汽车行驶特性

合集下载

汽车的动力学参数

汽车的动力学参数

汽车的动力学参数汽车的动力学参数是指影响汽车性能和行驶特性的各项参数。

这些参数涉及到汽车的加速、制动、转向、悬挂、操控等方面,对于汽车的安全性、舒适性和驾驶体验都有着重要的影响。

1. 动力参数汽车的动力参数主要包括最大功率、最大扭矩和最高转速等。

最大功率是发动机在一定转速下能够输出的最大功率,它直接决定了汽车的加速性能。

最大扭矩是发动机在一定转速下输出的最大转矩,它影响着汽车的爬坡能力和牵引力。

最高转速是发动机能够达到的最大转速,它限制了发动机的输出能力。

2. 加速参数汽车的加速参数主要包括0-100公里/小时的加速时间和百米加速时间等。

0-100公里/小时的加速时间是衡量汽车加速性能的重要指标,它直接反映了汽车的动力水平。

百米加速时间则更加直观地反映了汽车的起步能力。

3. 制动参数汽车的制动参数主要包括100-0公里/小时的制动距离和制动效果等。

100-0公里/小时的制动距离是汽车在高速行驶状态下从100公里/小时减速到停车所需要的距离,它直接影响到行车安全。

制动效果则是指汽车在制动时所产生的制动力,它决定了汽车的制动能力。

4. 转向参数汽车的转向参数主要包括转向半径和转向灵活性等。

转向半径是指汽车在转弯时所需的最小转弯半径,它决定了汽车的转弯性能和操控性。

转向灵活性则是指汽车在转向时的灵活性和响应速度,它影响着汽车的操控感受。

5. 悬挂参数汽车的悬挂参数主要包括悬挂刚度和悬挂行程等。

悬挂刚度是指汽车悬挂系统的刚度水平,它决定了汽车的悬挂舒适性和操控稳定性。

悬挂行程则是指汽车悬挂系统的行程长度,它影响着汽车通过不平路面时的通过性和舒适性。

以上这些动力学参数都直接影响着汽车的性能和行驶特性。

不同的汽车在这些参数上的表现会有所不同,因此选择一辆适合自己的汽车时需要考虑这些参数。

对于追求驾驶乐趣的人来说,动力参数和悬挂参数可能更加重要;而对于追求经济性和舒适性的人来说,加速参数和制动参数可能更加重要。

(完整版)汽车运用工程复习完全整理版

(完整版)汽车运用工程复习完全整理版

基本概念1. 汽车使用性能: 是指汽车能适应使用条件而发挥最大工作效率的能力。

(包括汽车动力性、燃油经济性、安全性、通过性、机动性、容量利用、质量利用、使用方便性和乘坐舒适性。

)2. 汽车使用条件:是指影响汽车完成运输工作的各类外界条件,主要包括社会经济条件、气候条件、道路条件、运输条件和汽车安全运行技术条件等。

3. 制动侧滑:制动时汽车某一轴或两轴发生横向移动称为制动侧滑。

4. 制动跑偏: 汽车在制动时自动向左或向右偏离行驶方向称为制动跑偏。

5. 临界速度与特征车速:对于不足转向汽车,即横摆角速度增益最大稳定值时所对应的车速为其特征车速V ch 。

对于过多转向汽车,横摆角速度增益为无穷大时所对应的车速为其特征车速V ch 。

当汽车极其微小的前轮转向角δ都会产生极大的横摆角速度ω,失去操纵性,出现激转现象时的车速为其临界车速Vcr 。

(当车速为时,的称为临界车速。

)6. 汽车使用经济性:汽车使用经济性,是指汽车完成单位运输量所支付的最少费用的一种使用性能。

它是评价汽车营运经济效果的综合性指标。

7. 同步附着系数:前、后制动器制动力具有固定比值的汽车,使前、后车轮同时抱死的路面附着系数称为同步附着系数。

8. 附着系数:地面制动力与垂直载荷之比为制动力系数φb ,制动力系数也称附着系数。

指轮胎在不同路面的附着能力大小。

9. 汽车操纵稳定性:汽车抵抗力图改变其位置或行驶方向的外界影响的能力。

汽车操纵稳定性包括相互联系的两个部分,一是操纵性,二是稳定性。

操纵性是指汽车能够确切地响应驾驶员转向指令的能力;稳定性是指汽车在行驶过程中,具有抵抗改变其行驶方向的各种干扰,并保持稳定行驶而不致失去控制甚至翻车或侧滑的能力。

