浙教版八年级上册 三角形 期末复习

合集下载

新浙教版八年级上册 期末复习

新浙教版八年级上册 期末复习

课题期末复习1一般三角形:边:角:全等三角形特殊三角形:等腰直角等边等腰直角不等式的认识坐标和位置一次函数C 例题:1、已知,△ABC是等边三角形,D、E分别是BC、AC边上的点,AE=CD,连接AD、BE相交于点P,BQ⊥AD于Q(1)求∠BPD的度数;(2)若PQ=3,PE=1,求AD的长2、如图,在△ABC中,∠C=90°,AB的垂直平分线交AC于点D,垂足为E,若∠A=30°,CD=2. (1)求∠BDC的度数;(2)求BD的长.3、如图,在△ABC中,ACAB=,90=∠BAC,BD是ABC∠的平分线,BDCE⊥,垂足是E,BA和CE的延长线交于点F.(1)在图中找出与△ABD全等的三角形,并说出全等的理由;(2)说明ECBD2=;(3)如果5=AB,求AD的长.4、如图1,在等边△ABC中,线段AM为BC边上的中线,动点D在直线AM(点D与A重合除外)上时,以CD为一边且在CD的下方作等边△CDE,连接BE.(1)判断AD与BE是否相等,请说明理由;(2)如图2,若AB=8,P、Q两点在直线BE上且5==CQCP,试求PQ的长;(3)在第(2)小题的条件下,当点D在线段AM的延长线(或反向延长线)上时.判断PQ的长是否为定值,若是请直接写出PQ的长;若不是请简单说明理由.一.、精心选一选1.下列各点中,在第三象限的点是( )A. ( -2 , -3 )B.(-2 , 3 )C.( 2 ,-3 )D. ( 2 , 3 )2. 等腰三角形的腰长是5cm,则它的底边不可能...是( )A.10cm B.9cm C.5cm D.3cm3.下列条件中使两个直角三角形全等的条件是( )A. 两条直角边对应相等B. 两锐角对应相等C. 一条边对应相等D.一锐角对应相等(第21题图)DCBEA4、一元一次不等式组1x ax >⎧⎨>-⎩的解集为x>a ,且a ≠-1,则a 取值范围是( )。

浙教版八年级三角形及特殊三角形总复习概要

浙教版八年级三角形及特殊三角形总复习概要

浙教版八年级三角形及特殊三角形总复习概要在八年级的数学学习中,三角形及特殊三角形是一个重要的知识板块。

这部分内容不仅是后续几何学习的基础,也在实际生活中有着广泛的应用。

接下来,咱们就一起对这部分知识进行一次全面的复习。

一、三角形的基本概念1、三角形的定义由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2、三角形的边三角形任意两边之和大于第三边,任意两边之差小于第三边。

3、三角形的角三角形内角和为 180°,外角等于不相邻的两个内角之和。

二、三角形的分类1、按角分类(1)锐角三角形:三个角都小于 90°。

(2)直角三角形:有一个角等于 90°。

(3)钝角三角形:有一个角大于 90°小于 180°。

2、按边分类(1)不等边三角形:三条边都不相等。

(2)等腰三角形:有两条边相等。

其中,相等的两条边叫做腰,另一边叫做底边。

等腰三角形的两个底角相等。

(3)等边三角形:三条边都相等,三个角都等于 60°。

三、特殊三角形1、等腰三角形(1)性质①两腰相等。

②两底角相等(等边对等角)。

③顶角平分线、底边上的中线、底边上的高相互重合(三线合一)。

(2)判定①有两条边相等的三角形是等腰三角形。

②有两个角相等的三角形是等腰三角形(等角对等边)。

2、等边三角形(1)性质①三边相等。

②三个角都相等,且都等于 60°。

(2)判定①三条边都相等的三角形是等边三角形。

②三个角都相等的三角形是等边三角形。

③有一个角是 60°的等腰三角形是等边三角形。

3、直角三角形(1)性质①两直角边的平方和等于斜边的平方(勾股定理)。

②直角三角形中,两个锐角互余。

③斜边上的中线等于斜边的一半。

(2)判定①如果三角形的三边满足 a²+ b²= c²,那么这个三角形是直角三角形(勾股定理逆定理)。

②如果一个三角形中有两个角互余,那么这个三角形是直角三角形。

【期末复习】浙教版八年级上册提分专题:等腰三角形中的分类讨论(解析版)

【期末复习】浙教版八年级上册提分专题:等腰三角形中的分类讨论(解析版)

