长多2cm ,则AB =____________.二、解答题13.已知,如图12-1-9,在△ABC中,BD是∠ABC的平分线,DE∥BC交AB于E,EF∥AC交BC于F,则BE=FC,为什么?14.如图12-1-10,中,E,F是对角线BD上两点,且BE=FD,连结AE,FC,则AE=FC,试说明理由.15.如图12-1-11,中,对角线AC长为10 cm,∠CAB=30°,AB长为6 cm,求的面积.16.如图12-1-12,在等边△ABC中,P为△ABC内一点,PD∥AB,PE∥BC,PF∥AC,D,E,F分别在AC,AB和BC上,试说明PD+PF+PE=AB.17.从平行四边形的一个锐角顶点作两条高,如果这两条高的夹角是135°,求此平行四边形的各角的度数.三、思考题18.如图12-1-13,EF过对角线的交点O,交AD于E,交BC于F,若AB=4,BC=5,OE=1.5,求四边形EFCD的周长.19.以平行四边形ABCD两邻边BC、CD为边向外作正△BCP和正△CDQ,则△APQ为正三角形,请说明理由.参考答案【同步达纲练习】一、1.72°,108°,72°,108°2.6,8,6,83.221cm4.10<x<225.7cm,3 cm6.5,27.9 cm8.12或1859.cm210.811.5012.1.5cm二、13.提示:由△BED是等腰三角形得到BE=ED,由四边形DEFC是平行四边形得到ED=FC即可.14.提示:通过△ABE与△DCF重合可以得出.15.230.cm16.延长FP交AB于G,延长DP交BC于H,四边形AGPD,EBHD为平行四边形,PD=AG,PH=BE,△GEP,△PHF为等边三角形,PE=EG,PH=PF=BE,PD+PF+PE=AG+GE+EB=AB.17.45°,135°,45°,135°.三、18.OE=OF=1.5,AE=CF,DE=BF,ED+CF=BF+FC=5,CD=AB=4,四边形EFCD的周长为2×1.5+5+4=12.19.提示:证明△ABP、△QDA、△QCP三个三角形重合,可得出AP=AQ=PQ即可.专项训练二概率初步一、选择题1.(徐州中考)下列事件中的不可能事件是( )A.通常加热到100℃时,水沸腾 B.抛掷2枚正方体骰子,都是6点朝上C.经过有交通信号灯的路口,遇到红灯 D.任意画一个三角形,其内角和是360°2.小张抛一枚质地均匀的硬币,出现正面朝上的可能性是( )A.25% B.50% C.75% D.85%3.(2016·贵阳中考)2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是( )A.110B.15C.310D.254.(金华中考)小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( )A.14B.13C.12D.345.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )A.12B.13C.14D.166.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( )A.13B.16C.19D.1127.分别转动图中两个转盘一次,当转盘停止转动时,两个指针分别落在某个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于( )A.316B.38C.58D.1316第7题图第8题图8.(2016·呼和浩特中考)如图,△ABC是一块绿化带,将阴影部分修建为花圃,已知AB=15,AC=9,BC=12,阴影部分是△ABC的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( )A.16B.π6C.π8D.π5二、填空题9.已知四个点的坐标分别是(-1,1),(2,2),⎝ ⎛⎭⎪⎫23,32,⎝ ⎛⎭⎪⎫-5,-15,从中随机选取一个点,在反比例函数y =1x 图象上的概率是________.10.(黄石中考)如图所示,一只蚂蚁从A 点出发到D ,E ,F 处寻觅食物.假定蚂蚁在每个岔路口都可能随机选择一条向左下或右下的路径(比如A 岔路口可以向左下到达B 处,也可以向右下到达C 处,其中A ,B ,C 都是岔路口).那么,蚂蚁从A 出发到达E 处的概率是________.11.(贵阳中考)现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为________.12.(荆门中考)荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是________.13.(重庆中考)点P 的坐标是(a ,b ),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P (a ,b )在平面直角坐标系中第二象限内的概率是________.14.★从-1,1,2这三个数字中,随机抽取一个数记为a ,那么,使关于x 的一次函数y =2x +a 的图象与x 轴、y 轴围成的三角形的面积为14,且使关于x 的不等式组⎩⎨⎧x +2≤a ,1-x ≤2a有解的概率为________.三、解答题15.(南昌中考)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m (m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A ,请完成下列表格:(2)先从袋子中取出m 个红球,再放入m 个一样的黑球并摇匀,随机摸出1个黑球的概率等于45,求m 的值.16.(菏泽中考)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是________; (2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是________; (3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.17.(丹东中考)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字之和为2的倍数,则甲获胜;若抽取的数字之和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.18.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,3,5,x,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和,记录后将小球放回袋中搅匀,进行重复实验.实验数据如下表:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x的值可以取4吗?请用列表法或画树状图法说明理由;如果x的值不可以取4,请写出一个符合要求的x的值.参考答案与解析1.D 2.B 3.C 4.A 5.A 6.C 7.C8.B 解析:∵AB =15,BC =12,AC =9,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径为12+9-152=3,∴S △ABC =12AC ·BC =12×12×9=54,S 圆=9π,∴小鸟落在花圃上的概率为9π54=π6.9.12 10.12 11.15 12.35 13.15 14.13 15.解:(1)4 2或3 (2)根据题意得6+m 10=45,解得m =2,所以m 的值为2. 16.解:(1)14 解析:第一道肯定能对,第二道对的概率为14,所以锐锐通关的概率为14;(2)16 解析:锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为13,第二道题对的概率为12,所以锐锐能通关的概率为12×13=16;(3)锐锐将每道题各用一次“求助”,分别用A ,B 表示剩下的第一道单选题的2个选项,a ,b ,c 表示剩下的第二道单选题的3个选项,树状图如图所示.共有6种等可能的结果,锐锐顺利通关的只有1种情况,∴锐锐顺利通关的概率为16.17.解:(1)所有可能出现的结果如下表,从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为13;(2)不公平.从表格可以看出,两人抽取数字之和为2的倍数有5种,两人抽取数字之和为5的倍数有3种,所以甲获胜的概率为59,乙获胜的概率为13.∵59>13,∴甲获胜的概率大,游戏不公平.2 3 52 2 23 2 5 2 3 2 3 3 3 5 3 52 53 5 5 518.解:(1)0.33(2)图略,当x 为4时,数字和为9的概率为212=16≠13,所以x 不能取4;当x =6时,摸出的两个小球上数字之和为9的概率是13.。