10. 汽车走合期:对新车、大修车以及装用大修发动机的汽车,在使用初期汽车各部件处于磨合阶段还不能承受全负荷,该阶段为走合期。

11. 汽车技术使用寿命:指汽车已达到技术极限状态,而不能用修理的方法恢复其主要使用性能的使用期限。

第六章汽车行驶的平顺性

第六章汽车行驶的平顺性

第六章汽车⾏驶的平顺性第六章汽车⾏驶的平顺性6.1 平顺性的评价汽车⾏驶平顺性,是指汽车在⼀般⾏驶速度范围内⾏驶时,能保证乘员不会因车⾝振动⽽引起不舒服和疲劳的感觉,以及保持所运货物完整⽆损的性能。

由于⾏驶平顺性主要是根据乘员的舒适程度来评价,⼜称为乘坐舒适性。

汽车作为⼀个复杂的多质量振动系统,其车⾝通过悬架的弹性元件与车桥连接,⽽车桥⼜通过弹性轮胎与道路接触,其它如发动机、驾驶室等也是以橡胶垫固定于车架上。

在激振⼒作⽤(如道路不平⽽引起的冲击和加速、减速时的惯性⼒等)以及发动机振动与传动轴等振动时,系统将发⽣复杂的振动。

这种振动对乘员的⽣理反应和所运货物的完整性,均会产⽣不利的影响;乘员也会因为必须调整⾝体姿势,加剧产⽣疲劳的趋势。

车⾝振动频率较低,共振区通常在低频范围内。

为了保证汽车具有良好的平顺性,应使引起车⾝共振的⾏驶速度尽可能地远离汽车⾏驶的常⽤速度。

在坏路上,汽车的允许⾏驶速度受动⼒性的影响不⼤,主要取决于⾏驶平顺性,⽽被迫降低汽车⾏车速度。

其次,振动产⽣的动载荷,会加速零件磨损乃⾄引起损坏。

此外,振动还会消耗能量,使燃料经济性变坏。

因此,减少汽车本⾝的振动,不仅关系到乘坐的舒适和所运货物的完整,⽽且关系到汽车的运输⽣产率、燃料经济性、使⽤寿命和⼯作可靠性等。

汽车⾏驶平顺性的评价⽅法,通常是根据⼈体对振动的⽣理反应及对保持货物完整性的影响来制订的,并⽤振动的物理量,如频率、振幅、加速度、加速度变化率等作为⾏驶平顺性的评价指标。