【期末复习】浙教版八年级上册提分专题:等腰三角形中的分类讨论【知识点睛】❖ 在等腰三角形中,没有明确指明边是腰还是底时,要进行分类讨论,且求出未知边的长后,一定要看这三边能否组成三角形;❖ 没有明确指明角是顶角或底角时,也要进行分类讨论设等腰三角形中有一个角为α时对应结论 当α为顶角时底角=α2190-︒当α为直角或钝角时 不需要分类讨论,该角必为顶角 当α为锐角时α可以为顶角;也可以为底角当等腰三角形的一个外角为α时对应结论 若α为锐角、直角 α必为顶角的外角若α为钝角α可以是顶角的外角,也可以是底角的外角❖ 动态环境下的等腰三角形存在性问题【类题训练】1.△ABC 中,AB =AC ,一腰上的中线BD 把三角形的周长分为9cm 和12cm 两部分,则此三角形的腰长是 8cm 或6cm .【分析】等腰三角形一腰上的中线将它的周长分为12厘米和18厘米两部分,但已知没有明确等腰三角形被中线分成的两部分的长,哪个是9cm ,哪个是12cm ,因此,有两种情况,需要分类讨论. 【解答】解:根据题意画出图形,如图, 设等腰三角形的腰长AB =AC =2x ,BC =y , ∵BD 是腰上的中线, ∴AD =DC =x ,若AB +AD 的长为12,则2x +x =12,解得x =4cm , 则x +y =9,即4+y =9,解得y =5cm ;若AB +AD 的长为9,则2x +x =9,解得x =3cm ,则x+y=12,即3+y=12,解得y=9cm;所以等腰三角形的腰长为8cm或6cm.故答案为:8cm或6cm.2.(1)等腰三角形中有一个角是70°,则它的顶角是70°或40°.(2)等腰三角形中有一个角是100°,则它的另两个角是40°,40°.(3)等腰三角形的一个内角为70°,它一腰上的高与底边所夹的度数为35°或20°.【分析】(1)等腰三角形一内角为70°,没说明是顶角还是底角,所以有两种情况.(2)由于等腰三角形的两底角相等,所以100°的角只能是顶角,再利用三角形的内角和定理可求得另两底角.(3)题中没有指明已知角是底角还是顶角,故应该分情况进行分析从而求解.【解答】解:(1)①当70°角为顶角,顶角度数即为70°;②当70°为底角时,顶角=180°﹣2×70°=40°.(2)∵等腰三角形的两底角相等∴两底角的和为180°﹣100°=80°∴两个底角分别为40°,40°.(3)①当∠A=70°时,则∠ABC=∠C=55°,因为BD⊥AC,所以∠DBC=90°﹣55°=35°;②当∠C=70°时,因为BD⊥AC,所以∠DBC=90°﹣70°=20°故答案为:70°或40°;40°,40°;35°或20°.3.如果等腰三角形的周长是35cm,一腰上中线把三角形分成两个三角形,其周长之差是4cm,则这个等腰三角形的底边长是9cm或cm.【分析】根据题意画出图形,设等腰三角形的腰长为xcm,则底边长为(19﹣2x)cm,再根据两个三角形的周长差是4cm求出x的值即可.【解答】解:如图所示,等腰△ABC中,AB=AC,点D为AC的中点,设AB=AC=xcm,∵点D为AC的中点,∴AD=CD=,BC=25﹣(AB+AC)=35﹣2x,当△ABD的周长大于△BCD的周长时,AB+AD+BD﹣(BC+CD+BD)=4,即x+﹣(35﹣2x)﹣=4,解得x=13,底边长为35﹣13×2=9(cm);当△BCD的周长大于△ABD的周长时,则BC+CD+BD﹣(AB+AD+BD)=4,即35﹣2x+﹣(x+)=4,解得x=,底边长为35﹣×2=(cm).综上所述,这个等腰三角形的底边长为9cm或cm.故答案为:9cm或cm.4.已知△ABC中,CA=CB,AD⊥BC于D,∠CAD=50°,则∠B=70°或20°.【分析】利用直角三角形两锐角互余可求得∠C,再利用三角形内角和定理和等腰三角形的性质可求得∠B.【解答】解:若△ACB是锐角三角形,如图1.∵AD⊥BC,∠CAD=50°,∴∠C=90°﹣∠CAD=90°﹣50°=40°,∵CA=CB,∴∠B=∠CAB,且2∠B+∠C=180°,∴∠B=70°,若△ACB是钝角三角形,如图2.∵AD⊥BC,∠CAD=50°,∴∠DCA=90°﹣∠CAD=90°﹣50°=40°,∵CA=CB,∴∠B=∠CAB,且∠DCA=∠B+∠CAB∴∠B=20°故答案为:70°或20°.5.如图,已知Rt△ABC中,∠C=90°,∠A=30°,在直线BC或AC上取一点P,使得△P AB是等腰三角形,则符合条件的P点有()A.5个B.6个C.7个D.8个【分析】根据等腰三角形的判定定理,结合图形即可得到结论.【解答】解:如图,第1个点在CA延长线上,取一点P,使BA=AP;第2个点在CB延长线上,取一点P,使AB=PB;第3个点在AC延长线上,取一点P,使AB=PB;第4个点在BC延长线上,取一点P,使AB=P A;第5个点在AC延长线上,取一点P,使AB=AP;第6个点在AC上,取一点P,使∠PBA=∠P AB;∴符合条件的点P有6个点.故选:B.6.用一根长为21厘米的铁丝围成一个三条边长均为整数厘米的等腰三角形,则方案的种数为()A.5B.6C.7D.8【分析】设等腰三角形的腰为x,底边为y,根据三角形的周长求出y=21﹣2x,根据三角形三边关系定理得出x+x>y,求出x+y>21﹣2x,再求出不等式组的解集即可.【解答】解:设等腰三角形的腰为x,底边为y,则x>0,y>0,x+x>y,则x+x+y=21,即①y=21﹣2x>0,所以②x+x>21﹣2x,解①②得:5<x<10.5,所以整数x可以为6,7,8,9,10,共5种,故选:A.7.如图,∠AOB=60°,OC平分∠AOB,如果射线OA上的点E满足△OCE是等腰三角形,那么∠OEC的度数为120°或75°或30°.【分析】求出∠AOC,根据等腰得出三种情况,OE=CE,OC=OE,OC=CE,根据等腰三角形性质和三角形内角和定理求出即可.【解答】解:∵∠AOB=60°,OC平分∠AOB,∴∠AOC=30°,①当E在E1时,OE=CE,∵∠AOC=∠OCE=30°,∴∠OEC=180°﹣30°﹣30°=120°;②当E在E2点时,OC=OE,则∠OEC=∠OCE=(180°﹣30°)=75°;③当E在E3时,OC=CE,则∠OEC=∠AOC=30°;故答案为:120°或75°或30°.8.如图,∠AOB=60°,C是BO延长线上一点,OC=12cm,动点P从点C出发沿CB以2cm/s的速度移动,动点Q从点O出发沿OA以1cm/s的速度移动,如果点P、Q同时出发,用t(s)表示移动的时间,当t=4或12s时,△POQ是等腰三角形.【分析】根据等腰三角形的判定,分两种情况:(1)当点P在线段OC上时;(2)当点P在CO的延长线上时.分别列式计算即可求.【解答】解:分两种情况:(1)当点P在线段OC上时,设t时后△POQ是等腰三角形,有OP=OC﹣CP=OQ,即12﹣2t=t,解得,t=4s;(2)当点P在CO的延长线上时,此时经过CO时的时间已用6s,当△POQ是等腰三角形时,∵∠POQ=60°,∴△POQ是等边三角形,∴OP=OQ,即2(t﹣6)=t,解得,t=12s故答案为4s或12s.9.如图,是四张形状不同的纸片,用剪刀沿一条直线将它们分别剪开(只允许剪一次),不能够得到两个等腰三角形纸片的是()A.B.C.D.【分析】如果一个三角形有两个角相等,那么这两个角所对的边也相等,据此进行判断即可.【解答】解:A、如图所示,△ACD和△BCD都是等腰三角形;B、如图所示,△ABC不能够分成两个等腰三角形;C、如图所示,△ACD和△BCD都是等腰三角形;D、如图所示,△ACD和△BCD都是等腰三角形;故选:B.10.已知△ABC的三条边长分别为3,4,6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()A.5条B.6条C.7条D.8条【分析】根据等腰三角形的性质分别利用AB,AC为底以及为腰得出符合题意的图形即可.【解答】解:如图所示:当BC1=AC1,AC=CC2,AB=BC3,AC4=CC4,AB=AC5,AB=AC6,BC7=CC7时都能得到符合题意的等腰三角形.故选:C.11.如图,△ABC中,∠B=60°,∠C=90°,在射线BA上找一点D,使△ACD为等腰三角形,则∠ADC的度数为75°或120°或15°.【分析】分三种情形分别求解即可.【解答】解:∵△ABC中,∠B=60°,∠C=90°,∴∠BAC=180°﹣60°﹣90°=30°,如图,有三种情形:①当AC=AD时,∠ADC==75°.②当CD′=AD′时,∠AD′C=180°﹣30°﹣30°=120°.③当AC=AD″时,∠AD″C==15°,故答案为:75°或120°或15°.12.如图,等边△ABC的边长为6,点P沿△ABC的边从A→B→C运动,以AP为边作等边△APQ,且点Q在直线AB下方,当点P、Q运动到使△BPQ是等腰三角形时,点Q运动路线的长为3或9.【分析】如图,连接CP,BQ,由“SAS”可证△ACP≌△ABQ,可得BQ=CP,可得点Q运动轨迹是A→H→B,分两种情况讨论,即可求解.【解答】解:如图,连接CP,BQ,∵△ABC,△APQ是等边三角形,∴AP=AQ=PQ,AC=AB,∠CAP=∠BAQ=60°,∴△ACP≌△ABQ(SAS)∴BQ=CP,∴当点P运动到点B时,点Q运动到点H,且BH=BC=6,∴当点P在AB上运动时,点Q在AH上运动,∵△BPQ是等腰三角形,∴PQ=PB,∴AP=PB=3=AQ,∴点Q运动路线的长为3,当点P在BC上运动时,点Q在BH上运动,∵△BPQ是等腰三角形,∴BQ=PB,∴BP=BQ=3,∴点Q运动路线的长为3+6=9,故答案为:3或9.13.如图,在△ABC中,∠ACB=2∠A,过点C的直线能将△ABC分成两个等腰三角形,则∠A的度数为45°或36°或或.【分析】根据等腰三角形的性质和三角形的内角和即可得到结论.【解答】解:∵过点C的直线能将△ABC分成两个等腰三角形,①如图1,∵∠ACB=2∠A,∴AD=DC=BD,∴∠ACB=90°,∴∠A=45°;②如图2,AD=DC=BC,∴∠A=∠ACD,∠BDC=∠B,∴∠BDC=2∠A,∴∠A=36°,③AD=DC,BD=BC,∴∠BDC=∠BCD,∠A=∠ACD,∴∠BCD=∠BDC=2∠A,∴∠BCD=2∠A,∵∠ACB=2∠A,故这种情况不存在.④如图3,AD=AC,BD=CD,∴∠ADC=∠ACD,∠B=∠BCD,设∠B=∠BCD=α,∴∠ADC=∠ACD=2α,∴∠ACB=3α,∴∠A=α,∵∠A+∠B+∠ACB=180°,∴α+α+3α=180°,∴α=,∴∠A=,⑤如图4,AC=CD=DB,∴∠A=∠CDA,∠B=∠DCB,∵∠CDB=180°﹣∠CDA=180°﹣∠A,∴∠B=∠DCB==,∴∠ACB=∠A=180°﹣,∵∠ACB=2∠A,∴180°﹣=2∠A,∴综上所述,∠A的度数为45°或36°或或.故答案为:45°或36°或或.14.已知等边△ABC的边长为3,点E在直线AB上,点D在直线CB上,且ED=EC,若AE=6,则CD的长为3或9.【分析】①E在线段AB的延长线上时,过E点作EF⊥CD于F,②当E在线段AB的延长线时,过E点作EF ⊥CD于F,根据等边三角形的性质求出BE长和∠ABC=60°,解直角三角形求出BF,求出CF,即可求出答案.【解答】解:点E在直线AB上,AE=6,点E位置有两种情况:①E在线段AB的延长线上时,过E点作EF⊥CD于F,∵△ABC是等边三角形,△ABC的边长为3,AE=6,∴BE=6﹣3=3,∠ABC=60°,∴∠EBF=60°,∴∠BEF=30°,∴BF=BE=,∴CF=+3=,∵ED=EC,∴CF=DF,∴CD=×2=9;②如图2,当E在线段AB的延长线时,过E点作EF⊥CD于F,∵△ABC是等边三角形,△ABC的边长为3,AE=6,∴BE=6+3=9,∠ABC=60°,∴∠EBF=60°,∴∠BEF=30°,∴BF=AE=,∴CF=﹣3=,∵ED=EC,∴CF=DF,∴CD=×2=3;即C=9或3,故答案为:3或9.15.△ABC的高AD、BE所在的直线交于点M,若BM=AC,求∠ABC的度数.【分析】分两种情况考虑:当∠ABC为锐角时,如图1所示,由AD垂直于BC,BE垂直于AC,利用垂直的定义得到一对直角相等,再由一对对顶角相等,得到∠CAD=∠MBD,根据一对直角相等,再由BM=AC,利用AAS得出三角形BMD与三角形ACD全等,由全等三角形对应边相等得到AD=BD,得到三角形ABD为等腰直角三角形,可得出∠ABC=45°;当∠ABC为钝角时,如图2所示,同理利用AAS得出三角形ADC与三角形DBM全等,由全等三角形对应边相等得到AD=BD,得出三角形ABD为等腰直角三角形,求出∠ABD=45°,利用邻补角定义即可求出∠ABC=135°.【解答】解:分两种情况考虑:当∠ABC为锐角时,如图1所示,∵AD⊥DB,BE⊥AC,∴∠MDB=∠AEM=90°,∵∠AME=∠BMD,∴∠CAD=∠MBD,在△BMD和△ACD中,,∴△BMD≌△ACD(AAS),∴AD=BD,即△ABD为等腰直角三角形,∴∠ABC=45°;当∠ABC为钝角时,如图2所示,∵BD⊥AM,BE⊥AC,∴∠BDM=∠BEC=90°,∵∠DBM=∠EBC,∴∠M=∠C,在△BMD和△ACD中,,∴△BMD≌△ACD(AAS),∴AD=BD,即△ABD为等腰直角三角形,∴∠ABD=45゜,则∠ABC=135゜.16.已知点P为线段CB上方一点,CA⊥CB,P A⊥PB,且P A=PB,PM⊥BC于M,若CA=1,PM=4.求CB的长.【分析】根据全等三角形的判定得出△PMB≌△PNA,进而分类讨论得出答案即可.【解答】解:此题分以下两种情况:①如图1,过P作PN⊥CA于N,∵P A⊥PB,∴∠APB=90°,∵∠NPM=90°,∴∠NP A=∠BPM,在△PMB和△PNA中,,∴△PMB≌△PNA,∴PM=PN=4=CM,BM=AN=3,∴BC=7;②如图2,过P作PN⊥CA于N,∵P A⊥PB,∴∠APB=90°,∵∠NPM=90°,∴∠NP A=∠BPM,在△PMB和△PNA中,,∴△PMB≌△PNA,∴PM=PN=4=CM,BM=AN=5,可得BC=9.综合上述CB=7或9.17.如图,△ABC中,∠ABC=∠ACB,点D在BC所在的直线上,点E在射线AC上,且AD=AE,连接DE.(1)如图①,若∠B=∠C=35°,∠BAD=80°,求∠CDE的度数;(2)如图②,若∠ABC=∠ACB=75°,∠CDE=18°,求∠BAD的度数;(3)当点D在直线BC上(不与点B、C重合)运动时,试探究∠BAD与∠CDE的数量关系,并说明理由.【分析】(1)根据等腰三角形的性质得到∠BAC=110°,根据三角形的外角的性质即可得到结论;(2)根据三角形的外角的性质得到∠E=75°﹣18°=57°,于是得到结论;(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β,①如图1,当点D在点B的左侧时,∠ADC=x°﹣α,②如图2,当点D在线段BC上时,∠ADC=x°+α,③如图3,当点D在点C右侧时,∠ADC=x°﹣α,根据题意列方程组即可得到结论.【解答】解:(1)∵∠B=∠C=35°,∴∠BAC=110°,∵∠BAD=80°,∴∠DAE=30°,∴∠ADE=∠AED=75°,∴∠CDE=180°﹣35°﹣30°﹣75°=40°;(2)∵∠ACB=75°,∠CDE=18°,∴∠E=75°﹣18°=57°,∴∠ADE=∠AED=57°,∴∠ADC=39°,∵∠ABC=∠ADB+∠DAB=75°,∴∠BAD=36°;(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β①如图1,当点D在点B的左侧时,∠ADC=x°﹣α,∴,(1)﹣(2)得2α﹣β=0,∴2α=β;②如图2,当点D在线段BC上时,∠ADC=x°+α,∴,(2)﹣(1)得α=β﹣α,∴2α=β;③如图3,当点D在点C右侧时,∠ADC=x°﹣α,∴,(2)﹣(1)得2α﹣β=0,∴2α=β.综上所述,∠BAD与∠CDE的数量关系是2∠CDE=∠BAD.18.定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)图①是顶角为36°的等腰三角形,这个三角形的三分线已经画出,请你在图②中用不同于图①的方法画出顶角为36°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数.(若两种方法分得的三角形成3对全等三角形,则视为同一种)(2)图③是顶角为45°的等腰三角形,请你在图③中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数.(3)△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,设∠C=x°,则x所有可能的值为.【分析】(1)在图②中用不同于图①的方法画出顶角为36°的等腰三角形的三分线即可;(2)在图③中画出顶角为45°的等腰三角形的三分线即可;(3)分两种情况:AD为等腰三角形的腰或底作图即可得结论.【解答】解:(1)在图②中用不同于图①的方法画出顶角为36°的等腰三角形的三分线;(2)在图③中画出顶角为45°的等腰三角形的三分线.每个等腰三角形顶角的度数为:90°、135°、45°.故答案为:90°、135°、45°.(3)如下图作△ABC,①如图1:当AD=AE时,∵2x+x=30+30,∴x=20.②如图2:当AD=DE时,∵2x+x+30+30=180.∴x=40.所以x的所有可能的值为20°或40°.故答案为20°或40°.19.如图,在四边形ABCD中,AB∥CD,AE交BC于点P,交DC的延长线于点E,点P为AE的中点.(1)求证:点P也是BC的中点;(2)若CB⊥AB,且DP=,CD=,AB=4,求AP的长;(3)在(2)的条件下,若线段AE上有一点Q,使得△ABQ是等腰三角形,求AQ的长.【分析】(1)由平行线的性质得出∠CEP=∠BAP,∠ECP=∠ABP,由点P为AE的中点,得出PE=P A,由AAS证得△CEP≌△BAP,即可得出结论;(2)由CB⊥AB,AB∥CD,得出∠DCP=∠ABP=90°,在Rt△DCP中,CP==3,由(1)得CP=PB=3,在Rt△ABP中,AP==5;(3)①当AQ=AB时,AQ=AB=4;②当BA=BQ时,过点B作BN⊥AQ于N,则AN=NQ,由S△ABP=AB•BP=AP•BN,求出BN=,在Rt△ABN中,AN==,则AQ=2AN=;③当AQ=QB时,证明QB=AQ=QP,则AQ=AP=.【解答】(1)证明:∵AB∥CD,∴∠CEP=∠BAP,∠ECP=∠ABP,∵点P为AE的中点,∴PE=P A,在△CEP和△BAP中,,∴△CEP≌△BAP(AAS),∴PC=PB,∴点P也是BC的中点;(2)解:∵CB⊥AB,AB∥CD,∴∠DCP=∠ABP=90°,在Rt△DCP中,CP===3,由(1)得:CP=PB=3,在Rt△ABP中,AP===5;(3)解:①当AQ=AB时,AQ=AB=4;②当BA=BQ时,过点B作BN⊥AQ于N,如图1所示:则AN=NQ,S△ABP=AB•BP=AP•BN,即4×3=5BN,∴BN=,在Rt△ABN中,AN===,∴AQ=2AN=;③当AQ=QB时,如图2所示:∵AQ=QB,∴∠QAB=∠QBA,∵∠QAB+∠QPB=90°,∠QBA+∠QBP=90°,∴∠QPB=∠QBP,∴QB=QP,∴QB=AQ=QP,∴AQ=AP=;综上所述,△ABQ是等腰三角形,AQ的长为4或或.。