人教版八级数学下册平行四边形基础知识点及同步练习、含答案

人教版八级数学下册平行四边形基础知识点及同步练习、含答案

学科:数学教学内容:平行四边形的特征与识别方法一.主要内容1.平行四边形的定义有两组对边分别平行的四边形叫做平行四边形。

平行四边形ABCD,记作:ABCD ,其中AB与DC、AD与BC是两组对边;AB与BC是邻边;∠A与∠C、∠B与∠D是两组对角;∠A与∠B是邻角。

边、角、对角线是平行四边形的基本元素。

ADB C2.平行四边形的特征①平行四边形是中心对称图形,对称中心是对角线的交点。

这是它的本质特征。

由它的本质特征决定了平行四边形的边、角、对角线的特征。

②平行四边形的两组对边分别平行且相等③平行四边形的两组对角分别相等④平行四边形的两条对角线互相平分3.平行四边形的识别方法方法1.用定义:有两组对边分别平行的四边形是平行四边形方法2.一组对边平行且相等的四边形是平行四边形方法3.对角线互相平分的四边形是平行四边形方法4.两组对角分别相等的四边形是平行四边形方法5.两组对边分别相等的四边形是平行四边形二.讲一讲例1.ABCD中,∠A比∠B小200,求ABCD的四个角的度数。

分析:由于平行四边形的对角相等,邻角互补,因此只要给定一个角(内角、外角)或给出了两个角的数量关系(两邻角之比为2:3、两对角之和为140度等),就可以求平行四边形的四个角。

