数学人教版九年级下册专题复习课件
合集下载
人教版九年级数学《二次函数》总复习课件(公开课)

解:抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同
a=1或-1 又顶点在直线x=1上,且顶点到x轴的距离为5,
顶点为(1,5)或(1,-5)
所以其解析式为:
(1) y=(x-1)2+5
(2) y=(x-1)2-5
(3) y=-(x-1)2+5
(4) y=-(x-1)2-5
(3)一元二次方程 3x2+x-10=0的两个根是x1= -
2 ,x2=5/3, 那么二次函数y= 3x2+x-10与x轴的交点
坐标是__.
(-2、0)(5/3、0)
7二次函数的综合运用
1.已知抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的 形状相同,顶点在直线x=1上,且顶点到x轴的距离 为5,请写出满足此条件的抛物线的解析式.
2.当m_______时,函数y=(m+1)χ 是二次函数?
- 2χ+1
2、二次函数的图像及性质
y
y
0
x
0
x
抛物线 顶点坐标 对称轴
位置 开口方向
增减性 最值
y=ax2+bx+c(a>0)
b 2a
,
4ac 4a
b2
直线x b
ቤተ መጻሕፍቲ ባይዱ
2a
由a,b和c的符号确定
a>0,开口向上
在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大.
若抛物线y=ax2+bx+c与x轴有交点,则
b2 – 4ac ≥0
判别式: b2-4ac
b2-4ac>0
人教版九年级下册数学《投影》投影与视图研讨复习说课教学课件

课件
方体其余两个侧面的投影也分别是上述矩形;上、下底面的投
影分别是线段D'F'和C'G'.因此,正方体的投影是矩形
F'G'C'D',其中线段A'B'把矩形一分为二.
例题解析
解: (1)如图,正方体的正投影为正方形A'B'C'D' ,它
与正方体的一个面是全等关系.
(2)如图,正方体的正投影为矩形F'G'C'D' ,这个矩形的
课件
课件
课件
课件
课件
课件
个人简历:课件/jianli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
(3)纸板垂直于投影面.
三种情形下纸板的正投影各是什么现状? D
D
C
A D´
B
C´
A´
B´
Q
D
C
A
B
D´ C´
A´
B´
AC
B D´(C´)
A´(B´)
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
下午拍摄的
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/jianli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
九年级数学下册 直角三角形边角关系(同步+复习)精品串讲课件

1. 求tanA的值。 2. 求AB的长。
C
A
D
B
【典例2】△ABC中,AB=AC,2AB=3BC, 求∠B的三个三角函数值。 A
A的对边 A的邻边
B
斜边 ∠A的对边 A ┌ ∠A的邻边 C
一.正切的概念
1. 2. 复习:直角三角形边边关系;角角关系—— 正切的概念
① 直角三角形中,一个锐角的大小一旦确定,它所 对的边与邻边的比值是一个确定的值。 ② 文 直角三角形中,一个锐角的对边与邻边的比值叫 做这个角的正切(值)。——是一个比值。 ③ 符 Rt△ABC中,锐角A确定,其对边与邻边的比值 也确定,这个比值叫做∠A的正切,记作: c B a a ∠A的对边 tanA= ———— =— b C b A ∠A的邻边 ④ 正切是对锐角定义的,是一个确定的比值,没有 单位,且与所在的直角三角形大小无关; tanA 是一个完整的符号,如果角用一个字母表示,角 的符号可以省略不写,如果角用三个字母表示, 角的符号不可省略; tanA>0;变式使用: a=b a tanA或者:b= —— tanA
①
α的对边 α的邻边 α的对边 α的斜边 α的邻边 α的斜边
角定值定 角变值变 角死值死
确定一个角的三个比值:一定角二定比三定值。 三值与角与比是对应的。 ② 都与三角形大小无关,只与角的大小对应的比值。 ③ 每个定义都是三个公式:一求比(角)二求两边。 ④ 0< sin α <1; 0< cos α <1; tan α任意大 ⑤ 平方: sin2 α= (sin α)2 ,而sin α2 则无意义。
