概率论与数理统计模拟试卷2及答案
《概率论与数理统计》期末测试卷(二)(答案解析版)

《概率论与数理统计》期末测试件(二)(答案解析版)一、(12分)一学生接连参加同一课程的两次考试。
第一次及格的概率为P ,若第一次及格则第二次及格的概率也为P ;若第一次不及格则第二次及格的概率为P 2。
(1)若至少有一次及格则他能取得某种资格,求他取得该资格的概率。
(2)若已知他第二次已经及格,求他第一次及格的概率。
解:A i ={他第i 次及格},i=1,2已知P (A 1)=P (A 2|A 1)=P ,21P P(A /A )2= (1)B ={至少有一次及格}所以21}{A A B ==两次均不及格∴ )|()(1)(1)(1)(12121A A P A P A A P B P B P -=-=-= )]|(1)][(1[1121A A P A P ---=22123)21)(1(1P P P P -=---= (2)由乘法公式,有P (A 1 A 2)= P (A 1) P (A 2| A 1) = P 2 由全概率公式,有)|()()|()()(1211212A A P A P A A P A P A P +=222)1(2P P PP P P +=⋅-+⋅=得1222)|(2221+=+=P PP P P A A P .二、(14分)设随机变量~,22X U ππ⎛⎫- ⎪⎝⎭,求(1)随机变量X 的分布函数()F x ; (2) cos Y X =的密度函数 . 解:X 的密度函数为()1,220,x f x πππ⎧-<<⎪=⎨⎪⎩其他cos Y X= 的可取值范围是()0,1当01y <<时,()()Y F y P Y y =≤arccos 2arccos 2arccos arccos 2211y yP Y y P y Y dx dxππππππ--⎛⎫⎛⎫=-≤≤-+≤≤ ⎪ ⎪⎝⎭⎝⎭=+⎰⎰因此,cos Y X = 的密度函数()(),01Y Y f y F y y '===<<故,,01()0,Y y f y <<=⎩其他三、(16分)设随机向量(X , Y )的联合密度为⎩⎨⎧<<<<=.,0,10,10 ,2),(其他y x x y x f(1) 计算P (Y > X );(2) 求X , Y 的概率密度f X (x ),f Y (y );(3) 判断X 与Y 是否相互独立,说明理由; (4) 求Z = X+Y 的概率密度f Z (z ). 解:(1).312),()(110===>⎰⎰⎰⎰>x xy xdy dx dxdy y x f X Y P(2)dyy x f x f X ⎰∞∞-=),()(.2x 2)(101x dy x f x X ==<<⎰时,当⎩⎨⎧<<=.,0,10,2)(其他x x x f Xdxy x f y f Y ⎰∞∞-=),()(.10,1 2)(10<<==⎰y dx x y f Y⎩⎨⎧<<=.,0,10,1)(其他y y f Y(3)因为,..),()(),(e a y f x f y x f Y X =所以X 与Y 相互独立. (4).),()(dx x z x f z f Z ⎰∞∞--=.22)(21,2)(1021120z z dx x z f z z dx x z f z z Z zZ -==<<==<<⎰⎰-时,当时,当⎪⎩⎪⎨⎧<<-<<=. ,0,2z 1 ,2,10 ,)(22其他z z z z z f Z四、(18分)设二维连续型随机变量(X ,Y )在区域D 上服从均匀分布。
概率论与数理统计-模拟题 2

《概率论与数理统计》模拟题一.单选题1.对于事件A,B,下列命题正确的是().A.若A,B 互不相容,则A 与B̅也互不相容. B.若A,B 相容,那么A 与B̅也相容. C.若A,B 互不相容,且概率都大于零,则A,B 也相互独立.D.若A,B 相互独立,那么A 与B̅也相互独立. [答案]:D2.在一次假设检验中,下列说法正确的是(). A.既可能犯第一类错误也可能犯第二类错误B.如果备择假设是正确的,但作出的决策是拒绝备择假设,则犯了第一类错误C.增大样本容量,则犯两类错误的概率都不变D.如果原假设是错误的,但作出的决策是接受备择假设,则犯了第二类错误 [答案]:A3.