⽬前,常⽤汽车车⾝振动的固有频率和振动加速度评价汽车的⾏驶平顺性。

试验表明,为了保持汽车具有良好的⾏驶平顺性,车⾝振动的固有频率应为⼈体所习惯的步⾏时,⾝体上、下运动的频率。

它约为60~85次/分(1HZ ~1.6HZ),振动加速度极限值为0.2~0.3g。

为了保证所运输货物的完整性,车⾝振动加速度也不宜过⼤。

如果车⾝加速度达到1g,未经固定的货物就有可能离开车厢底板。

车辆行驶性能计算方法

车辆行驶性能计算方法

上海日野
传动系机械效率ηT • 传动系效率是在专门试验台上测得的。估算时,考虑到影响传动系效率因素
中齿轮传动副及万向节传动副的对数是主要影响因素,所以常用齿轮传动副 的对数来估算其效率。 • 试验表明,经过一对圆柱齿轮效率约为98%,单级主减速器的效率约为 95%~98%,万向节传动的效率约为99%。 • 载货汽车、客车的传动系有多种组合方式,可根据推荐值,估算整车的传动 效率。
燃油消耗图上,各条曲线的交点可以粗略地反映发动机的工作状 态及燃油消耗量。
上图为某厂家搭载我P11C-UJ发动机在六档时的燃油消耗图。从 图中可以看出,该车以100km/h行驶在平路时,其每小时燃油消耗量 约27L,发动机在40%的负荷下工作。
Copyright : Shanghai Hino Engine, Ltd. All rights reserved.
• 通常将驱动力-行驶阻力平衡图及汽 车功率平衡图总称为行驶特性图。
Copyright : Shanghai Hino Engine, Ltd. All rights reserved.
上海日野
1.1 行驶力平衡方程
Ft = Ff + Fi + Fw + Fj
Ft − 汽车车驱动 Ff − 滚动摩擦阻力 Fi − 爬坡阻力 Fw − 空气阻力 Fj − 加速阻力
计算: 取后桥的传动效率为0.98,取减速器的传动效率为0.98,则:
F t max
= Tt = Te ⋅ ig ⋅ io ⋅ ηT
r
r
= 76 . 84 × 7 . 72 × 3 . 91 × 0 . 9604 0 . 491
= 4537 kgf
Copyright : Shanghai Hino Engine, Ltd. All rights reserved.

汽车行驶平顺性

汽车行驶平顺性

上、下限频率与中心频率的关系为:

f f
u l

1.12 0.89
fc fc
一、汽车行驶平顺性的评价指标
1/3倍频法认为:同时有许多个1/3倍频带都有能量作用于人体 时,各个频带振动作用无明显联系,对人体产生的影响主要是 人体感觉振动强度最大的那个1/3倍频带所造成的。
将振动传至人体加速度的功率谱密度Gp(f)所对应的1/3倍频带中心频 率fci在带宽Δfi区间积分,得到各个1/3倍频带的加速度均方根值分量σpi
车轮动载荷。 评价指标:人体对振动的响应、行驶安全性。
研究平顺性的主要目的:控制汽车振动系 统的动态特性,使振动系统的“输出”在 给定工况的“输入”下不超过一定界限, 以保持乘员的舒适性 。
平顺性分析——建立在随机振动理论的基 础上。
一、随机振动基础和路面输入(补充)
1. 随机振动基本概念
ISO2631用加速度均方根值(σrms)表示人体在1~80Hz范围内的三个感觉 界限,即:
①“舒适—降低界限TCD”——人体感觉良好,可以顺利完成吃、写、读 等动作;
②“疲劳—工效降低界限TFD”——驾驶员能够保持正常进行驾驶; ③“暴露极限”——人体可以承受振动量的上限。
“舒适—降低界限TCD”为“疲劳—工效降低界限TFD”的1/3.15;“暴露 极限”为“疲劳—工效降低界限TFD”的2倍。
人体对加速度敏感度的加权系数
倍频带的中心频率 (Hz)
加权系数 w(fci)
垂直振动
水平振动
1.0
0.5
1.0
2.0
0.71
1.0
4.0
1.0
0.5
8.0
1.0
0.25

2汽车行驶特性

2汽车行驶特性

第一节
概述
道路线形设计要保证: 1 保证汽车行驶的稳定性,即保证安全行 车,不翻车、不倒溜、不侧滑,这就需要合理设 置纵横坡度、弯道,以及保证车轮与地面的附着 力等。 2 尽可能提高车速。车速是评价运输效率 的主要影响因素,因此为提高车速,路线应具有 良好的线形(如曲线半径、最大纵坡等),充分发 挥汽车行驶的动力性能。
(P35~39)
汽车在道路上行驶时,必须具备两个条
件:其一是有足够的驱动力来克服各种行驶 阻力,这是必要条件;其二是驱动力小于或 等于轮胎与路面间的最大摩擦力(附着力),这 是保证汽车正常行驶不致使车轮空转打滑的 条件,也就是充分条件。P39
一、汽车的驱动力
1、发动机曲轴扭矩M 汽车行驶的驱动力来自它的内燃发动 机,其传力过程如下:在发动机里热能转 化为机械能 → 有效功率N → 曲轴旋转 (转速为 n),产生扭矩M → 经变速和传 动,将M传给驱动轮,产生扭矩MK → 驱 动汽车行驶。
性能、越野性、制动性、行驶稳定性、平顺性和
操纵稳定性等)和使用性能的科学。本章主要简 要介绍汽车的驱动力和行车阻力,汽车的动力特 性,汽车的行驶稳定性、制动性等基本理论。深 入的研究可学习有关《汽车应用工程》、《汽车
理论》等课程。
汽车由发动机、底盘、车身和电气设备等组成
第二节 汽车的驱动力及行驶阻力
平移质量的惯性力
旋转质量的惯性力矩
RI 1
G ma a g
RI 2
I
d dt
式中:I―――旋转部分的转动惯量;
d dt
―――旋转部分转动时的角加速度。
为简化计算,一般给平移质量惯性力乘以大于1 的系数δ,来近似代替旋转质量惯性力矩的影响,即: G RI= a (N) g 式中: RI―――惯性阻力 (N) ; G―――车辆总重力 (N) ; g―――重力加速度 (m/s2) ; a―――汽车的加速度(正值)或减速度 (负值)(m/s2) ; δ―――惯性力系数.