┌
C
四.三角函数的概念及锐角三角函数的关系
1. 用函数的观点看: tan α 、sin α、 cos α 都是角α的函数。即:y= tan α、 y= sin α、 y= cos α 分别是锐角α的正切、正弦、余弦 函数。自变量取值范围:0< α<90° 对于任意锐角α,各三角函数之间的关系
C
A
D
B
【典例2】△ABC中,AB=AC,2AB=3BC, 求∠B的三个三角函数值。 A
A的对边 A的邻边
B
斜边 ∠A的对边 A ┌ ∠A的邻边 C
一.正切的概念
1. 2. 复习:直角三角形边边关系;角角关系—— 正切的概念
① 直角三角形中,一个锐角的大小一旦确定,它所 对的边与邻边的比值是一个确定的值。 ② 文 直角三角形中,一个锐角的对边与邻边的比值叫 做这个角的正切(值)。——是一个比值。 ③ 符 Rt△ABC中,锐角A确定,其对边与邻边的比值 也确定,这个比值叫做∠A的正切,记作: c B a a ∠A的对边 tanA= ———— =— b C b A ∠A的邻边 ④ 正切是对锐角定义的,是一个确定的比值,没有 单位,且与所在的直角三角形大小无关; tanA 是一个完整的符号,如果角用一个字母表示,角 的符号可以省略不写,如果角用三个字母表示, 角的符号不可省略; tanA>0;变式使用: a=b a tanA或者:b= —— tanA
①
α的对边 α的邻边 α的对边 α的斜边 α的邻边 α的斜边
角定值定 角变值变 角死值死
确定一个角的三个比值:一定角二定比三定值。 三值与角与比是对应的。 ② 都与三角形大小无关,只与角的大小对应的比值。 ③ 每个定义都是三个公式:一求比(角)二求两边。 ④ 0< sin α <1; 0< cos α <1; tan α任意大 ⑤ 平方: sin2 α= (sin α)2 ,而sin α2 则无意义。
┌
C
四.三角函数的概念及锐角三角函数的关系
1. 用函数的观点看: tan α 、sin α、 cos α 都是角α的函数。即:y= tan α、 y= sin α、 y= cos α 分别是锐角α的正切、正弦、余弦 函数。自变量取值范围:0< α<90° 对于任意锐角α,各三角函数之间的关系
下册第章复习提升人教版九级数学全一册作业实用课件2

第二十八章 锐角三角函数
第二十八章复习提升
【考点突破】
考点 1:求锐角的三角函数值
1.如图,在 4×4 的正方形方格图形中,小正方形的顶点称为格点,
5
△ABC 的顶点都在格点上,则∠BAC 的正弦值是 5 .
2.在边长均为 1 的小正方形网格中,点 A,B,C,D 都在这些小正
5
方形的顶点上,AB,CD 相交于点 O,则 cos∠AOD= 5 .
下册第章复习提升人教版九级数学全 一册作 业课件2
下册第章复习提升人教版九级数学全 一册作 业课件2
∵DH=DF-HF,∴ 3y- 33(y+15)=20, 解得 y=7.5+10 3. ∴ME=MF+FE=7.5+10 3+15≈39.8. 答:古塔的高度 ME 约为 39.8 m.
下册第章复习提升人教版九级数学全 一册作 业课件2
下册第2章8章复复习习提提升升人-教20版20九秋级人数教学版全九一年册级作数业学课全件一2 册作业 课件( 共23张P PT)
下册第2章8章复复习习提提升升人-教20版20九秋级人数教学版全九一年册级作数业学课全件一2 册作业 课件( 共23张P PT)
解:过 D 作 DH⊥BC 于 H,则四边形 ADHC 是矩形,∴AD=CH= BE=0.6.∵点 M 是线段 BC 的中点,
测绘船向正东方向航行 20 海里后,恰好在灯塔 B 的正南方向,此时测得灯
22
塔 A 在测绘船北偏西 63.5°的方向上,则灯塔 A,B 间的距离为
海
里(结果取整数).(参考数据 sin 26.5°≈0.45,cos 26.5°≈0.90,tan 26.5
°≈0.50, 5≈2.24)
下册第章复习提升人教版九级数学全 一册作 业课件2
第二十八章 锐角三角函数++++复习课件+2024—2025学年人教版数学九年级下册

7.(2022·六盘水中考)“五一”期间,许多露营爱好者在我市郊区露营,为遮阳和防雨
会搭建一种“天幕”,其截面示意图是轴对称图形,对称轴是垂直于地面的支杆AB,
用绳子拉直AD后系在树干EF上的点E处,使得A,D,E在一条直线上,通过调节点E
的高度可控制“天幕”的开合,AC=AD=2 m,BF=3 m.