解:由于四边形ABCD是平行四边形,则∠A=∠C、∠B=∠D,AD//BC,由两直线平行,同旁内角互补可知∠A+∠B=1800。

又∠A比∠B小200,即∠B-∠A=200,解这两个方程得:∠A=800∠B=1000,则ABCD的四个角分别是800 ,1000,800 ,1000例2.如图ABCD的对角线交于一点O,且AD≠CD,过O点作OM⊥AC,交AD于点M。

如果△CDM的周长为a,求ABCD的周长。

OAB C DM分析:ABCD的周长=2(AD+DC)=2(AM+MD+DC),又MC+MD+DC=a,因此只需要证明AM=MC,利用垂直平分线上的任意一点到线段两端点的距离相等即可。

人教版八年级数学下册平行四边形全章复习与巩固(基础)典型例题讲解+练习及答案.doc

人教版八年级数学下册平行四边形全章复习与巩固(基础)典型例题讲解+练习及答案.doc

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】平行四边形全章复习与巩固(基础)责编:杜少波【学习目标】1. 掌握平行四边形、矩形、菱形、正方形的概念, 了解它们之间的关系.2. 探索并掌握平行四边形、矩形、菱形、正方形的有关性质和常用判别方法, 并能运用这些知识进行有关的证明和计算.3. 掌握三角形中位线定理.【知识网络】【要点梳理】要点一、平行四边形1.定义:两组对边分别平行的四边形叫做平行四边形.2.性质:(1)对边平行且相等;(2)对角相等;邻角互补;(3)对角线互相平分;(4)中心对称图形.3.面积:高底平行四边形⨯=S4.判定:边:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形.角:(4)两组对角分别相等的四边形是平行四边形;(5)任意两组邻角分别互补的四边形是平行四边形.边与角:(6)一组对边平行,一组对角相等的四边形是平行四边形;对角线:(7)对角线互相平分的四边形是平行四边形.要点诠释:平行线的性质:(1)平行线间的距离都相等;(2)等底等高的平行四边形面积相等.要点二、矩形1.定义:有一个角是直角的平行四边形叫做矩形.2.性质:(1)具有平行四边形的所有性质;(2)四个角都是直角;(3)对角线互相平分且相等;(4)中心对称图形,轴对称图形.3.面积:宽=长矩形⨯S4.判定:(1) 有一个角是直角的平行四边形是矩形.(2)对角线相等的平行四边形是矩形.(3)有三个角是直角的四边形是矩形.要点诠释:由矩形得直角三角形的性质:(1)直角三角形斜边上的中线等于斜边的一半;(2)直角三角形中,30度角所对应的直角边等于斜边的一半. 要点三、菱形1. 定义:有一组邻边相等的平行四边形叫做菱形.2.性质:(1)具有平行四边形的一切性质;(2)四条边相等;(3)两条对角线互相平分且垂直,并且每一条对角线平分一组对角;(4)中心对称图形,轴对称图形.3.面积:2对角线对角线高==底菱形⨯⨯S 4.判定:(1)一组邻边相等的平行四边形是菱形;(2)对角线互相垂直的平行四边形是菱形;(3)四边相等的四边形是菱形.要点四、正方形1. 定义:四条边都相等,四个角都是直角的四边形叫做正方形.2.性质:(1)对边平行;(2)四个角都是直角;(3)四条边都相等;(4)对角线互相垂直平分且相等,对角线平分对角;(5) 两条对角线把正方形分成四个全等的等腰直角三角形;(6)中心对称图形,轴对称图形.3.面积:=S 正方形边长×边长=12×对角线×对角线 4.判定:(1)有一个角是直角的菱形是正方形;(2)一组邻边相等的矩形是正方形;(3)对角线相等的菱形是正方形;(4)对角线互相垂直的矩形是正方形;(5)对角线互相垂直平分且相等的四边形是正方形;(6)四条边都相等,四个角都是直角的四边形是正方形.