2021-2022学年浙教版八年级数学上册《第2章特殊三角形》期末综合复习训练2(附答案)

2021-2022学年浙教版八年级数学上册《第2章特殊三角形》期末综合复习训练2(附答案)

2021-2022学年浙教版八年级数学上册《第2章特殊三角形》期末综合复习训练2(附答案)1.等腰△ABC中,∠C=50°,则∠A的度数不可能是()A.80°B.50°C.65°D.45°2.如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于D,CE平分∠ACB 交BD于E,图中等腰三角形的个数是()A.3 个B.4 个C.5 个D.6 个3.如图,已知每个小方格的边长为1,A,B两点都在小方格的顶点上,请在图中找一个顶点C,使△ABC为等腰三角形,则这样的顶点C有()A.8个B.7个C.6个D.5个4.如果等腰三角形的一个角是80°,那么它的底角是()A.80°或50°B.50°或20°C.80°或20°D.50°5.在等腰三角形ABC中,AB=AC,一边上的中线BD将这个三角形的周长分为15和12两部分,则这个等腰三角形的底边长为()A.7B.7或11C.11D.7或106.等腰三角形一腰上的高与另一腰的夹角为45°,则等腰三角形的底角为()A.67°B.67.5°C.22.5°D.67.5°或22.5°7.如图,把一个含45°的三角板的直角顶点放在直线b上,已知a∥b,∠1=55°,则∠2的度数为()A.35°B.45°C.55°D.65°8.下列说法中,正确的是()A.直角三角形中,已知两边长为3和4,则第三边长为5B.三角形是直角三角形,三角形的三边为a,b,c,则满足a2﹣b2=c2C.以三个连续自然数为三边长不可能构成直角三角形D.△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形9.如图,一棵树在一次强台风中,从离地面5m处折断,倒下的部分与地面成30°角,如图所示,这棵树在折断前的高度是()A.10m B.15m C.5m D.20m10.下列四组数:①3、4、5;②、、;③0.3、0.4、0.5;④、、,其中是勾股数的有()A.4组B.3组C.2组D.1组11.如图,有四个三角形,各有一边长为6,一边长为8,若第三边分别为6,8,10,12,则面积最大的三角形是()A.B.C.D.12.王老师在讲“实数”时画了一个图(如图),即“以数轴的单位长度的线段为边作一个正方形,然后以表示﹣1的点为圆心,正方形的对角线长为半径画弧交数轴于点A”.则数轴上点A所表示的数是()A.﹣1B.﹣+1C.D.﹣13.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形G的边长是6cm,则正方形A,B,C,D,E,F,G的面积之和是()A.18cm2 B.36cm2C.72cm2D.108cm214.下列说法中正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c215.已知a,b,c为△ABC的三边长,且满足a2c2﹣b2c2=a4﹣b4,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形16.下列说法中,正确的个数是()①斜边和一直角边对应相等的两个直角三角形全等;②有两边和它们的对应夹角相等的两个直角三角形全等;③一锐角和斜边对应相等的两个直角三角形全等;④两个锐角对应相等的两个直角三角形全等.A.1个B.2个C.3个D.4个17.用反证法证明“直角三角形中至少有一个锐角不大于45°”,应先假设()A.直角三角形中两个锐角都大于45°B.直角三角形中两个锐角都不大于45°C.直角三角形中有一个锐角大于45°D.直角三角形中有一个锐角不大于45°18.若(a﹣3)2+|b﹣6|=0,则以a、b为边长的等腰三角形的周长是.19.如图,将圆桶中的水倒入一个直径为40cm,高为55cm的圆口容器中,圆桶放置的角度与水平线的夹角为45°.若使容器中的水面与圆桶相接触,则容器中水的深度至少应为.20.如图,已知∠AON=40°,OA=6,点P是射线ON上一动点,当△AOP为直角三角形时,∠A=°.21.在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有(填序号)22.如图,已知△ABC中,AB=AC=12厘米,BC=8厘米,点D为AB的中点,如果点M 在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点N在线段CA上由C点向A点运动,若使△BDM与△CMN全等,则点N的运动速度应为厘米/秒.23.已知直角三角形中有两边长分别为3cm和4cm,那么它的斜边长为.24.如图,要将楼梯铺上地毯,则需要米的地毯.25.已知等腰三角形的周长是13.(1)如果腰长是底边长的,求底边的长;(2)若该三角形其中两边的长为3x和2x+5,求底边的长.26.(1)如图1,点B、D在射线AM上,点C、E在射线AN上,且AB=BC=CD=DE,已知∠EDM=88°,求∠A的度数;(2)①如图2,∠MAN=11°,点B在AM上,且AB=1,按下列要求画图:以点B为圆心,1为半径向右画弧交AN于点B1,得第1条线段BB1;再以点B1为圆心,1为半径向右画弧交AM于点B2,得第2条线段B1B2,…这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段,则n为多少?②已知∠MAN按照①思路画图,现在一共最多可以画出6条线段,请你求出∠MAN的度数范围.27.已知如图1:△ABC中,AB=AC,∠ABC、∠ACB的平分线相交于点O,过点O作EF∥BC交AB、AC于E、F.①图中有几个等腰三角形?请说明EF与BE、CF间有怎样的关系.②若AB≠AC,其他条件不变,如图2,图中还有等腰三角形吗?如果有,请分别指出它们.另第①问中EF与BE、CF间的关系还存在吗?③若△ABC中,∠ABC的平分线与三角形外角∠ACD的平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.如图3,这时图中还有哪几个等腰三角形?EF与BE、CF间的关系如何?为什么?28.如图所示,在△ABC中,CD⊥AB于D,AC=4,BC=3,CD=(1)求AD的长;(2)求证:△ABC是直角三角形.29.如图所示,四边形ABDC,BD⊥CD,BD=6,CD=8,AB=24,AC=26,求该四边形的面积.30.已知a,b,c为三角形的三边,若a=2,b=3,当c为何值时,△ABC是:(1)锐角三角形?(2)直角三角形?(3)钝角三角形?31.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,请你利用图1或图2证明勾股定理(其中∠DAB=90°)求证:a2+b2=c2.参考答案1.解:当∠C为顶角时,则∠A=(180°﹣50°)=65°;当∠A为顶角时,则∠A=180°﹣2∠C=80°;当∠A、∠C为底角时,则∠C=∠A=50°;∴∠A的度数不可能是45°,故选:D.2.解:∵AB=AC,∴△ABC是等腰三角形.∵∠A=36°,∴∠C=∠ABC=72°.∵BD平分∠ABC交AC于D,∴∠ABD=∠DBC=36°,∵∠A=∠ABD=36°,∴△ABD是等腰三角形.∵∠BDC=∠A+∠ABD=72°=∠C,∴△BDC是等腰三角形.∵∠EBC=∠ECB=36°,∴△BCE是等腰三角形,∵∠DEC=∠EBC+∠ECB=72°=∠EDC,∴△CDE是等腰三角形,∴共有5个等腰三角形.故选:C.3.解:当AB为底时,作AB的垂直平分线,可找出格点C的个数有5个,当AB为腰时,分别以A、B点为顶点,以AB为半径作弧,可找出格点C的个数有3个;∴这样的顶点C有8个.故选:A.4.解:根据题意,一个等腰三角形的一个角等于80°,①当这个角是底角时,即该等腰三角形的底角的度数是80°,②当这个角80°是顶角,设等腰三角形的底角是x°,则2x+80°=180°,解可得,x=50°,即该等腰三角形的底角的度数是50°;故选:A.5.解:根据题意,①当AC+AC=15,解得AC=10,所以底边长=12﹣×10=7;②当AC+AC=12,解得AC=8,所以底边长=15﹣×8=11.所以底边长等于7或11.故选:B.6.解:有两种情况;(1)如图当△ABC是锐角三角形时,BD⊥AC于D,则∠ADB=90°,已知∠ABD=45°,∴∠A=90°﹣45°=45°,∵AB=AC,∴∠ABC=∠C=×(180°﹣45°)=67.5°;(2)如图,当△EFG是钝角三角形时,FH⊥EG于H,则∠FHE=90°,已知∠HFE=45°,∴∠HEF=90°﹣45°=45°,∴∠FEG=180°﹣45°=135°,∵EF=EG,∴∠EFG=∠G=×(180°﹣135°)=22.5°,综合(1)(2)得:等腰三角形的底角是67.5°或22.5°.故选:D.7.解:∵直线a∥b,∴∠3=∠1=55°,又∵∠4=90°,∠2+∠3+∠4=180°,∴∠2=180°﹣55°﹣90°=35°.故选:A.8.解:A、应为“直角三角形中,已知两直角边的边长为3和4,则斜边的边长为5”,故不符合题意;B、应为“三角形是直角三角形,三角形的直角边分别为b,c,斜边为a,则满足a2=b2+c2,即a2﹣b2=c2”,故不符合题意;C、比如:边长分别为3,4,5,有32+42=25=52,能构成直角三角形,故不符合题意;D、根据三角形内角和定理可求出三个角分别为15°,75°,90°,因而是直角三角形,故符合题意.故选:D.9.解:如图,在Rt△ABC中,∠C=90°,CB=5,∠A=30°∴AB=10,∴大树的高度为10+5=15m.故选:B.10.解:①3、4、5属于勾股数;②、、不属于勾股数;③0.3、0.4、0.5不属于勾股数;④、、不属于勾股数;∴勾股数只有1组.故选:D.11.解:如图,过C作CD⊥AB于D,∵AB=6,AC=8,∴CD≤8,∴当CD与AC重合时,CD最长为8,此时,∠BAC=90°,△ABC的面积最大,∴BC==10,∴四个三角形中面积最大的三角形的三边长分别为6,8,10,故选:C.12.解:由勾股定理得,正方形的对角线的长==,∴数轴上点A所表示的数﹣1,故选:A.13.解:由图可得,A与B的面积的和是E的面积;C与D的面积的和是F的面积;而E,F的面积的和是G的面积.即A、B、C、D、E、F、G的面积之和为3个G的面积.∵G的面积是62=36cm2,∴A、B、C、D、E、F、G的面积之和为36×3=108cm2.故选:D.14.