【解析】原式=1-2 + =1- .
9
维度2基本技能(方法)、基本思想的应用
4.(2023·攀枝花中考)△ABC中,∠A,∠B,∠C的对边分别为a,b,c.已知a=6,b=8,c=10,
则cos A的值为( C )
3
A.
5
3
B.
4
4
C.
5
4
D.
3
5. (2023·陕西中考)如图,在6×7的网格中,每个小正方形的边长均为1.
答:遮阳宽度CD约为3.6 m;
13
(2)下雨时收拢“天幕”,∠α从65°减少到45°,求点E下降的高度(结果精确到0.1 m).(参考数据:
sin 65°≈0.9,cos 65°≈0.42,tan 65°≈2.14, 2≈1.41)
【解析】(2)如图,
过点E作EH⊥AB于H,∴∠BHE=90°,
12
(1)天晴时打开“天幕”,若∠α=65°,求遮阳宽度CD(结果精确到0.1 m);
【解析】(1)由对称知,CD=2OD,AD=AC=2 m,∠AOD=90°,
在Rt△AOD中,∠OAD=∠α=65°,∴sin
α= ,
∴OD=AD·sin α=2×sin 65°≈2×0.9=1.8(m),∴CD=2OD=3.6 m,
3
课标 内容要求
会搭建一种“天幕”,其截面示意图是轴对称图形,对称轴是垂直于地面的支杆AB,
用绳子拉直AD后系在树干EF上的点E处,使得A,D,E在一条直线上,通过调节点E
的高度可控制“天幕”的开合,AC=AD=2 m,BF=3 m.
【解析】原式=1-2 + =1- .
9
维度2基本技能(方法)、基本思想的应用
4.(2023·攀枝花中考)△ABC中,∠A,∠B,∠C的对边分别为a,b,c.已知a=6,b=8,c=10,
则cos A的值为( C )
3
A.
5
3
B.
4
4
C.
5
4
D.
3
5. (2023·陕西中考)如图,在6×7的网格中,每个小正方形的边长均为1.
答:遮阳宽度CD约为3.6 m;
13
(2)下雨时收拢“天幕”,∠α从65°减少到45°,求点E下降的高度(结果精确到0.1 m).(参考数据:
sin 65°≈0.9,cos 65°≈0.42,tan 65°≈2.14, 2≈1.41)
【解析】(2)如图,
过点E作EH⊥AB于H,∴∠BHE=90°,
12
(1)天晴时打开“天幕”,若∠α=65°,求遮阳宽度CD(结果精确到0.1 m);
【解析】(1)由对称知,CD=2OD,AD=AC=2 m,∠AOD=90°,
在Rt△AOD中,∠OAD=∠α=65°,∴sin
α= ,
∴OD=AD·sin α=2×sin 65°≈2×0.9=1.8(m),∴CD=2OD=3.6 m,
3
课标 内容要求
第二十六章 反比例函数(复习课件)-2022-2023学年九年级数学下册同步备课系列(人教版)

则1 , 2 , 3 的大小关系是( )
A.1 < 2 < 3
B. 2 < 3 < 1
C. 1 < 3 < 2
8
【详解】将三点坐标分别代入函数解析式 = ,得:
8
2 = ,解得1 = 4;
1
8
−1 = ,解得2 = −8;
2
8
4 = ,解得3 = 2;
8
k
x
M的直线l∥y轴,且直线l分别与反比例函数y = 和y = 的图象交于P、Q两点.若S△POQ=15,
x
则k的值为(
A.38
)
B.22
C.﹣7
D.﹣22
【详解】解:设点P(a,b),Q(a,),则OM=a,PM=b,MQ=− ,
两者矛盾,故D选项错误;
故选:B.
中考真题
4.(2022·江苏无锡·中考真题)一次函数y=mx+n的图像与反比例函数y= 的图像交于点A、
1
B,其中点A、B的坐标为A(- ,-2m)、B(m,1),则△OAB的面积( )
A.3
B.
13
4
7
2
C.
D.