对总体X~N(μ,σ²)的均值和作区间估计,得到置信度为95%的置信区间,意义是指这个区间().A.平均含总体95%的值B.平均含样本95%的值C.有95%的机会含样本的值D.有95%的机会的机会含μ的值 [答案]:D4.在假设检验问题中,犯第一类错误的概率α的意义是(). A.在H 0不成立的条件下,经检验H 0被拒绝的概率 B.在H 0不成立的条件下,经检验H 0被接受的概率 C.在H 0成立的条件下,经检验H 0被拒绝的概率 D.在H 0成立的条件下,经检验H 0被接受的概率 [答案]:C5.在一次假设检验中,下列说法正确的是(). A.第一类错误和第二类错误同时都要犯B.如果备择假设是正确的,但作出的决策是拒绝备择假设,则犯了第一类错误C.增大样本容量,则犯两类错误的概率都要变小D.如果原假设是错误的,但作出的决策是接受备择假设,则犯了第二类错误 [答案]:C6.设θ 是未知参数θ的一个估计量,若θθ≠ E 则θ是θ的(). A.极大似然估计 B.矩法估计 C.相合估计D.有偏估计[答案]:B7.在对单个正态总体均值的假设检验中,当总体方差已知时,选用().A.t检验法B.u检验法C.F检验法D.σ2检验法[答案]:B8.在一个确定的假设检验中,与判断结果相关的因素有().A.样本值与样本容量B.显著性水平C.检验统计量D.A,B,C同时成立[答案]:D9.对正态总体的数学期望进行假设检验,如果在显著水平0.05下接受H0:μ=μ0,那么在显著水平0.01下,下列结论中正确的是().A.必须接受H0B.可能接受,也可能拒绝H0C.必拒绝H0D.不接受,也不拒绝H0[答案]:A10.设A和B为两个任意事件,且A⊂B,P(B)>0,则必有().A.P(A)<P(A|B)B.P(A)≤P(A|B)C.P(A)>(A|B)D.P(A)≥P(A|B)[答案]:B11.已知P(A)=0.4,P(B)=0.6,P(B|A)=0.5,则P(A|B)=().A.1/2B.1/3C.10/3D.1/5[答案]:B12.甲.乙两人独立的对同一目标各射击一次,其中命中率分别为0.6和0.5,现已知目标被命中,则它是乙命中的概率是().A.3/5B.5/11C.5/8B.6/11 [答案]:C13.设A 和B 为两个任意事件,则下列关系成立的是(). A.(A ∪B )−B =A B.(A ∪B )−B ⊃A C.(A ∪B )−B ⊂A D.(A −B )∪B =A [答案]:C14.设A 和B 为两个任意事件,且A ⊂B ,则必有(). A.P (A )<P(AB) B.P (A )≤P(AB) C.P (A )>P(AB) D.P (A )≥P(AB) [答案]:D15.设每次实验成功的概率为p(0<p<1)则在三次独立重复试验中至少一次成功的概率为(). A.p 3 B.1-p 3 C.(1-p)3 D.1-(1-p)3 [答案]:B16.某人射击时,中靶的概率为2/3,如果射击直到中靶子为止,则射击次数为3的概率(). A. 2/27 B.2/9 C.8/27 D.1/27 [答案]:A17.设随机事件A 和B 满足P (B |A )=1,则(). A.为必然事件 B.P (B |A )=0 C.B ⊂A D.B ⊃A [答案]:C18.设一随机变量X 的密度函数φ(−x )=φ(x ),F(x)是X的分布函数,则对任意实数a 有(). A.F (−a )=1−∫φ(x )a0dx B.F (−a )=12−∫φ(x )a 0dx C.F (−a )=1−F(a)D.F (−a )=2F (a )−1 [答案]:B19.变量X 的密度函数为f (x )={Cx 30<x <10其它,则常数C=().A.3B.4C.1/4D.1/3 [答案]:B20.设X 和Y 相互独立,且分别服从N(0,1)和N(1,1)则(). A.P {X +Y ≤0}=12 B.P {X +Y ≤1}=12C.P {X −Y ≤0}=12D.P {X −Y ≤1}=12[答案]:B21.设X和Y独立同分布,且P {X =1}=P {Y =1}=12,P {X =−1}=P {Y =−1}=12,则下列各式成立的是(). A.P {X =Y }=12 B.P {X =Y }=1 C.P {X +Y =0}=14D.P {XY =1}=14 [答案]:A22.