解:在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角.A、不确定c是斜边,故本命题错误,即A选项错误;B、不确定第三边是否是斜边,故本命题错误,即B选项错误;C、∠C=90°,所以其对边为斜边,故本命题正确,即C选项正确;D、∠B=90°,所以斜边为b,所以a2+c2=b2,故本命题错误,即D选项错误;故选:C.15.解:由a2c2﹣b2c2=a4﹣b4,得a4+b2c2﹣a2c2﹣b4=(a4﹣b4)+(b2c2﹣a2c2)=(a2+b2)(a2﹣b2)﹣c2(a2﹣b2)=(a2﹣b2)(a2+b2﹣c2)=(a+b)(a﹣b)(a2+b2﹣c2)=0,∵a+b>0,∴a﹣b=0或a2+b2﹣c2=0,即a=b或a2+b2=c2,则△ABC为等腰三角形或直角三角形.故选:D.16.解:①斜边和一直角边对应相等的两个直角三角形全等,正确;②有两边和它们的夹角对应相等的两个直角三角形全等,正确;③一锐角和斜边对应相等的两个直角三角形全等,正确;④两个锐角对应相等的两个直角三角形全等,错误;故选:C.17.解:用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应先假设两个锐角都大于45°.故选:A.18.解:由(a﹣3)2+|b﹣6|=0,得a﹣3=0,b﹣6=0.则以a、b为边长的等腰三角形的腰长为6,底边长为3.∴周长为6+6+3=15,故答案为:15.19.解:如图,∵圆桶放置的角度与水平线的夹角为45°,∠BCA=90°,∴依题意得△ABC是一个斜边为40cm的等腰直角三角形,∴此三角形中斜边上的高应该为20cm,∴水深至少应为55﹣20=35cm.20.解:当AP⊥ON时,∠APO=90°,则∠A=50°,当P A⊥OA时,∠A=90°,即当△AOP为直角三角形时,∠A=50或90°.故答案为:50或90.21.解:①∵∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,∠C=90°,则该三角形是直角三角形;②∠A:∠B:∠C=1:2:3,∠A+∠B+∠C=180°,∴∠C=90°,则该三角形是直角三角形;③∠A=90°﹣∠B,则∠A+∠B=90°,∠C=90°.则该三角形是直角三角形;④∠A=∠B=∠C,则该三角形是等边三角形.故能确定△ABC是直角三角形的条件有①②③.22.解:∵AB=AC,∴∠B=∠C,①当BD=CM=6厘米,BM=CN时,△DBM≌△MCN,∴BM=CN=2厘米,t==1,∴点N运动的速度为2厘米/秒.②当BD=CN,BM=CM时,△DBM≌△NCM,∴BM=CM=4厘米,t==2,CN=BD=6厘米,∴点N的速度为:=3厘米/秒.故点N的速度为2或3厘米/秒.故答案为:2或3.23.解:(1)当边长为4cm的边为斜边时,该直角三角形中斜边长为4cm;(2)当边长为4cm的边为直角边时,则根据勾股定理得斜边长为cm=5cm,故该直角三角形斜边长为4cm或5cm,故答案为4cm或5cm.24.解:根据勾股定理,另一直角边==3,∴3+4=7,故应填7.25.解:(1)设底边的长为x,则腰长为x,依题意得2×x+x=13,解得x=5,∴底边的长为5;(2)分三种情况讨论:①若两腰长分别为3x和2x+5,则3x=2x+5,解得x=5,∴腰长3x=15(不合题意);②若腰长为3x,底边长为2x+5,则6x+2x+5=13,解得x=1,3x=3,2x+5=7(不合题意);③若底边长为3x,腰长为2x+5,则3x+2(2x+5)=13,解得x=,∴底边长=3x=;综上所述,底边的长为.26.解:(1)∵AB=BC=CD=DE,∴∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,根据三角形的外角性质,可得∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED =∠EDM,设∠A=x°,则∠CBD=∠CDB=2x°,∠DCE=∠CED=3x°,∠EDM=4x°又∵∠EDM=88°,∴4x=88,x=22即∠A=22°;(2)①由题意可知,△ABB1,△BB1B2,△B1B2B3都是等腰三角形,第一个等腰三角形△ABB1的底角为11°,由三角形外角的性质可以得到,第二个等腰三角形△BB1B2的底角为22°,第三个等腰三角形△B1B2B3的底角为33°,于是可得,第n个等腰三角形的底角为(11n)°,而等腰三角形的底角小于90°,所以当n=8时,底角为88°;当n=9时,底角为99°,所以n=8以后就不能再画出符合要求的线段了,故n=8;②设∠MAN=n°,同理可知:第一个等腰三角形的底角为n°,第二个等腰三角形的底角为2n°,第三个等腰三角形的底角为3n°,于是可得,第6个等腰三角形的底角为6n°,第7个等腰三角形的底角为7n°,而等腰三角形的底角小于90°,则,∴≤n<15,即∠MAN的度数范围是:≤n<15.27.解:(1)有5个等腰三角形,EF与BE、CF间有怎样的关系是:EF=BE+CF=2BE=2CF,理由如下:∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,又∠B、∠C的平分线交于O点,∴∠EBO=∠OBC,∠FCO=∠OCB,∴∠EOB=∠OBE,∠FCO=∠FOC,∴OE=BE,OF=CF,∴EF=OE+OF=BE+CF,又AB=AC,∴∠ABC=∠ACB,∴∠EOB=∠OBE=∠FCO=∠FOC,∴EF=BE+CF=2BE=2CF;(2)有2个等腰三角形分别是:等腰△OBE和等腰△OCF;第一问中的EF与BE,CF的关系是:EF=BE+CF.(3)有,还是有2个等腰三角形,△EBO,△OCF,EF=BE﹣CF,理由如下:∵EO∥BC,∴∠EOB=∠OBC,∠EOC=∠OCG(G是BC延长线上的一点),又∵OB,OC分别是∠ABC与∠ACG的角平分线,∴∠EBO=∠OBC,∠ACO=∠OCD,∴∠EOB=∠EBO,∴BE=OE,∠FCO=∠FOC,∴CF=FO,又∵EO=EF+FO,∴EF=BE﹣CF.28.解:(1)∵CD⊥AB,∴∠ADC=90°,∴AD===;(2)证明:由上题知AD=,同理可得BD=,∴AB=AD+BD=5,∵32+42=52,∴BC2+AC2=AB2,∴△ABC是直角三角形.29.解:如图,连接BC,∵BD⊥DC,∴∠D=90°,∴△DBC为直角三角形,∵BC2=BD2+CD2=82+62=102,∴BC=10,在△ABC中,∵AB2+BC2=100+576=676,AC2=262=676,∴AB2+BC2=AC2,∴△ABC为直角三角形,且∠ABC=90°,∴S四边形ABDC=S△ABC﹣S△BCD=×10×24﹣×6×8=96.30.解:(1)分三种情况讨论:①a<b<c,②a<c<b,③c<a<b,①a<b<c,当a2+b2>c2时,△ABC是锐角三角形,即c2<22+32=13,∴c<,∵a<b<c∴3<c<.∴当3<c<时,△ABC是锐角三角形,②a<c<b当a2+c2>b2时,△ABC是锐角三角形,即c2>b2﹣a2=32﹣22=5,∴c>,∵a<c<b,∴<c<3,∴当<c<3,时,△ABC是锐角三角形,③c<a<b当c2+a2>b2时,△ABC是锐角三角形,即c2>b2﹣a2=32﹣22=5,∴c>,∵c<a<b,∴<c<2(舍去),∴当<c<3,或3<c<时,△ABC是锐角三角形;(2)分三种情况讨论:①a<b<c,②a<c<b,③c<a<b,①a<b<c当a2+b2=c2时,△ABC是直角三角形,即c2=22+32=13,∴c=,∴当c=时,△ABC是直角三角形,②a<c<b当a2+c2=b2时,△ABC是直角三角形,即c2=b2﹣a2=32﹣22=5,∴c=,∴当c=时,△ABC是直角三角形,③c<a<b当c2+a2=b2时,△ABC是直角三角形,即c2=b2﹣a2=32﹣22=5,∴c=,∴当c=时,△ABC是直角三角形,∴当c=或时,△ABC是直角三角形;(3)分三种情况讨论:①a<b<c,②a<c<b,③c<a<b,①a<b<c,当a2+b2<c2时,△ABC是钝角三角形,即c2>22+32=13,∴c>,∵a<b<c∴c>.∴当c>时,△ABC是钝角三角形,②a<c<b当a2+c2<b2时,△ABC是钝角三角形,即c2<b2﹣a2=32﹣22=5,∴c<,∵a<c<b,∴2<c<,∴当2<c<,时,△ABC是钝角三角形,③c<a<b当c2+a2<b2时,△ABC是钝角三角形,即c2<b2﹣a2=32﹣22=5,∴c<,∵c<a<b,∴0<c<2,∴当0<c<2时,△ABC是钝角三角形,∴当c>或当2<a<或0<c<2时,△ABC是钝角三角形.31.解:利用图1进行证明:证明:∵∠DAB=90°,点C,A,E在一条直线上,BC∥DE,则CE=a+b,∵S四边形BCED=S△ABC+S△ABD+S△AED=ab+c2+ab,又∵S四边形BCED=(a+b)2,∴ab+c2+ab=(a+b)2,∴a2+b2=c2.利用图2进行证明:证明:如图,连接DB,过点D作BC边上的高DF,则DF=EC=b﹣a,∵S四边形ADCB =S△ACD+S△ABC=b2+ab.又∵S四边形ADCB=S△ADB+S△DCB=c2+a(b﹣a),∴b2+ab=c2+a(b﹣a),∴a2+b2=c2.。

2024年浙教版八年级上册数学期末培优复习第7招三角形中的等面积法

2024年浙教版八年级上册数学期末培优复习第7招三角形中的等面积法
∴∠ BEF =∠ EFB . ∴ BE = BF =5.
由【问题情境】中的结论可得 PG + PH = EQ .
∴ PG + PH =4.∴ PG + PH 的值为4.
返回
1
2
3
4
⊥ BE , PH ⊥ BC ,垂足分别为 G , H ,若 AD =8, CF =
3,求 PG + PH 的值.
返回
1
2
3
4
分类训练
【解】如图②,过点 E 作 EQ ⊥ BC ,垂足为 Q .
∵四边形 ABCD 是长方形,
∴ AD = BC ,∠ C =90°, AD ∥ BC .
∵ AD =8, CF =3,
又∵ AD ⊥ BC ,
∴3×4÷2=5× AD ÷2,
∴ AD =2.4.
返回
1
2
3
4
分类训练
2. 如图,正方形网格的每个小方格边长均为1,△ ABC 的顶
点在格点上.请求出 AC 边上的高线的长度 h .
返回
1
2
3
4
分类训练
【解】根据题意可得 AC = + =5,




S△ ABC = ×4×3-1- ×1×3- ×1×2= .利用等面






积法得 ×5× h = ,解得 h =1.