15
4
1
1
【详解】解:∵A(-,-2m)在反比例函数y= 的图像上,∴m=(-) • ( -2m)=2,
2)反比例函数也写成y=kx-1或k=xy的形式。
基础巩固(反比例函数的图象与性质)
当k>0时,反比例函数y = 的图象:
(1)函数图象分别位于第一、三象限;
(2)在每一个象限内,y随x的增大而减小。
人教版九年级下册数学《特殊角的三角函数值》说课教学复习课件

5.判断:
(1)柱体有两个面形状相同,大小相等. √
(2)棱锥的各面都是三角形. ×
(3)圆锥也是多面体. ×
(4)正方体是四棱柱,也是六面体. √
(5)圆柱的侧面是长方形. √
(6)柱体都不是多面体,球体可以是多面体.×
课堂检测
基 础 巩 固 题
6. 观察下面的几何体,哪些是棱柱?
课堂检测
基 础 巩 固 题
1.对于sinα与tanα,角度越大,函数值越越大;
对于cosα,角度越大,函数值越越小.
2. 互余的两角之间的三角函数关系:
若∠A+∠B=90°,则sinA = cosB,cosA = sinB,tanA · tanB =1 .
3.当A,B均为锐角时,若A≠B,则sinA ≠ sinB,cosA ≠ cosB,tanA ≠ tanB
(3)电池——圆柱;
(4)用转笔刀削成的铅笔尖——圆锥.
方法点拨:识别现实生活中的几何体时,结合物体的形状与
哪些立体图形相似确定这些物体所属的立体图形.
巩固练习
变式训练
下面图形中试找出与立体图形对应的实物.
探究新知
素养考点 2
常见几何体的分类
例2 请按适当的标准对下列几何体进行分类.
(1)
(2)
则AB = 2a,由勾股定理得BC= − = a
60°
1
sin 30°= = 2 = 2
cos 30°=
tan 30°=
=
2
=
A
=
2
=
3
C
30°
B
(1)柱体有两个面形状相同,大小相等. √
(2)棱锥的各面都是三角形. ×
(3)圆锥也是多面体. ×
(4)正方体是四棱柱,也是六面体. √
(5)圆柱的侧面是长方形. √
(6)柱体都不是多面体,球体可以是多面体.×
课堂检测
基 础 巩 固 题
6. 观察下面的几何体,哪些是棱柱?
课堂检测
基 础 巩 固 题
1.对于sinα与tanα,角度越大,函数值越越大;
对于cosα,角度越大,函数值越越小.
2. 互余的两角之间的三角函数关系:
若∠A+∠B=90°,则sinA = cosB,cosA = sinB,tanA · tanB =1 .
3.当A,B均为锐角时,若A≠B,则sinA ≠ sinB,cosA ≠ cosB,tanA ≠ tanB
(3)电池——圆柱;
(4)用转笔刀削成的铅笔尖——圆锥.
方法点拨:识别现实生活中的几何体时,结合物体的形状与
哪些立体图形相似确定这些物体所属的立体图形.
巩固练习
变式训练
下面图形中试找出与立体图形对应的实物.
探究新知
素养考点 2
常见几何体的分类
例2 请按适当的标准对下列几何体进行分类.
(1)
(2)
则AB = 2a,由勾股定理得BC= − = a
60°
1
sin 30°= = 2 = 2
cos 30°=
tan 30°=
=
2
=
A
=
2
=
3
C
30°
B
人教版九年级下册数学《由三视图确定几何体的面积或体积》投影与视图教学说课复习课件

知1-讲
知1-讲
例1〈泸州〉如图所示的几何体的左视图是( C )
导引: 左视图是从物体的左面看到的视图,从圆柱的左 边向右边看,看到的是一个矩形,故选C.
总结
知1-讲
单个几何体的三视图直接根据常见的几何体三 视图中识别.
知1-练
1 把图中的几何体与它们对应的三视图用线连接起来.
知1-练
2 【中考·海南】如图是由四个相同的小正方体组成 的几何体,则它的主视图为( A )
分析:支架的形状是由两个大 小不等的长方体 构成的 组合体.画三视图时要注 意这两个长方体的上 下、 前后位置关系.
解:下图是支架的三视图.
知2-讲
总结
知2-讲
画组合体的三视图时,构成组合体的各部分的视图也要遵 守“长对正,高平齐, 宽相等”的规律.
知2-练
1 画出如图所示的正三棱柱、圆锥、半球的三视图.
(2) 请指出三视图、立体图形、展开图之间的对应边.