【典型例题】类型一、平行四边形1、如图,在口ABCD中,点E在AD上,连接BE,DF∥BE交BC于点F,AF与BE交于点M,CE与DF交于点N.求证:四边形MFNE是平行四边形.【答案与解析】证明:∵四边形ABCD是平行四边形.∴AD=BC,AD∥BC(平行四边形的对边相等且平行)又∵DF∥BE(已知)∴四边形BEDF是平行四边形(两组对边分别平行的四边形是平行四边形)∴DE=BF(平行四边形的对边相等)∴AD-DE=BC-BF,即AE=CF又∵AE∥CF∴四边形AFCE是平行四边形(一组对边平行且相等的四边形是平行四边形)∴AF∥CE∴四边形MFNE是平行四边形(两组对边分别平行的四边形是平行四边形)【总结升华】要证明一个四边形是平行四边形首先要根据已知条件选择一种合理的判定方法,如本题中已有一边平行,只须说明另一边也平行即可,故选用“两组对边分别平行的四边形是平行四边形”来证明.举一反三:【变式】如图,等腰△ABC中,D是BC边上的一点,DE∥AC,DF∥AB,通过观察分析线段DE,DF,AB三者之间有什么关系,试说明你的结论.【答案】AB=DE+DF,提示:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∠C=∠EDB∴DF=AE.∵△ABC是等腰三角形,∴∠B=∠C,∴∠B=∠EDB,∴DE=BE,∴AB=AE+BE=DF+DE2、如图,在△ABC中,∠ACB=90°,∠B>∠A,点D为边AB的中点,DE∥BC交AC于点E,CF∥AB交DE的延长线于点F.(1)求证:DE=EF;(2)连结CD,过点D作DC的垂线交CF的延长线于点G,求证:∠B=∠A+∠DGC.【思路点拨】(1)首先证明四边形DBCF为平行四边形,可得DF=BC,再证明DE=12 BC,进而得到EF=CB,即可证出DE=EF;(2)首先画出图形,首先根据平行线的性质可得∠ADG=∠G,再证明∠B=∠DCB,∠A=∠DCA,然后再推出∠1=∠DCB=∠B,再由∠A+∠ADG=∠1可得∠A+∠G=∠B.【答案与解析】证明:(1)∵DE∥BC,CF∥AB,∴四边形DBCF为平行四边形,∴DF=BC,∵D为边AB的中点,DE∥BC,∴DE=12BC,∴EF=DF-DE=BC-12CB=12CB,∴DE=EF;(2)∵DB∥CF,∴∠ADG=∠G,∵∠ACB=90°,D为边AB的中点,∴CD=DB=AD,∴∠B=∠DCB,∠A=∠DCA,∵DG⊥DC,∴∠DCA+∠1=90°,∵∠DCB+∠DCA=90°,∴∠1=∠DCB=∠B,∵∠A+∠ADG=∠1,∴∠A+∠G=∠B.【总结升华】此题主要考查了平行四边形的判定与性质,以及直角三角形的性质,关键是找出∠ADG=∠G,∠1=∠B.掌握在直角三角形中,斜边上的中线等于斜边的一半.举一反三:【变式】(2015•哈尔滨)如图1,口ABCD中,点O是对角线AC的中点,EF过点O,与AD,BC分别相交于点E,F,GH过点O,与AB,CD分别相交于点G,H,连接EG,FG,FH,EH.(1)求证:四边形EGFH是平行四边形;(2)如图2,若EF∥AB,GH∥BC,在不添加任何辅助线的情况下,请直接写出图2中与四边形AGHD面积相等的所有平行四边形(四边形AGHD除外).【答案】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAO=∠FCO,在△OAE与△OCF中,∴△OAE≌△OCF,∴OE=OF,同理OG=OH,∴四边形EGFH是平行四边形;(2)解:与四边形AGHD面积相等的所有平行四边形有口GBCH,口ABFE,口EFCD,口EGFH;∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∵EF∥AB,GH∥BC,∴四边形GBCH,ABFE,EFCD,EGFH为平行四边形,∵EF过点O,GH过点O,∵OE=OF,OG=OH,∴口GBCH,口ABFE,口EFCD,口EGFH,口ACHD它们面积=口ABCD的面积,∴与四边形AGHD面积相等的所有平行四边形有口GBCH,口ABFE,口EFCD,口EGFH.