总体方差D 等于(). A.1n ∑(X i −X ̅)2n i=1B.1n−1∑(X i −X ̅)2n i=1 C.1n ∑X i 2−(EX)2n i=1 D.1n−1∑(X i −EX)2n i=1 [答案]:C23.设随机变量X~N(μ,σ²),则随着σ的增大,概率P{|X−μ|<σ}为().A.单调增加B.单调减少C.保持不变D.增减不定[答案]:C24.设随机变量X和Y均服从正态分布X~N(μ,4²),Y~N(μ,5²),记p1=P{X<μ−4},p2= P{Y≥μ+5},则().A.对任何实数μ都有p1=p2B.对任何实数μ都有p1<p2C.仅对个别值有p1=p2D.对任何实数μ都有p1>p2[答案]:A25.设X1,X2,…,X n为来自总体的一个样本,X̅为样本均值,EX未知,则总体方差DX的无偏估计量为().A.1n ∑(X i−X̅)2 ni=1B.1n−1∑(X i−X̅)2 ni=1C.1n ∑(X i−EX)2 ni=1D.1n−1∑(X i−EX)2 ni=1[答案]:B26.设总体X~f(x,θ),θ为未知参数,X1,X2,…,X n为X的一个样本,θ1(X1,X2,…,X n).θ2(X1,X2,…,X n)为两个通缉量(θ1,θ2)为θ的置信度为1-α的置信区间,则应有().A.P{θ1<θ<θ2}=αB.P{θ<θ2}=1-αC.P{θ1<θ<θ2}=1-αD.P{θ<θ1}=α[答案]:C27.在假设建设检验中,记H0为检验假设,则所谓犯第一类错误的是().A.H0为真时,接受H0B.H0不真时,接受H0C.H0不真时,拒绝H0D.H0为真时,拒绝H0[答案]:D28.袋中有50个乒乓球,其中20个黄的,30个白的,现在两个人不放回地依次从袋中随机各取一球.则第二人取到黄球的概率是().A.1/5B.2/5C.3/5D.4/5[答案]:B29.事件”甲种产品畅销,乙种产品滞销”,则其对立事件A为().A.”甲种产品滞销,乙种产品畅销”B.”甲.乙两种产品均畅销”C.”甲种产品滞销”D.”甲种产品滞销或乙种产品畅销”[答案]:D30.设A,B,C表示三个随机事件,则A⋃B⋃C表示A.A,B,C中至少有一个发生;B.A,B,C都同时发生;C.A,B,C中至少有两个发生;D.A,B,C都不发生.[答案]:A31.已知事件A,B相互独立,且P(A)=0.5,P(B)=0.8,则P(A⋃B)=()A.0.65;B.1.3;C.0.9;D.0.3.[答案]:C32.设X~B(n,p),则有()A.E(2X-1)=2np;B.E(2X+1)=4np+1;C.D(2X+1)=4np(1-p)+1A.;D.D(2X-1)=4np(1-p).[答案]:D33.X则a=()A.1/3;B.0;C.5/12;D.1/4.[答案]:A34.常见随机变量的分布中,数学期望和方差一定相等的分布是() A.二项分布; B.标准正态分布; C.指数分布; D.泊松分布. [答案]:D35.在n 次独立重复的贝努利试验中,设P (A )=p,那么A 事件恰好发生k 次的概率为(). A.p k ;B.(nk )p k (1-p)n-k ;C.p n-k (1-p)k ;D.p k (1-p)n-k . [答案]:B36.设X则它的数学期望E(X)和方差D(X )分别是 A.1/4,1/16; B.1/2,3/4; C.1/4,11/16; D.1/2,11/16. [答案]:C37.设随机变量X 的密度函数f (x )={2x x ∈[0,A]0 其他,则常数A=().A.1;B.1/2;C.1/2;D.2.[答案]:A38.若T ~t(n),下列等式中错误的是(). A.P{T>0}=P{T ≤0}; B.P{T ≥1}=P{T>1}; C.P{T=0}=0.5;D.P{T>t α}=P{T<-t α}. [答案]:C39.设X ~N(μ1,σ12),它有容量为n 1的样本X i ,i=1,2,…n 1;Y ~N(μ2,σ22),它有容量为n 2的样本Y j ,j=1,2,…n 2.它们均相互独立,X 和Y 分别是它们样本平均值,s 12和s 22分别是它们样本方差,σ12,σ22未知但是相等.