讲授新课
三视图的有关计算 合作探究
例1 某工厂要加工一批密封罐,设计者给出了密封罐的三视图,请你按照三 视图确定制作每个密封罐所需钢板的面积 (图中尺寸单位:mm).
分析: 1. 应先体__形__状____; 2. 画出物体的 展开图 .
1. 一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为
()
B
A. 6
B. 8
C. 12
D. 24
2. 如图是一个几何体的三视图,根据图中提供的数据 (单位:cm),可求得
这个几何体的体积为3 cm3 .
3 主视图
1 1 左视图 俯视图
2π 3. 如图是某几何体的三视图及相关数据(单位:cm),则该几何体的侧面积为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
D
Байду номын сангаас
解法3:延长BC 交x轴于点D (补成三角形) 图3
探究补法
D B C
假设如果△ABC的某边和 该边上的高无法从已知三点 坐标直接求出,必须通过图 形的割补,你还有何方法?
A
解法4:延长AB 交y轴于点D
图4
探究补法
┍
B D C
假设如果△ABC的某边和 该边上的高无法从已知三点 坐标直接求出,必须通过图 形的割补,你还有何方法?
中考数学小专题复习
用割补法求坐标系中 三角形的面积
陈云兰 2017-4-19
新课引入
B
2 5
3 2
2
例、已知点A(-3,0),点 C(0,3),且点B的 坐标为(-1,4),计算 △ABC的面积。
C
A
分析:显然, △ABC有直角C, 且BC可求,故 易求面积。
探究割法
B C D
假设如果△ABC的某 边和该边上的高无法 从已知三点坐标直接 求出,必须通过图形 的割补,你有何方法? 解法1:过B作 x轴的垂线交 AC于点D 目的:使割补后的图形中 出现某边和该边上的高的 三角形。
课后作业
如图,抛物线
y x 2 x 3
2
与坐标轴交于点A、B、C. (1)求点A、B、C的坐标; (2)抛物线上是否存在第一象限的点P,使得△PBC 的面积最大?若存在,求出点的坐标;若不存在, 请说明理由.
A
解法:5:过点 B作y轴的垂线 交y轴于点D
(补成四边形)
图5
探究补法
┍
D B E C
假设如果△ABC的某边和 该边上的高无法从已知三点 坐标直接求出,必须通过图 形的割补,你还有何方法?
┍
A
解法6:过 点B作y轴的 垂线, 过点A作x轴 的垂线,两 垂线相较于 点D 图6
探究割补
B C D
假设如果△ABC的某边和 该边上的高无法从已知三点 坐标直接求出,必须通过图 形的割补,你还有何方法?
(0,3) E (-3,0) F (1,0)
(3)设D为已知抛物线的 对称轴上任意一点,当
S S A C D A C B
时求点D的坐标。
x 1
例:2012.广州第24题改编)如图,抛物线 y x 2 x 3 与x轴交于A、B两点,与y轴交于点C. (1)求点A、B、C的坐标 (已经求出:A(-3,0)、B(1,0)、C(0,3)); (2)求△ACB的面积 (已经求出是6)
┍
A E
(割成三角形)
图1
探究割法
B
假设如果△ABC的某边 和该边上的高无法从已 知三点坐标直接求出, 必须通过图形的割补, 你还有何方法?
C
A
┍
D
解法2:过C作y 轴的垂线交AB 于点D 图2
探究补法
B C
假设如果△ABC的某边 和该边上的高无法从已 知三点坐标直接求出, 必须通过图形的割补, 你还有何方法?
2
x 1
(3)设D为已知抛物线的 对称轴上任意一点,当
S S A C D A C B
求点D的坐标。
(-3,0)
(0,3) E (1,0)
D 2
课堂小结
1、用割补法求三角形面积的步骤: (1)观察、思考图形之间的关系; (2)割补图形把不可直接计算面积转化为 可以直接计算面积; (3)对已知图形列式计算求出面积。 2、割原图时,各部分图形的面积必须可 直接求出; 补原图时,补后的图形和补上的图形 的面积必须可直接求出。
┍
A E
解法7:如 果考虑用三 角函数来表 示表示呢? 图7
知识运用
2 例:2012.广州第24题改编)如图,抛物线 y x 2 x 3 与x轴交于A、B两点,与y轴交于点C. (1)求点A、B、C的坐标 (已经求出:A(-3,0)、 D1 B(1,0)、C(0,3));
(2)求△ACB的面积 (已经求出是6)