类型二、矩形3、已知:如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=MC.①求证:CD=AN;②若∠AMD=2∠MCD,求证:四边形ADCN是矩形.【思路点拨】①根据两直线平行,内错角相等求出∠DAC=∠NCA,然后利用“角边角”证明△AMD和△CMN全等,根据全等三角形对应边相等可得AD=CN,然后判定四边形ADCN是平行四边形,再根据平行四边形的对边相等即可得证;②根据三角形的一个外角等于与它不相邻的两个内角的和推出∠MCD=∠MDC,再根据等角对等边可得MD=MC,然后证明AC=DN,再根据对角线相等的平行四边形是矩形即可得证.【答案与解析】证明:①∵CN∥AB,∴∠DAC=∠NCA,在△A MD 和△CMN 中,∵DAC NCA MA MC AMD CMN ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AMD≌△CMN(ASA ),∴AD=CN ,又∵AD∥CN,∴四边形ADCN 是平行四边形,∴CD=AN ;②∵∠AMD=2∠MCD ,∠AMD=∠MCD+∠MD C ,∴∠MCD=∠MDC,∴MD=MC ,由①知四边形ADCN 是平行四边形,∴MD=MN =MA =MC ,∴AC=DN ,∴四边形ADCN 是矩形.【总结升华】要判定一个四边形是矩形,通常先判定它是平行四边形,再根据平行四边形构成矩形的条件,判定有一个角是直角或对角线相等.4、如图所示,在矩形ABCD 中,AB =6,BC =8.将矩形ABCD 沿CE 折叠后,使点D 恰好落在对角线AC 上的点F 处,求EF 的长.【思路点拨】要求EF 的长,可以考虑把EF 放入Rt △AEF 中,由折叠可知CD =CF ,DE =EF ,易得AC =10,所以AF =4,AE =8-EF ,然后在Rt △AEF 中利用勾股定理求出EF 的值.【答案与解析】解:设EF =x ,由折叠可得:DE =EF =x ,CF =CD =6,又∵ 在Rt △ADC 中,226810AC +=.∴ AF =AC -CF =4,AE =AD -DE =8-x .在Rt △AEF 中,222AE AF EF =+,即222(8)4x x -=+,解得:x =3 ∴ EF =3【总结升华】在矩形折叠问题中往往根据折叠找出相等的量,然后把未知边放在合适的直角三角形中,再利用勾股定理进行求解.举一反三:【变式】把一张矩形纸片(矩形ABCD)按如图方式折叠,使顶点B和点D重合,折痕为EF.若AB = 3cm,BC = 5cm,则重叠部分△DEF的面积是__________2cm.【答案】5.1.提示:由题意可知BF=DF,设FC=x,DF=5-x,在Rt△DFC中,222DC FC DF+=,解得x=85,BF=DE=3.4,则DEF1=DE AB2S⨯△=12×3.4×3=5.1.类型三、菱形5、如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,E为垂足,连结DF,则∠CDF等于( ).A.80°B.70°C.65°D.60°【答案】D;【解析】解:连结BF,由FE是AB的中垂线,知FB=FA,于是∠FBA=∠FAB==40°.∴∠CFB=40°+40°=80°,由菱形ABCD知,DC=CB,∠DCF=∠BCF,CF=CF,于是△DCF≌△BCF,因此∠CFD=∠CFB=80°,在△CDF中, ∠CDF=180°-40°-80°=60°.