返回
1
2
3
4
分类训练
3. 如图,有一块直角三角形纸片,两直角边 AC =6 cm,
BC =8 cm,现将直角边 AC 沿直线 AD 折叠,使它落在斜
边 AB 上,且与 AE 重合,求 CD 的长.
【解】在Rt△ ABC 中, AC =6 cm, BC =8 cm,

【浙教版】八年级数学上第1章《 三角形的初步知识》期末复习(含答案)

【浙教版】八年级数学上第1章《 三角形的初步知识》期末复习(含答案)

期末复习(一) 三角形的初步知识01 知识结构三角形的初步知识⎩⎪⎪⎪⎨⎪⎪⎪⎧三角形的概念⎩⎪⎨⎪⎧三边关系内角和定理及其推论三角形的中线、高线、角平分线定义与命题⎩⎪⎨⎪⎧命题的组成命题的分类全等图形→全等三角形⎩⎪⎨⎪⎧全等三角形的性质全等三角形的判定角平分线的性质定理线段垂直平分线的性质定理尺规作图02 重难点突破重难点1 三角形的三边关系【例1】 (萧山区期中)已知等腰三角形两条边的长分别是3和6,则它的周长是( B ) A.12 B.15 C.12或15 D.15或18 【方法归纳】 判断给定的三条线段能否组成三角形,只需判断两条较短线段的和是否大于最长线段.在已知等腰三角形的两边长求其周长时,需注意:(1)一定要利用分类讨论思想列举出三角形的三边长;(2)一定要利用三角形的三边关系检验列举出的三边长是否能围成三角形.1.(海宁新仓中学期中)两根木棒的长分别是5 cm 和7 cm ,要选择第三根木棒,将它们首尾相接钉成一个三角形,则第三根木棒长的取值可以是( B )A.2 cmB.4 cmC.12 cmD.13 cm重难点2 三角形形内角和定理及其推论 【例2】 如图,在△ABC 中,AB =AC ,∠A =30°,E 为BC 延长线上一点,∠ABC 与∠ACE 的平分线相交于点D ,则∠D 等于( A)A.15°B.17.5°C.20°D.22.5°【方法归纳】在计算与三角形有关的角度时,首先应判断出要求角与所在三角形中已知角之间的关系,再合理选用三角形的内角和定理或外角的性质求角度,同时在解题时要注意角平分线的定义.平行线的性质等知识的运用.2.如图,AB∥CD,∠B=68°,∠E=20°,则∠D的度数为( C )A.28°B.38°C.48°D.88°重难点3三角形的三条重要线段【例3】如图,AD是△ABC的中线,点E为AD的中点,点F为BE的中点,S△ABC=41,则S△BFC=41 4.【思路点拨】根据三角形面积公式得S△BFC=S△EFC,S△AEC=S△DEC,S△AEB=S△DEB,S△ABD=S△ADC,从而S△BFC=14S△ABC.3.在△ABC中,AC=5 cm,AD是△ABC中线,若△ABD的周长比△ADC的周长大2 cm,则BA=7_cm.4.(1)如图所示,在△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于点D,DF⊥CE于点F,求∠CDF的度数;(2)在(1)中,若∠A=α,∠B=β(α≠β),其他条件不变,求∠CDF的度数.(用含α和β的代数式表示)解:(1)根据题意,在△ABC中,∠A=40°,∠B=72°,所以∠ACB=68°.因为CE平分∠ACB,所以∠ACE=34°.所以∠CED=∠A+∠ACE=74°.因为CD⊥AB,DF⊥CE,且∠ECD为公共角,所以∠CDF=∠CED=74°.(2)由(1)可知,∠CDF =∠CED =∠A +∠ACE ,∠ACE =180°-α-β2.所以∠CDF =180°+α-β2.重难点4 线段垂直平分线与角平分线的性质【例4】 如图,在△ABC 中,∠ACB =90°,BE 平分∠ABC ,交AC 于点E ,DE 垂直平分AB 于点D ,求证:BE +DE =AC .证明:∵∠ACB =90°, ∴AC ⊥BC .∵ED ⊥AB ,BE 平分 ∠ABC , ∴CE =DE ,∵DE 垂直平分AB , ∴AE =BE .∵AC =AE +CE ,∴BE +DE =AC . 【方法归纳】 在利用线段垂直平分线的性质求线段长度时,通常是根据线段垂直平分线的性质得到线段相等,再根据相等线段之间的转换,得到所求线段的长.5.如图,在△ABC 中,∠BAC >90°,AB 的垂直平分线MP 交BC 于点P ,AC 的垂直平分线NQ 交BC 于点Q ,连结AP ,AQ ,若△APQ 的周长为20 cm ,则BC 为20cm .第5题图 第6题图6.如图,△ABC 的三条角平分线交于O 点,已知△ABC 的周长为20,OD ⊥AB ,OD =5,则△ABC 的面积为50.重难点5 全等三角形的性质与判定【例5】 已知△ABN 和△ACM 的位置如图所示,AB =AC ,AD =AE ,∠1=∠2.(1)求证:BD =CE ; (2)求证:∠M =∠N .【思路点拨】 (1)要证BD =CE ,可通过转化证△ABD ≌△ACE ,根据“SAS ”得证;(2)要证∠M =∠N ,可通过转化证△ACM ≌△ABN ,由(1)可知∠C =∠B .因为∠2=∠1,所以∠CAM =∠BAN .再结合AB =AC ,即可根据“ASA ”得证.证明:(1)在△ABD 和△ACE 中,⎩⎨⎧AB =AC ,∠1=∠2,AD =AE ,∴△ABD ≌△ACE (SAS ). ∴BD =CE .(2)∵∠1=∠2,∴∠1+∠DAE =∠2+∠DAE , 即∠BAN =∠CAM .由(1),得△ABD ≌△ACE , ∴∠B =∠C .在△ACM 和△ABN 中,⎩⎨⎧∠C =∠B ,AC =AB ,∠CAM =∠BAM ,∴△ACM ≌△ABN (ASA ). ∴∠M =∠N .【方法归纳】 三角形全等的证明思路:已知两边⎩⎪⎨⎪⎧找夹角→SAS找另一边→SSS已知一边和一角 ⎩⎪⎨⎪⎧边为角的对边→找任一角→AAS 边为角的邻边⎩⎪⎨⎪⎧找夹角的另一边→SAS找夹边的另一角→ASA找边的对角→AAS已知两角⎩⎪⎨⎪⎧找夹边→ASA找任一角的对边→AAS7.(成都中考)如图,△ABC ≌△A ′B ′C ′,其中∠A =36°,∠C =24°,则∠B =120°.第7题图第8题图8.(杭州大江东区期中)如图,已知AD是△ABC的角平分线,在不添加任何辅助线的前提下,要使△AED≌△AFD,需添加一个条件是:AE=AF或∠EDA=∠FDA或∠AED=∠AF D.03备考集训一.选择题(每小题3分,共30分)1.下列长度的三条线段,能组成三角形的是( C )A.1,2,4B.4,5,9C.4,6,8D.5,5,112.(嵊州校级期中)下列语句不是命题的是( B )A.两直线平行,同位角相等B.作直线AB垂直于直线CDC.若|a|=|b|,则a2=b2D.同角的补角相等3.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是( D )A.AB=ACB.∠BAE=∠CADC.BE=DCD.AD=DE第3题图第4题图4.(杭州大江东区期中)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是( C )A.BC=EC,∠B=∠EB.BC=EC,AC=DCC.BC=EC,∠A=∠DD.∠B=∠E,∠A=∠D5.如图,将两根钢条AA′.BB′的中点O连在一起,使AA′.BB′可以绕着点O自由转动,就做成了一个测量工件,由三角形全等得出A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是( A )A.边角边B.角边角C.边边边D.角角边第5题图第6题图6.如图,在△ABC中,AB=AC,DE是AB边的垂直平分线,分别交A B.AC于点D.E,△BEC 的周长是14 cm,BC=5 cm,则AB的长是( B )A.14 cmB.9 cmC.19 cmD.12 cm7.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是( A )A.3B.4C.6D.5第7题图第8题图8.如图所示,在△ABC中,∠BAC∶∠ABC∶∠BCA=3∶4∶5,BD,CE分别是边AC,AB 上的高,BD,CE相交于点H,则∠BHC的度数为( B )A.120°B.135°C.125°D.130°9.(嵊州期末)如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有( C )A.1个B.2个C.3个D.4个第9题图第10题图10.(杭州大江东区期中)如图,四边形ABCD是正方形,直线a,b,c分别通过A.D.C三点,且a∥b∥c.若a与b之间的距离是5,b与c之间的距离是7,则正方形ABCD的面积是( B )A.70B.74C.144D.148二.填空题(每小题4分,共24分)11.如图,在△ABC中,∠A=58°,∠B=63°,则外角∠ACD=121度.第11题图第12题图12.如图,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为3.13.如图,已知△ABC的周长为27 cm,AC=9 cm,BC边上中线AD=6 cm,△ABD周长为19 cm,AB=8_cm.14.(杭州萧山区月考)已知三角形的两条边长分别是3 cm和4 cm,一个内角为40°,那么满足这一条件且彼此不全等的三角形共有4个.15.当三角形中一个内角是另一个内角的3倍时,我们称此三角形为“梦想三角形”.如果一个“梦想三角形”有一个角为108°,那么这个“梦想三角形”的最小内角的度数为18°或36°.16.如图,在四边形ABCD中,给出了下列三个论断:①对角线AC平分∠BAD;②CD=BC;③∠D+∠B=180°.在上述三个论断中,若以其中两个论断作为条件,另外一个论断作为结论,则可以得出3个正确的命题.三.解答题(共46分)17.(10分)如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE =40°,求∠ADB的度数.解:∵AD是△ABC的角平分线,∠BAC=60°,∴∠DAC=∠BAD=30°.∵CE是△ABC的高,∠BCE=40°,∴∠B=50°,∴∠ADB=180°-∠B-∠BAD=180°-50°-30°=100°.18.(12分)如图,AD是△ABC的边BC上的中线,AB=BC,且AD把△ABC的周长分成3和4的两部分,求AC边的长.解:设AB=BC=2x,∵AD是△ABC的边BC上的中线,∴BD=CD=x.若△ABD的周长是3+AD,则2x+x=3,解得x =1.∴AC =4-1=3.若△ABD 的周长是4+AD ,则2x +x =4, 解得x =43.∴AC =3-43=53.综上,AC 边的长为3或53.19.(12分)如图,在△ABC 中,AB =CB ,∠ABC =90°,点D 为AB 延长线上一点,点E 在BC 边上,且BE =BD ,连结AE .DE .DC .(1)求证:△ABE ≌△CBD ;(2)若∠CAE =30°,求∠BDC 的度数.解:(1)证明:在△ABE 和△CBD 中,⎩⎨⎧AB =CB ,∠ABE =∠CBD =90°,BE =BD ,∴△ABE ≌△CBD (SAS ).(2)∵在△ABC 中,AB =CB ,∠ABC =90°, ∴∠BAC =∠ACB =45°. ∵△ABE ≌△CBD , ∴∠AEB =∠BDC .∵∠AEB 为△AEC 的外角,∴∠AEB =∠ACB +∠CAE =45°+30°=75°. ∴∠BDC =75°.20.(12分)(杭州青春中学期末)如图1,AB =4 cm ,AC ⊥AB ,BD ⊥AB ,AC =BD =3 cm .点P 在线段AB 上以1 cm /s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.它们运动的时间为t (s ).(1)若点Q 的运动速度与点P 的运动速度相等,当t =1时,△ACP 与△BPQ 是否全等,请说明理由,并判断此时线段PC 和线段PQ 的位置关系;(2)如图2,将图1中的“AC ⊥AB ,BD ⊥AB ”改为“∠CAB =∠DBA =60°”,其他条件不变.设点Q 的运动速度为x cm /s ,是否存在实数x ,使得△ACP 与△BPQ 全等?若存在,求出相应的x .t 的值;若不存在,请说明理由.解:(1)当t =1时,AP =BQ =1,BP =AC =3,在△ACP 和△BPQ 中,⎩⎨⎧AP =BQ ,∠A =∠B =90°,AC =BP ,∴△ACP ≌△BPQ (SAS ). ∴∠ACP =∠BPQ .∴∠APC +∠BPQ =∠APC +∠ACP =90°. ∴∠CPQ =90°, 即线段PC 与线段PQ 垂直. (2)①若△ACP ≌△BPQ , 则AC =BP ,AP =BQ ,⎩⎨⎧3=4-t ,t =xt ,解得⎩⎪⎨⎪⎧t =1,x =1. ②若△ACP ≌△BQP ,则AC =BQ ,AP =BP , ⎩⎨⎧3=xt ,t =4-t ,解得⎩⎪⎨⎪⎧t =2,x =32.综上所述,存在⎩⎪⎨⎪⎧t =1,x =1或⎩⎪⎨⎪⎧t =2,x =32,使得△ACP 与△BPQ 全等.。