第2章 汽车行驶特性

第2章    汽车行驶特性

第2章 汽车行驶特性第1节 汽车的驱动力及行驶阻力• 1)动力性能(dynamic force)• 2)通过性(cross-country power ) • 3)制动性 (braking power)• 4)行驶稳定性(running stability) • 5)行驶平顺性(smooth running) •6)操纵稳定性(operating stability)•第2节 汽车的驱动力及行驶阻力(running resistance)一 汽车的驱动力(driving force)内燃机N —机械能—扭矩M —驱动扭矩MK —牵引N=M •w=M •n •0.1047 M=9.549N/n①.有效功率N :单位时间内具有的做功的能力。

(KW) ②.转速n :发动机曲轴单位时间内的旋转次数(n/min) ③.扭矩M :发动机产生于曲轴上的转动力矩。

(N·m) ④.转动角速度ω:单位时间内曲轴转动的角度(rad/s)二 汽车的行驶阻力2.坡度阻力:汽车爬坡时,重力的分力对行车的阻力由于公路纵坡α较小(α<5°) 所以 R i =G · i道路阻力:R R =G·(i+f)2) 惯性阻力:RI=δ · G · a/g(包括汽车整体质量保持原来的运动状态所产生的线性惯性阻力G · a/g 和由汽车各转动部件加/减速产生的旋转惯性阻力) 3) 空气阻力⑴.空气阻力的产生原因①.汽车在行驶中,由于迎面空气质点的压力。

②.车后的真空吸力③.空气质点与车身表面的摩擦力。

当行驶速度在100KM/h,以上,有时一半的功率用来克服空气阻力。

K —空气阻力系数,它与汽车的流线型有关。

将车速v (m/s )化为V (Km/h )并化简,得并化简,得思考题:汽车在平直的公路上作匀速行驶,受哪几种阻力的影响?三. 汽车的运动方程式与行驶条件1.汽车的运动方程式保证汽车在道路上加或等速行驶,T>=R=R W +R R +R I 减速行驶直至停止:T<R=R W +R R +R I 2.汽车的行驶条件● 必要条件:T>=R● 充分条件:T<=ϕ·G K第2节汽车的动力特性(dynamic characterization)及加减速行程一.汽车的动力因数汽车的运动方程:T=R W+R R+R I受速度影响大的合并,即T-R W=R R+R I即:T-R W=G(f+i)+δ•G · a/g令D=(T-R W )/G,ϕ= f+i(D为动力因数,表示单位重力的后备牵引力,ϕ道路阻力系数)牵引力相同,重量轻的汽车具有较好的牵引性能。