【总结升华】运用菱形的性质可以证明线段相等、角相等、线段的平行及垂直等问题,关键是要记住它们的判定和性质.举一反三:【变式】用两张等宽的纸带交叉重叠地放在一起,重合的四边形ABCD是菱形吗?如果是菱形请给出证明,如果不是菱形请说明理由.【答案】四边形ABCD是菱形;证明:由AD∥BC,AB∥CD得四边形ABCD是平行四边形,过A,C两点分别作AE⊥BC于E,CF⊥AB于F.∴∠CFB=∠AEB=90°.∵AE=CF(纸带的宽度相等)∠ABE=∠CBF,∴Rt△ABE≌Rt△CBF,∴AB=BC,∴四边形ABCD是菱形.类型四、正方形6、(2015春•上城区期末)如图,矩形ABCD中,AD=6,DC=8,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,DA上,AH=2,连结CF.(1)若DG=2,求证:四边形EFGH为正方形;(2)若DG=6,求△FCG的面积.【思路点拨】(1)通过证明Rt△DHG≌△AEH,得到∠DHG=∠AEH,从而得到∠GHE=90°,然后根据有一个角为直角的菱形为正方形得到四边形EFGH为正方形;(2)作FQ⊥CD于Q,连结GE,如图,利用AB∥CD得到∠AEG=∠QGE,再根据菱形的性质得HE=GF,HE∥GF,则∠HEG=∠FGE,所以∠AEH=∠QGF,于是可证明△AEH≌△QGF,得到AH=QF=2,然后根据三角形面积公式求解.【答案与解析】(1)证明:∵四边形EFGH为菱形,∴HG=EH,∵AH=2,DG=2,∴DG=AH,在Rt△DHG和△AEH中,,∴Rt△DHG≌△AEH,∴∠DHG=∠AEH,∵∠AEH+∠AH E=90°,∴∠DHG+∠AHG=90°,∴∠GHE=90°,∵四边形EFGH为菱形,∴四边形EFGH为正方形;(2)解:作FQ⊥CD于Q,连结GE,如图,∵四边形ABCD为矩形,∴AB∥CD,∴∠AEG=∠QGE,即∠AEH+∠HEG=∠QGF+∠FGE,∵四边形EFGH为菱形,∴HE=GF,HE∥GF,∴∠HEG=∠FGE,∴∠AEH=∠QGF,在△AEH和△QGF中,∴△AEH≌△QGF,∴AH=QF=2,∵DG=6,CD=8,∴CG=2,∴△FCG的面积=CG•FQ=×2×2=2.【总结升华】本题考查了正方形的判定与性质:正方形的判定没有固定的方法,只要判定既是矩形又是菱形就可以判定;正方形具有平行四边形、矩形、菱形的所有性质.也考查了菱形和矩形的性质.举一反三:【变式】如图所示,E、F、G、H分别是四边形ABCD各边中点,连接EF、FG、GH、HE,则四边形EFGH为________形.(1)当四边形满足________条件时,四边形EFGH是菱形.(2)当四边形满足________条件时,四边形EFGH是矩形.(3)当四边形满足________条件时,四边形EFGH是正方形.在横线上填上合适的条件,并说明你所填条件的合理性.【答案】四边形EFGH为平行四边形;解:(1)AC=BD,理由:如图①,四边形ABCD的对角线AC=BD,此时四边形EFGH为平行四边形,且EH=12BD,HG=12AC,得EH=GH,故四边形EFGH为菱形.(2)AC⊥BD,理由:如图②,四边形ABCD的对角线互相垂直,此时四边形EFGH为平行四边形.易得GH⊥BD,即GH⊥EH,故四边形EFGH为矩形.(3)AC=BD且AC⊥BD,理由:如图③,四边形ABCD的对角线相等且互相垂直,综合(1)(2)可得四边形EFGH为正方形.本题是以平行四边形为前提,加上对角线的特殊条件来判定特殊的平行四边形,加上邻边相等为菱形,加上对角线互相垂直为矩形,综合得到正方形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。