【期末复习提升卷】浙教版2022-2023学年八上数学第1章 三角形的初步知识 测试卷2(解析版)

【期末复习提升卷】浙教版2022-2023学年八上数学第1章三角形的初步知识测试卷2(解析版)一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1.下列各组图形中,表示AD是△ABC中BC边的高的图形为()A.B.C.D.【答案】B【解析】A、AD不是△ABC的高,故A不符合题意;B、AD是△ABC的BC边上的高,故B符合题意;C、AD不是△ABC的高,故C不符合题意;D、AD不是△ABC的高,故D不符合题意;故答案为:B2.在△ABC中,∠B=60°,AD是△ABC的角平分线,∠DAC=31°,则∠C的度数为() A.62°B.60°C.92°D.58°【答案】D【解析】如图,∵AD是△ABC的角平分线,∴∠CAB=2∠DAC=2×31°=62°,∴∠C=180°-∠CAB-∠B=180°-62°-60°=58°.故答案为:D3.如图,在Rt△ABC中,∠ACB=90°,若△ACD的周长为50,DE为AB的垂直平分线,则AC+BC =()A.25cm B.45cm C.50cm D.55cm【答案】C【解析】∵DE为AB的垂直平分线,∴AD=BD,∴AC+CD+AD=AC+CD+BD=AC+BC=50.故答案为:C.4.△ABC的三条边分别为a,b,c,下列条件不能判断△ABC是直角三角形的是()A.b2=(a+c)(a−c)B.∠A=∠B+∠CC.∠A:∠B:∠C=3:4:5D.a=6,b=8,c=10【答案】C【解析】A.∵b2=(a+c)(a−c),∴b2=a2−c2,∴c2+b2=a2,∴此三角形是直角三角形,故本选项不符合题意;B.∵∠A+∠B+∠C=180°,∠A=∠B+∠C,∴∠A=90°,∴此三角形是直角三角形,故本选项不符合题意;C.设∠A=3x,则∠B=4x,∠C=5x,∵∠A+∠B+∠C=180°,∴3x+4x+5x=180°,解得x=15°,∴∠C=5×15°=75°,∴此三角形不是直角三角形,故本选项符合题意;D.∵62+82=102,∴此三角形是直角三角形,故本选项不符合题意;故答案为:C.5.如图,点A,C,D,E在Rt△MON的边上,∠MON=90°,AE⊥AB且AE=AB,BC⊥CD且BC=CD,BH⊥ON于点H,DF⊥ON于点F,OM=12,OE=6,BH=3,DF=4,FN=8,图中阴影部分的面积为()A.30B.50C.66D.80【答案】B【解析】∵∠EAO+∠BAH=90°,∠EAO+∠AEO=90°,∴∠BAH=∠AEO,∵在△AEO和△BAH中,{∠AEO=∠BAH∠O=∠BHA=90°AE=AB,∴△AEO≌△BAH(AAS),同理△BCH≌△CDF(AAS),∴AO=BG=3,AH=EO=6,CH=DF=4,BH=CF=3,∵梯形DEOF的面积= 12(EF+DH)•FH=80,S△AEO=S△ABH= 12AF•AE=9,S△BCH=S△CDF= 12CH•DH=6,∴图中实线所围成的图形的面积S=80-2×9-2×6=50,故答案为:B.6.如图,AD是△ABC的外角平分线,下列一定结论正确的是()A.AD+BC=AB+CD,B.AB+AC=DB+DC,C.AD+BC<AB+CD,D.AB+AC<DB+DC 【答案】D【解析】在BA的延长线上取点E,使AE=AC,连接ED,∵AD 是△ABC 的外角平分线, ∴∠EAD=∠CAD ,在△ACD 和△AED 中,{AD =AD∠EAD =∠CAD AC =AE∴△ACD ≌△AED(SAS) ∴DE=DC ,在△EBD 中,BE <BD+DE , ∴AB+AC <DB+DC 故答案为:D.7.如图,已知△ABC 的周长是16,MB 和MC 分别平分∠ABC 和∠ACB ,过点M 作BC 的垂线交BC 于点D ,且MD =4,则△ABC 的面积是( )A .42B .32C .48D .64【答案】B【解析】连接AM ,过M 作ME ⊥AB 于E ,MF ⊥AC 于F ,∵MB 和MC 分别平分∠ABC 和∠ACB ,MD ⊥BC ,MD =4, ∴ME =MD =4,MF =MD =4, ∵△ABC 的周长是16, ∴AB +BC +AC =16,∴△ABC 的面积S =S ΔAMC +S ΔBCM +S ΔABMS =12×AC ×MF +12×BC ×DM +12×AB ×ME S =12×AC ×4+12×BC ×4+12×AB ×4S =2(AC +BC +AB)S =2×16=32.故答案为:B.8.如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,过点O 作EF ∥BC 交AB 于E ,交AC于F ,过点O 作OD ⊥AC 于D .下列四个结论:①∠BOC =90°+12∠A ,②∠EBO =12∠AEF ,③∠DOC+∠OCB =90°,④设OD =m ,AE+AF =n ,则S △AEF =mn2.其中正确的结论有( )A .1个B .2个C .3个D .4个 【答案】D【解析】∵∠ABC 和∠ACB 的平分线相交于点O ,∴∠ABC=2∠OBC ,∠ACB=2∠OCB ,∠OBC=∠EBO ,∠DCO=∠OCB ,∵2∠OBC+2∠OCB=180°-∠A , ∴∠OBC+∠OCB=90°-12∠A ; ∵∠BOC=180°-(∠OBC+∠OCB )=180°-90°+12∠A=90°+12∠A ,故①正确; ∵EF ∥BC ,∴∠EOB=∠OBC=∠EBO ,∵∠AEF=∠EOB+∠EBO=2∠EBO∴∠EBO=12∠AEF ,故②正确;∵OD ⊥AC , ∴∠ODC=90°,∴∠DOC+∠DCO=90°, ∴∠DOC+∠OCB=90°,故③正确; 连接OA ,过点O 作OG ⊥AB 于点G ,∵OB ,OC 是△ABC 的角平分线, ∴OA 平分∠BAC , ∴OG=OD=m∴S S △AEF =S △AEO +S △AOF =12AE ·OG +12AF ·OD =12OD (AE +AF )=12mn ,故④正确;∴正确结论有4个. 故答案为:D. 9.如图,在△ABC 中,BD 、BE 分别是高和角平分线,点F 在CA 的延长线上,FH ⊥BE 交BD 于G ,交BC 于H ,下列结论:①∠DBE=∠F ;②2∠BEF=∠BAF+∠C ;③∠F= 12(∠BAC ﹣∠C );④∠BGH=∠ABE+∠C.其中正确的是( )A .①②③B .①③④C .①②④D .①②③④ 【答案】D【解析】①∵∠ADG=∠BGF=90°,∠AGD=∠BGH ,∴ ∠DBE=∠F ,符合题意;②∵∠BEF=∠C+∠EBC ,∠BAF=∠BEF+∠ABE ,∴∠BEF+∠BEF+∠ABE=∠C+∠EBC+∠BAF ,即2∠BEF+∠ABE=∠C+∠EBC+∠BAF ,∵∠ABE=∠CBE ,∴ 2∠BEF=∠BAF+∠C ,符合题意; ③ ∠ABD=90∘−∠BAC , ∠DBE=∠ABE−∠ABD=∠ABE−90∘+∠BAC=∠CBD−∠DBE−90∘+∠BAC , ∵∠CBD=90∘−∠C , ∴∠DBE=∠BAC−∠C−∠DBE , 由①得,∠DBE=∠F ,∴∠F=∠BAC−∠C−∠DBE , ∴∠F=12(∠BAC−∠C),符合题意;④∵∠AEB=∠EBC+∠C , ∵∠ABE=∠CBE , ∴∠AEB=∠ABE+∠C , ∵BD ⊥FC ,FH ⊥BE , ∴∠FGD=∠FEB , ∴∠BGH=∠ABE+∠C , 符合题意. 故答案为:D.10.如图,在△ABC 中,AD 是BC 边上的高,且∠ACB =∠BAD ,AE 平分∠CAD ,交BC 于点E ,过点E 作EF ∥AC ,分别交AB 、AD 于点F 、G 则下列结论:①∠BAC =90°;②∠AEF =∠BEF ;③∠BAE =∠BEA ;④∠B =2∠AEF ,其中正确的有( )A .①③④B .①②③C .①③D .①②③④ 【答案】A【解析】∵AD ⊥BC , ∴∠ADC=90°, ∴∠C+∠CAD=90°, ∵∠BAD=∠C ,∴∠BAD+∠CAD=90°, ∴∠CAB=90°,故①正确,∵∠BAE=∠BAD+∠DAE ,∠DAE=∠CAE ,∠BAD=∠C , ∴∠BAE=∠C+∠CAE=∠BEA ,故③正确, ∵EF ∥AC ,∴∠AEF=∠CAE , ∵∠CAD=2∠CAE , ∴∠CAD=2∠AEF , ∵∠CAD+∠BAD=90°,∠BAD+∠B=90°, ∴∠B=∠CAD=2∠AEF ,故④正确, 无法判定EA=EC ,故②错误. 故答案为:A.二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.直线l 1、l 2、l 3表示三条两两相互交叉的公路,现在拟建一个货物中转站,要求它到三条公路的距离都相等,则可供选择的地址有 处.【答案】4【解析】∵中转站要到三条公路的距离都相等,∴货物中转站必须是三条相交直线所组成的三角形的内角或外角平分线的交点, 而外角平分线有3个交点,内角平分线有一个交点, ∴货物中转站可以供选择的地址有4个. 故答案为:4.12.△ABC 为等腰直角三角形,若A (−4,0),C (0,2),则点B 的坐标为 .【答案】(2,−2)【解析】如图中,过点B 作BT ⊥y 轴于点T .∵A (−4,0),C (0,2), ∴OA=4,OC=2,∵∠AOC=∠ACB=∠CTB=90°, ∴∠ACO+∠BCT=90°,∠BCT+∠CBT=90°, ∴∠ACO=∠CBT ,在△AOC 和△CTB 中, {∠AOC =∠CTB ∠ACO =∠CBT AC =CB,∴△AOC ≅△CTB (AAS ), ∴AO=CT=4,BT=CO=2, ∴OT=CT −CO=2, ∴B (2,−2). 故答案为:(2,−2).13.如图,∠DAB=∠EAC=65°,AB=AD,AC=AE,BE 和CD 相交于点O,AB 和CD 相交于P,AC 和BE 相交于F,则∠DOE 的度数是 .【答案】115°【解析】∵∠DAB=∠EAC=65°, ∴∠DAB+∠BAC=∠BAC+∠EAC , ∴∠DAC=∠EAB ,在△ADC 和△AEB 中,{AD =AB∠DAC =∠EAB AC =AE,∴△ADC ≌△AEB(SAS), ∴∠E=∠ACD ,又∵∠AFE=∠OFC , ∴∠EAF=∠COF=65°,∴∠DOE=115°. 故答案为:115°. 14.如图,△ABC 的三边AB 、BC 、CA 的长分别为30、40、15,点P 是三条角平分线的交点,将△ABC 分成三个三角形,则 S ΔAPB ︰ S ΔBPC ︰ S ΔCPA 等于【答案】6:8:3【解析】过点P 作PE ⊥AB 于点E ,PF ⊥BC 于点F ,PG ⊥AC 于点G ,∵ 点P 是三条角平分线的交点, ∴PE=PG=PF ;S △APB =12AB ·PE ,S △BPC =12BC ·PF ,S △CPA =12AC ·PG ∴S △APB :S △BPC :S △CPA =AB :BC :AC=30:40:15=6:8:3. 故答案为:6:8:3.15.如图,△ABC 的面积为18,BD=2DC ,AE=2EC ,那么阴影部分的面积是 。