汽车行驶安全性能

汽车行驶安全性能
汽车的地面制动力首先取决于制动器制动力,但同时又受到地 面附着条件的限制。只有在汽车具有足够的制动器制动力,同时 地面又能提供高的附着力时,才能获得足够的地面制动力。
汽车制动印痕的变化过程(1)
随着制动强度的不断增加,车轮的运动逐渐由滚动向滑 动变化。
在坚硬路面上,汽车在制动过程中留下的清晰的轮胎 花纹印痕,称为“压印”;而轮胎从局部滑移到全滑移 过程中留下的花纹压印长度逐步加大变成连为一片的粗 黑印痕,称为“拖印”,此时车轮已被制动器抱死。
1)稳态响应
在汽车等速直线行驶时,急速转动转向盘至某一 转角时,停止转动转向盘并维持此转角不变,即 给汽车以转向盘角阶跃输入,一般汽车经短暂时 间后便进入等速圆周行驶,称为转向盘角阶跃输 入下进入的稳态响应。
汽车的等速圆周行驶,即汽车转向盘角阶跃输入 下进入的稳态响应,是表征汽车操纵稳定性的一 个重要的时域响应,一般也称它为汽车的稳态转 向特性。
➢ 汽车制动性
——是指汽车在行驶中能强制地降低行驶速度 以至停车且维持行驶方向稳定性,或在下坡时 保证一定行驶速度的能力。
制动性能的评价指标有三项:
制动效能:指在良好路面上汽车以一定初速制动到停车的制 动距离,或制动时汽车的减速度。这是最基本的评价指标。
制动效能恒定性:指汽车高速行驶或下长坡连续制动时制动 效能保持的程度。分为抗热衰退性能和抗水衰退性能两方面。
②制动器的制动力——大;
③最大制动减速度——高; ④制动时的初始车速——低。
附着力(或制动器制动力)越大,制动初速 度越低,制动距离越短。
对以制动效能为对象的评判指标一般为:制动初速度从 100km/h到停车即100km/h→0km/h的制动距离,小 于42m为制动性能优秀;42—45m为制动性能合格;大 于45m为制动性能较差。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汽车的空气阻力系数与迎风面积 表2-3
车型
小客车 载重车 大客车
迎风面积A(m2) 空气阻力系数K
1.4~1.9
0.32~0.50
3.0~7.0
0.60~1.00
4.0~7.0
0.50~0.80
将车速v(m/s)化为V (km/h) ,并化简得:
(2 - 2)
如果同时给定最大功率NMAX 及其对应的曲轴