平行四边形(基础)
责编:杜少波
【学习目标】
1.理解平行四边形的概念,掌握平行四边形的性质定理和判定定理;
2.能初步运用平行四边形的性质进行推理和计算,并体会如何利用所学的三角形的知识解决四边形的问题.
3. 能综合运用平行四边形的判定定理和平行四边形的性质定理进行证明和计算.
4. 理解三角形的中位线的概念,掌握三角形的中位线定理.
【要点梳理】
【平行四边形知识要点】
要点一、平行四边形的定义
平行四边形的定义:两组对边分别平行的四边形叫做平行四边形. 平行四边形ABCD记作“Y ABCD”,读作“平行四边形ABCD”.
要点诠释:平行四边形的基本元素:边、角、对角线.相邻的两边为邻边,有四对;相对的边为对边,有两对;相邻的两角为邻角,有四对;相对的角为对角,有两对;对角线有两条.
要点二、平行四边形的性质
1.边的性质:平行四边形两组对边平行且相等;
2.角的性质:平行四边形邻角互补,对角相等;
3.对角线性质:平行四边形的对角线互相平分;
4.平行四边形是中心对称图形,对角线的交点为对称中心.
要点诠释:(1)平行四边形的性质中边的性质可以证明两边平行或两边相等;角的性质可以证明两角相等或两角互补;对角线的性质可以证明线段的相等关系
或倍半关系.
(2)由于平行四边形的性质内容较多,在使用时根据需要进行选择.
(3)利用对角线互相平分可解决对角线或边的取值范围的问题,在解答时应联系三角形三边的不等关系来解决.
要点三、平行四边形的判定
1.两组对边分别平行的四边形是平行四边形;
2.两组对边分别相等的四边形是平行四边形;
3.一组对边平行且相等的四边形是平行四边形;
4.两组对角分别相等的四边形是平行四边形;
5.对角线互相平分的四边形是平行四边形.
要点诠释:(1)这些判定方法是学习本章的基础,必须牢固掌握,当几种方法都能判定同一个平行四边形时,应选择较简单的方法.
(2)这些判定方法既可作为判定平行四边形的依据,也可作为“画平行四边形”的依据.
要点四、三角形的中位线
1.连接三角形两边中点的线段叫做三角形的中位线.
2.定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.
要点诠释:(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系.
(2)三角形的三条中位线把原三角形分成可重合的4个小三角形.因而每个
小三角形的周长为原三角形周长的1
2
,每个小三角形的面积为原三角形
面积的1
4
.
(3)三角形的中位线不同于三角形的中线.
要点五、平行线间的距离
1.两条平行线间的距离:
(1)定义:两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离.注:距离是指垂线段的长度,是正值.
(2)平行线间的距离处处相等
任何两平行线间的距离都是存在的、唯一的,都是夹在这两条平行线间最短的线段的长度. 两条平行线间的任何两条平行线段都是相等的.
2.平行四边形的面积:
平行四边形的面积=底×高;等底等高的平行四边形面积相等.
【典型例题】
类型一、平行四边形的性质
【平行四边形例11】
1、如图所示,已知四边形ABCD是平行四边形,若AF、BE分别为∠DAB、∠CBA的平分线.求证:DF=EC.
【答案与解析】
证明:∵在Y ABCD中,CD∥AB,
∠DFA=∠FAB.
又∵ AF是∠DAB的平分线,
∴∠DAF=∠FAB,
∴∠DAF=∠DFA,
∴ AD=DF.
同理可得EC=BC.
∵在Y ABCD中,AD=BC,
∴ DF=EC.
【总结升华】利用平行四边形的性质可以得到对角相等,对边平行且相等,为证明线段相等提供了条件.
举一反三:
【平行四边形例12】
【变式】如图,E、F是平行四边形ABCD的对角线AC上的点,CE=AF,请你猜想:线段BE 与线段DF有怎样的关系?并对你的猜想加以证明.
【答案】
证明:猜想:BE ∥DF 且BE =DF.
∵四边形ABCD 是平行四边形
∴CB=AD ,CB ∥AD
∴∠BCE =∠DAF
在△BCE 和△DAF 中
CB AD BCE DAF
CE AF =⎧⎪∠=∠⎨⎪=⎩
∴△BCE ≌△DAF
∴BE =DF ,∠BEC =∠DFA
∴BE ∥DF
即 BE ∥DF 且BE =DF.
类型二、平行四边形的判定