2021-2022学年浙教版八年级数学上册《第1章三角形的初步认识》期末综合复习训练1(附答案)

2021-2022学年浙教版八年级数学上册《第1章三角形的初步认识》期末综合复习训练1(附答案)1.下列各图形中,具有稳定性的是()A.B.C.D.2.下列长度的三条线段能组成三角形的是()A.1,2,1B.2,3,6C.6,8,11D.1.5,2.5,4 3.在△ABC中,若∠A+∠B﹣∠C=0,则△ABC是()A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形4.一副三角板如图方式摆放,BM平分∠ABD,DM平分∠BDC,则∠BMD的度数为()A.102°B.107.5°C.112.5°D.115°5.如图,△ABC中,点F在边AB上,点D为BC的中点,连接AD、CF相交于点E,若S△AEC=6,S△DEC=2,则S四边形BDEF=()A.B.6C.D.6.如图,△ABC的BC边上的高是()A.BE B.AF C.CD D.CF7.如图,△ABD≌△EBC,AB=3cm,AC=8cm,则DE的长为()A.5cm B.3cm C.2cm D.1cm8.如图,已知∠ABC=∠BAD,以下条件不能证明△ABC≌△BAD的是()A.AC=BD B.∠C=∠D C.∠CAB=∠DBA D.BC=AD9.如图△ABC中,AB=21,AC=20,AD为中线,则△ABD与△ACD的周长之差=.10.已知a、b、c为三角形三边的长,化简:|a﹣b﹣c|+|b﹣c﹣a|=.11.如图,将一副三角板如图摆放,则图中∠1的度数是度.12.如图,在由6个相同的小正方形拼成的网格中,∠1+∠2=°.13.如图,△ABC≌△ADE,∠DAC=80°,∠BAE=120°,BC,DE相交于点F,则∠DFB的度数是.14.如图,在△ABC与△BAD中,要证明△ABC≌△BAD,(1)若∠ABD=∠CAB,若以“SAS”为依据,还需添加的条件是;(2)若∠ABD=∠CAB,若以“ASA”为依据,还需添加的条件是;(3)若∠ABD=∠CAB,若以“AAS”为依据,还需添加的条件是;(4)若∠ADB=∠BCA=90°,若以“HL”为依据,还需添加的条件是(填一个即可).15.如图,点E、F都在线段AB上,分别过点A、B作AB的垂线AD、BC,连接DE、DF、CE、CF,DF交CE于点G,已知AD=BE=7.5,AE=BF=CB=2.5.如果△DEG的面积为S1,△CFG的面积为S2,则S1﹣S2=.16.如图,在△ABC中,∠A=θ,∠ABC和∠ACD的平分线交于点A1,得∠A1,∠A1BC 和∠A1CD的平分线交于点A2,得∠A2;…;∠A2019BC和∠A2019CD的平分线交于点A2020,则∠A2020=.(用θ表示)17.如图,在△ABC中,AD,AE分别是边BC上的中线和高.(1)若AE=5cm,S△ABC=30cm2.求DC的长.(2)若∠B=40°,∠C=50°,求∠DAE的大小.18.已知在△ABC中,∠B=2∠A,∠C﹣∠A=20°,求∠A的度数.19.如图,∠B=30°,∠C=50°,AD平分∠BAC,求∠DAC与∠ADB的度数.20.如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,若DE=10,BC=4,∠D=30°,∠C=70°.(1)求线段AE的长.(2)求∠DBC的度数.21.如图,已知△ABF≌△CDE.(1)若∠B=30°,∠DCF=40°,求∠EFC的度数;(2)求证:AE=CF.22.如图,点E在AB上,AC与DE相交于点F,△ABC≌△DEC,∠B=65°.(1)求∠DCA的度数;(2)若∠A=20°,求∠DF A的度数.参考答案1.解:只有三角形具有稳定性.观察选项,只有选项A符合题意.故选:A.2.解:A、1+1=2,不能组成三角形,故此选项不符合题意;B、2+3<6,不能组成三角形,故此选项不符合题意;C、6+8>11,能组成三角形,故此选项符合题意;D、1.5+2.5=4,不能组成三角形,故此选项不符合题意;故选:C.3.解:∴∠A+∠B﹣∠C=0,∴∠C=∠A+∠B,∵∠A+∠B+∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故选:A.4.解:∵BM平分∠ABD,DM平分∠BDC,∴∠MBD=,∠BDM=,∴∠BMD=180°﹣∠MBD﹣∠BDM=180°﹣30°﹣37.5°=112.5°,故选:C.5.解:连接BE,设S四边形BDEF=x,∵S△AEC=6,S△DEC=2,∴S△ACD=6+2=8,∵点D为BC的中点,∴S△ABD=S△ACD=8,S△BDE=S△DEC=2,∴S△AEF=8﹣x,∴S△ACF=8﹣x+6=14﹣x,S△BCF=x+2,S△BEF=x﹣2,∵==,∴=,整理得10x=44,解得x=,∴S四边形BDEF=,故选:D.6.解:△ABC的BC边上的高是AF,故选:B.7.解:∵AB=3cm,AC=8cm,∴BC=5cm,∵△ABD≌△EBC,∴BE=AB=3cm,CB=DB=5cm,∴DE=5﹣3=2(cm),故选:C.8.解:A、当添加AC=BD时,且∠ABC=∠BAD,AB=BA,由“SSA”不能证得△ABC ≌△BAD,故本选项符合题意;B、当添加∠C=∠D时,且∠ABC=∠BAD,AB=BA,由“AAS”能证得△ABC≌△BAD,故本选项不符合题意;C、当添加∠CAB=∠DBA时,且∠ABC=∠BAD,AB=BA,由“ASA”能证得△ABC≌△BAD,故本选项不符合题意;D、当添加BC=AD时,且∠ABC=∠BAD,AB=BA,由“SAS”能证得△ABC≌△BAD,故本选项不符合题意;故选:A.9.解:∵AD为△ABC的中线,∴BD=CD,∴△ABD的周长﹣△ACD的周长=(AB+BD+AD)﹣(AC+CD+AD)=AB﹣AC=1,故答案为:1.10.解:∵a、b、c为三角形三边的长,∴a﹣b﹣c<0,b﹣c﹣a<0,∴原式=b+c﹣a+a+c﹣b=2c.11.解:由三角形的外角性质控可知,∠2=30°+45°=75°,∴∠1=180°﹣∠2=105°,故答案为:105.12.解:如图所示:由图可知△ACE与△ABD与△ACF全等,∴AB=AC,∠1=∠CAE=∠ACF,∵∠CAE+∠DAC=90°,∴∠1+∠DAC=∠BAC=90°,∴△ABC是等腰直角三角形,∴∠2+∠ACF=45°,∴∠1+∠2=45°,故答案为:45.13.解:∵△ABC≌△ADE,∴∠B=∠D,∠BAC=∠DAE,∴∠BAD=∠CAE=×(120°﹣80°)=20°,∵∠B=∠D,∠BGA=∠DGF,∴∠DFB=∠BAD=20°,故答案为:20°.14.解:(1)若以“SAS”为依据,则需添加一个条件是AC=BD;(2)若以“ASA”为依据,则需添加一个条件是∠ABC=∠BAD;(3)若以“AAS”为依据,则需添加一个条件是∠C=∠D;(4)∠ADB=∠BCA=90°,若以“HL”为依据,还需添加的条件是AC=BD或BC=AD.故答案为:(1)AC=BD;(2)∠ABC=∠BAD;(3)∠C=∠D;(4)AC=BD或BC=AD.15.解:∵AD=BE=7.5,AE=BF=CB=2.5.∴AF=BE,∴AD=AF=7.5,在△ADE和△BEC中,,∴△ADE≌△BEC(SAS),∴S△DAE=S△CBE,∵S1=S△DAF﹣S△DAE﹣S△EFG,S2=S△CBE﹣S△EFG﹣S△CBF,∴S1﹣S2=S△DAE+S△CBF=+=.故答案为.16.解:∵A1B平分∠ABC,A1C平分∠ACD,∴∠A1BC=∠ABC,∠A1CA=∠ACD,∵∠A1CD=∠A1+∠A1BC,∴∠ACD=∠A1+∠ABC,∴∠A1=(∠ACD﹣∠ABC),∵∠A+∠ABC=∠ACD,∴∠A=∠ACD﹣∠ABC,∴∠A1=∠A,∠A2=∠A1=∠A,…,以此类推,∠A n=∠A,∴∠A2020=∠A=.故答案为:.17.解:(1)∵AD,AE分别是边BC上的中线和高,AE=5cm,S△ABC=30cm2,∴S△ADC=15cm2,∴×AE×CD=15,∴×5×CD=15,解得:CD=6(cm);(2)∵∠B=40°,∠C=50°,∴∠BAC=90°,又∵AD为中线,∴AD=BC=BD,∴∠ADE=2∠B=80°,又∵AE⊥BC,∴∠DAE=10°.18.解:∵∠C﹣∠A=20°,∴∠C=20°+∠A,∵∠A+∠B+∠C=180°,∠B=2∠A,∴∠A+2∠A+20°+∠A=180°,∴∠A=40°.19.解:∵∠B=30°,∠C=50°,∴∠BAC=180°﹣30°﹣50°=100°,∵AD平分∠BAC,∴∠DAC=∠BAC=50°,∴∠ADB=∠DAC+∠C=100°.20.解:(1)∵△ABC≌△DEB,DE=10,BC=4,∴AB=DE=10,BE=BC=4,∴AE=AB﹣BE=6;(2)∵△ABC≌△DEB,∠D=30°,∠C=70°,∴∠BAC=∠D=30°,∠DBE=∠C=70°,∴∠ABC=180°﹣30°﹣70°=80°,∴∠DBC=∠ABC﹣∠DBE=10°.21.(1)解:∵△ABF≌△CDE,∴∠D=∠B=30°,∴∠EFC=∠D+∠DCF=70°;(2)证明:∵△ABF≌△CDE,∴∠AFB=∠CED,AF=CE,在△AFE和△CEF中,,∴△AFE≌△CEF(SAS),∴AE=CF.22.(1)证明:∵△ABC≌△DEC,∴CB=CE,∠DCE=∠ACB,∴∠CEB=∠B=65°,在△BEC中,∠CEB+∠B+∠ECB=180°,∴∠ECB=180°﹣65°﹣65°=50°,又∠DCE=∠ACB,∴∠DCA=∠ECB=50°;(2)解:∵△ABC≌△DEC,∴∠D=∠A=20°,在△DFC中,∠DF A=∠DCA+∠D=50°+20°=70°.。