速n

N
以及
最大


M
M
A
X及其
对应



转速
nM,则可用下式直接计算扭矩曲线M=M(n),即:
M
M max
M max M N nN nM 2
nM n 2
(N.m)
(2 - 3)
2. 驱动轮扭矩MK The Traction Torque
汽车车轮分为驱动轮和从动轮。驱动轮上 有发动机传来的扭矩MK ,在MK 的作用下驱 使车轮滚动向前。而从动轮上无扭矩作用,它 的滚动是驱动轮上的力经车架传至从动轮的轮 轴上而产生运动。
汽车发动机曲轴传至驱动轮上的扭矩按下式 计算,即:
M K MT
(2 - 4)
式中:MK ―――驱动轮扭矩 (N.m) ; M―――发动机曲轴扭矩 (N.m) ;
第二章 汽车行驶特性
The Running Characteristic of Automobile
道路是为汽车行驶服务的,要满足汽车在道 路上行驶安全、迅速、经济、舒适、低公害的要 求,就必须从驾驶者、汽车、道路、交通管理等
方面来保证。在上述因素中,道路的线形设计 与汽车行驶特性最为密切。因此,在道路线
n―――发动机曲轴的转速 (r/min)。
东风EQ6100-I型发动机外特性曲线
有时未给定发动机特性曲线,只给出最大功率 NMAX 及其对应的曲轴转速nN ,则可通过下面的经验 公式近似地计算发动机的功率曲线N=N(n),即:
N
N max
1
n nN
2
n nN
2
3
n nN
3
(KW)
形设计时,需要研究汽车在道路上的行驶特性及 其对道路设计的具体要求,这是道路线形设计的 理论基础。
道路线形设计要保证: 1 保证汽车行驶的稳定性,即保证安全行
车,不翻车、不倒溜、不侧滑,这就需要合理设 置纵横坡度、弯道,以及保证车轮与地面的附着 力等。
2 尽可能提高车速。
3 保证道路行车畅通,即保证汽车不受阻 或少受阻。这就需要有足够的视距和路面宽度、 合理地设置平竖曲线,以及减少道路交叉等。
1.空气阻力 Air Resistance
汽车在行驶过程中所受的空气阻力主要包括: (1)迎面空气质点的压力; (2)车后真空吸力; (3)空气质点与车身表面的摩擦力。
由空气动力学的研究与试验结果可知,空气阻
力RW可以用下式计算:
ቤተ መጻሕፍቲ ባይዱRW
1 2
KAv 2
式中:K―空气阻力系数, ρ―空气密度,一般ρ=1.2258(N.s2/m4) ; A―汽车迎风面积,即正投影面积(m2); v―汽车与空气的相对速度 (m/s) ,可近似地取汽车 行驶速度。
1000
(2 - 5)
式中:V―――汽车行驶速度 (km/h) ; n―――发动机曲轴转速 (r/min) ; r―――车轮工作半径 (m) ,即变形半径,
它与内胎气压、外胎构造、 路面刚性与平整性、以 及荷载有关,一般取r=(0.93~0.96)r0;
r0 ―――未变形半径。
3 汽车的驱动力 The Driving Force
γ―――总变速比,γ=i0 ik ; i0 ―――传动器变速比,见表2-1; iK ―――变速箱变速比,见表2-1; ηT ―――传动系统的机械效率,一般载重 汽车取0.80~0.85,小客车取 0.85~0.95。
此时,驱动轮上的转速nK =n/γ , 相应的车速V为:
V 2r n 60 0.377 nr
汽车在道路上行驶时,必须有足够的驱动力 来克服各种行驶阻力。汽车行驶的驱动力来自它 的内燃发动机,其传力过程如下:
在发动机里热能转化为机械能 → 有效 功率N → 曲轴旋转(转速为 n),产生扭 矩M → 经变速和传动,将M传给驱动轮, 产生扭矩MK → 驱动汽车行驶。
一、汽车的驱动力 The Driving Force
4 尽量满足行车舒适,即采用符合视觉舒 适要求的曲线半径,注意线形与景观的协调、沿 线的植树绿化等。
本章主要介绍汽车的驱动力和行车阻力,汽 车的动力特性,汽车的行驶稳定性、制动性和燃 油经济性。在表2-1中列出了几种有代表性的国 产汽车的主要技术性能。(P18.)
第一节 汽车的驱动力及行驶阻力
The Driving Force and Driving Resistance
T
3600
N V
T
(2 - 7)
二、汽车的行驶阻力 The Running Resistance
汽车在行驶过程中需要不断克服各种阻力, 这些阻力有的来自空气的阻力,有的来自道路摩 擦力,有的来自汽车上坡行驶时产生的阻力,有 的来自汽车变速行驶时克服惯性的阻力,这些阻 力可以分为空气阻力、道路阻力和惯性阻力,下 面分述之。
发动机部分负荷特性曲线:如果节流阀部分 开启,即部分供油,则称此特性曲线为发动机 部分负荷特性曲线。
对于不同类型的发动机,其输出的功率不同, 故产生的扭矩也不同。它们之间的关系如下:
N Mn 9549
M 9549 N n
(N.m)
(2 -1)
式中:M―――发动机曲轴的扭矩(N.m);
N―――发动机的有效功率(KW);
汽车驱动轮受力分析
把驱动轮上的扭矩MK 用一对力偶Ta和T代替, Ta作用在轮缘上与路面水平反力F相抗衡,T作用在 轮轴上推动汽车前进,称为驱动力(或牵引力),
与汽车行驶阻力R相抗衡。驱动力可按下式计算:
T
Mk r
MT
r
0.377 n V
MT
(2 - 6)
上式为驱动力T与扭矩M之间的函数关 系式。同样可推导出驱动力T与功率N之间 的关系式为:
1.发动机曲轴扭矩M The engine crankshaft torque M
发动机特性曲线:如将发动机的功率N、 扭矩M与曲轴转速n之间的函数关系以曲线 表示,则该曲线称为发动机特性曲线。
发动机外特性曲线:如果发动机节流阀全开, 即高压油泵在最大供油量位置,则此特性曲线 称为发动机外特性曲线;
相关文档
最新文档