2、如图所示,E 、F 分别为四边形ABCD 的边AD 、BC 上的点,且四边形AECF 和DEBF 都是平行四边形,AF 和BE 相交于点G ,DF 和CE 相交于点H .求证:四边形EGFH 为平行四边形.
【思路点拨】欲证四边形EGFH 为平行四边形,只需证明它的两组对边分别平行,即EG ∥FH ,FG ∥HE 可用来证明四边形EGFH 为平行四边形.
【答案与解析】
证明:∵ 四边形AECF 为平行四边形,
∴ AF ∥CE .
∵ 四边形DEBF 为平行四边形,
∴ BE ∥DF .
∴ 四边形EGFH 为平行四边形.
【总结升华】平行四边形的定义既包含平行四边形的性质,又可以用来判定一个四边形是平行四边形,即平行四边形的两组对边分别平行,两组对边分别平行的四边形是平行四边形. 举一反三:
【变式】(2015•厦门校级一模)如图,在四边形ABCD 中,AB ∥CD ,∠BAD 的平分线交直线BC 于点E ,交直线DC 于点F ,若CE=CF ,求证:四边形ABCD 是平行四边形.
【答案】
证明:∵∠BAD 的平分线交直线BC 于点E ,
∴∠1=∠2,
∵AB ∥CD ,
∴∠1=∠F ,
∵CE=CF ,
∴∠F=∠3,
∴∠1=∠3,
∴∠2=∠3,
∴AD ∥BC ,
∵AB ∥CD ,
∴四边形ABCD 是平行四边形.
类型三、平行四边形与面积有关的计算
3、如图所示,在Y ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F .若∠EAF =60°,BE =2cm ,DF =3cm ,求AB ,BC 的长及Y
ABCD 的面积.
【思路点拨】在四边形AECF 中,由已知条件∠EAF =60°,可求出∠C =120°,进而求出∠B =60°.由于BE =2cm ,在Rt △ABE 中,可求出AB .同理,在Rt △AFD 中求出AD .要求Y ABCD 的面积,需求出AE 或AF 的长.
【答案与解析】
解:在四边形AECF 中,∵ ∠EAF =60°,AE ⊥BC ,AF ⊥CD ,
∴ ∠C =360°-∠EAF -∠AEC -∠AFC =360°-60°-90°-90°=120°. 在Y
ABCD 中,∵ AB ∥CD ,
∴ ∠B +∠C =180°.∠C +∠D =180°,
∴ ∠B =∠D =60°.
在Rt △ABE 中,∠B =60°,BE =2cm ,
∴ AB =4cm ,CD =AB =4cm .(平行四边形的对边相等)
同理,在Rt △ADF 中,AD =6cm ,∴ BC =AD =6cm , ∴ 22226333AF AD DF =-=-=(cm ).
∴ ABCD S =Y CD ·AF =433⨯=123(2cm ).
【总结升华】本题除了应用平行四边形的性质及勾股定理外,还应用了“直角三角形中,30°的锐角所对的直角边等于斜边的一半”这个直角三角形的性质.
举一反三:
【变式】如图,已知Y
ABCD 中,M 是BC 的中点,且AM =9,BD =12,AD =10,
求该平行四边形的面积.
【答案】
解:平移线段AM 至BE ,连EA ,则四边形BEAM 为平行四边形
∴BE =AM =9,ED =AE +AD =15, 又∵BD =12 222BE BD DE +=∴
∴∠EBD =90°,BE ⊥BD ,
∴△EBD 面积=
12BE BD =g 54 又∵2AE =AD
∴△ABD 面积=2543
⨯=36 ∴Y
ABCD 的面积=72.
类型四、三角形的中位线
4、(2015秋•天水期末)如图,在四边形ABCD 中,AD=BC ,P 是对角线BD 的中点,M 是DC 的中点,N 是AB 的中点.求证:∠PMN=∠PNM .
【思路点拨】根据三角形的中位线平行于第三边并且等于第三边的一半可得PM=BC ,PN=AD ,然后求出PM=PN ,再根据等边对等角证明即可.
【答案与解析】
证明:∵P 是对角线BD 的中点,M 是DC 的中点,N 是AB 的中点,
∴PM 、PN 分别是△BCD 和△ABD 的中位线,
∴PM=BC ,PN=AD ,
∵AD=BC ,
∴PM=PN ,
∴∠PMN=∠PNM.
【总结升华】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等边对等角的性质,熟记定理与性质是解题的关键.。

相关文档
最新文档