2024年浙教版八年级上册数学期末培优复习第2招全等三角形中的截长补短法

连结 DE .
返回
典例剖析
方法二:“补短法”如图③,延长 AB 至点 F ,使 BF =
BD .
“截长补短法”是我们今后证明线段或角的“和差倍
分”问题常用的方法.
返回
典例剖析
截长补短类辅助线,核心思想为数学中的转
化思想,此类题的关键是要找到最长边和最短边,然后确定
截取辅助线的方式.
返回
典例剖析
返回
典例剖析
∴∠ AED =2∠ C .
∵∠ AED =∠ C +∠ EDC ,
∴∠ EDC =∠ C ,
∴ DE = CE ,
∴ AB + BD = AE + CE = AC .
返回
典例剖析
方法二:如图③,延长 AB 至点 F ,使 BF = BD ,
∴∠ F =∠ BDF ,
∴∠ ABD =∠ F +∠ BDF =2∠ F .
返回
典例剖析
又∵∠ ABD =2∠ C ,
∴∠ F =∠ C .
∠=∠,
在△ AFD 和△ ACD 中,ቐ∠=∠,
=,
∴△ AFD ≌△ ACD ( AAS ),
∴ AC = AF ,
∴ AC = AF = AB + BF = AB + BD .
返回
分类训练
旋转型全等三角形中的截长补短
∴2∠ FAE +(∠ GAB +∠ DAG )=360°,即2∠ FAE +

∠ DAB =360°,∴∠ EAF =180°- ∠ DAB .

1
2
3
4
返回
分类训练
2. [新考法 分类讨论法]如图①,把两个全等的直角三角形的
斜边重合,组成一个四边形 ACBD ,以 D 为顶点作∠ MDN ,

浙教版八年级三角形及特殊三角形总复习

浙教版八年级三角形及特殊三角形总复习三角形是初中数学中的重要内容,而特殊三角形更是具有独特的性质和应用。

在八年级的数学学习中,我们深入研究了三角形及特殊三角形的相关知识。

接下来,让我们一起进行一次全面的总复习。

一、三角形的基本概念三角形是由不在同一直线上的三条线段首尾顺次相接所组成的封闭图形。

这三条线段叫做三角形的边,相邻两边的公共端点叫做三角形的顶点,相邻两边所组成的角叫做三角形的内角,简称三角形的角。

三角形按边分类,可以分为不等边三角形和等腰三角形(等边三角形是等腰三角形的特殊情况);按角分类,可以分为锐角三角形、直角三角形和钝角三角形。

二、三角形的性质1、三角形的内角和为 180°。

这是三角形的一个基本性质,可以通过多种方法进行证明,如拼图法、平行线法等。

2、三角形的外角等于与它不相邻的两个内角的和。

外角和为360°。

3、三角形任意两边之和大于第三边,任意两边之差小于第三边。

这一性质在判断三条线段能否组成三角形时非常有用。

三、三角形的全等1、全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。

2、全等三角形的性质:全等三角形的对应边相等,对应角相等。

3、全等三角形的判定方法:SSS(边边边):三边对应相等的两个三角形全等。

SAS(边角边):两边和它们的夹角对应相等的两个三角形全等。

ASA(角边角):两角和它们的夹边对应相等的两个三角形全等。

AAS(角角边):两角和其中一角的对边对应相等的两个三角形全等。

HL(斜边、直角边):斜边和一条直角边对应相等的两个直角三角形全等。

四、特殊三角形1、等腰三角形定义:有两边相等的三角形叫做等腰三角形。

性质:等腰三角形的两腰相等。

等腰三角形的两个底角相等(简写成“等边对等角”)。

等腰三角形顶角的平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”)。

判定:有两边相等的三角形是等腰三角形。

有两个角相等的三角形是等腰三角形(等角对等边)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A.两边和一角对应相等的两个三角形全等
B.一边及一锐角相等的两个直角三角形全等
C.顶角和底边分别相等的两个等腰三角形全等
D.三个内角对应相等的两个三角形全等
【例4】对于命题“若a2=b2”,则“a=b”下面四组关于a,b的值中,能说明这个命题是假命题的是()
A.a=3,b=3 B.a=﹣3,b=﹣3
C.a=3,b=﹣3 D.a=﹣3,b=﹣2
【例5】如图,在ABC
△中,AD、CH分别是高线和角平分线,交点为E,已知4
CA=,1
DE=,则ACE
△的面积等于().
A.8B.6C.4D.2
例5图例6图
【例6】如图,在△ABC中,∠ACB=90°,分别以点A,B为圆心,大于1
2AB长
为半径作弧,两弧交于点M,N,作直线MN分别交AB,AC于点D,E,连
结CD,BE.下列结论错误
..的是()
A. AD=CD
B. BE>CD
C.∠BEC=∠BDC
D. BE平分∠CBD
【例7】已知:如图,AP=DP,∠A=∠D.
(1)求证:△ABP≌△DCP.
(2)求证:∠1=∠2
【例8】如图,点C是∠ABC一边上一点.
(1)按下列要求进行尺规作图:①作线段BC的中垂线DE,点E为垂足;②作∠ABC的平分线BD;③连结CD,并延长交BA于点F.
(2)若∠ABC=62°,求∠BFC的度数.
【例9】如图,ABC △和DCE △均是等腰三角形,CA CB =,CD CE =,BCA DCE ∠=∠. (1)求证:BD AE =.
(2)若70BAC ∠=︒,求BPE ∠的度数.
【例10】如图,ABC △中,E 是AC 边上一点,BE BC =,D 为三角形外一点,且DEA EBC ∠=∠,AC DE =.
(1)求证:ABC △≌DBE △.
(2)若50ABD ∠=︒,求C ∠的度数.
【巩固训练】
1. 如图所示,加固钢架BAC ,最多只能焊上9根等长的钢条:12P P ,23P P ,L ,910P P ,且121PP P A =,则A ∠的取值范围是( ).
A.1822.5
︒∠<︒
≤D.1011.25
A

︒∠<︒
A
≤C.1518
A
︒∠<︒
≤ B.910
︒∠<︒
A
第1题第2题
2. 如图,D、E分别是△ABC的边BC、AC上的点,若AB=AC,AD=AE,则()
A.当∠B为定值时,∠CDE为定值
B.当∠α为定值时,∠CDE为定值
C.当∠β为定值时,∠CDE为定值
D.当∠γ为定值时,∠CDE为定值
3. 在△ABC中,AB=AC,两底角的平分线交于点M,两腰上的中线交于点N,两腰上的高线所在直线交于点H,在线段AB,AC上分别有P,Q两点,且BQ=CP,线段BQ与CP交于点G,下面四条直线:①直线AM,②直线AH,③直线AH,④直线AG,其中必过BC中点的有()
A.①②③B.①②④C.③④D.①②③④
4. 如图,在正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE 沿AE对折至△AFE,延长EF交边BC于点G,连结AG,CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是()
A. 1 B.2 C. 3 D.4
“教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。

只是更早的“先生”概念并非源于教书,最初出现的“先生”一词也并非有传授知识那般的含义。

《孟子》中的“先生何为出此言也?”;《论语》中的“有酒食,先生馔”;《国策》中的“先生坐,何至于此?”等等,均指“先生”为父兄或有学问、有德行的长辈。

其实《国策》中本身就有“先生长者,有德之称”的说法。

可见“先生”之原意非真正的“教师”之意,倒是与当今“先生”的称呼更接近。

看来,“先生”之本源含义在于礼貌和尊称,并非具学问者的专称。

称“老师”为“先生”的记载,首见于《礼记?曲礼》,有“从于先生,不越礼而与人言”,其中之“先生”意为“年长、资深之传授知识者”,与教师、老师之意基本一致。

第4题第5题
5. 如图,∠AOB=30°,∠AOB内有一定点P,且OP=12,在OA上有一动点Q,
(3)直接写出线段AC长的最大值.
9. 已知:如图,在△ABC、△ADE 中,∠BAC=∠DAE=90°,AB=AC,AD =AE,点C、D、E 三点在同一直线上,连接BD.
(1)求证:△BAD≌△CAE;
(2)请判断BD 与CE 有何数量关系和位置关系,并写出理由.。

相关文档
最新文档