则统计量212121221121)2()()(n n n n n n s n s n Y X +-++---μμ应该服从的分布是().A.t(n 1+n 2);B.t(n 1+n 2-1);C.t(n 1+n 2-2);D.F(n 1-1,n 2-1). [答案]:C40.设X ~N(μ1,σ2),它有容量为n 1的样本X i i=1,2,…n 1;Y ~N(μ2,σ2),它有容量为n 2的样本Y j j=1,2,…n 2.均相互独立,s 12和s 22分别是它们样本方差.则统计量1122221211--n s n n s n 应该服从的分布是().A.χ2(n 1+n 2-2);B.F(n 2-1,n 1-1);C.t(n 1+n 2-2);D.F(n 1-1,n 2-1). [答案]:D41.若μˆ1和μˆ2同是总体平均数μ的无偏估计,则下面叙述中,不正确的是(). A.2μˆ1-μˆ2仍是总体平均数μ的无偏估计; B.21μˆ1-21μˆ2仍是总体平均数μ的无偏估计; C.21μˆ1+21μˆ2仍是总体平均数μ的无偏估计 D.32μˆ1+31μˆ2仍是总体平均数μ的无偏估计. [答案]:B42.假设检验时,当样本容量n 固定时,缩小犯第Ⅰ类错误的概率α,则犯第Ⅱ类错误的概率β().A.一般要变小;B.一般要变大;C.可能变大也可能变小;D.肯定不变. [答案]:B43.设X ~N(μ,σ2),μ和σ2均未知,X 是样本平均值,s 2是样本方差,则(X -t 0.051-n s ,X +t 0.051-n s )作为的置信区间时,其置信水平为().A.0.1;B.0.2;C.0.9;D.0.8. [答案]:C44.已知一元线性回归直线方程为yˆ=a +4x,且x =3,y =6.则a=(). A.0;B.6;C.2;D.-6. [答案]:D45.设(x 1,y 1),(x 2,y 2),...(x n ,y n )是对总体(X,Y)的n 次观测值,l YY =∑=-ni iy y12)(,l XX =∑=-ni ix x12)(分别是关于Y,关于X 的校正平方和及l XY =∑=--ni i i y y x x 1))((是关于X 和Y的校正交叉乘积和,则它们的一元回归直线的回归系数b=().A.XX XYl l ; B.XXXYl l ; C.YYXX XY l l l 2; D.YYXX XY l l l .[答案]:A46.设A,B为两个事件,则AB=().A.A B;B.A B;C.A B;D.A⋃B.[答案]:D47.若X~N(0,1),ϕ(x)是它的密度函数,Φ(x)是它的分布函数,则下面叙述中不正确的是().A.Φ(-x)=-Φ(x);B.ϕ(x)关于纵轴对称;C.Φ(0)=0.5;D.Φ(-x)=1-Φ(x).[答案]:A48.对单个总体X~N(μ,σ2)假设检验,σ2未知,H0:μ≥μ0.在显著水平α下,应该选().A.t检验;B.F检验;C.χ2检验;D.u检验.[答案]:A49.甲乙两人各自同时向敌机射击,已知甲击中敌机的概率为0.8,乙击中敌机的概率为0.5,则恰有一人击中敌机的概率().A.0.8B.0.5C.0.4D.0.6[答案]:B=,则未知参数μ的置信度为0.95的置信区间是.(查表50.设X~N(μ,0.3²),容量n=9,均值X5Z0.025=1.96)A.(4.808,6.96)B.(3.04,5.19)C.(4.808,5.19)D.(3.04,6.96)[答案]:C二.填空题1.设X 1,X 2,…,X 16是来自总体X~(4,σ2)的简单随机样本,2σ已知,令1611X 16i i X==∑则统计量4X-16σ服从分布###(必须写出分布的参数). [答案]:N(0,1)2.设2X~μσ(,),而1.70,1.75,1.70,1.65,1.75是从总体X 中抽取的样本,则μ的矩估计值为###. [答案]:71.111=∑=ni i X n3.设X~U[a,1],X 1,…,X n 是从总体X 中抽取的样本,求a 的矩估计为###.[答案]:121-∑=ni i X n4.已知F 0.1(8,20)=2,则F 0.9(20,8)=###.[答案]:0.55.设某个假设检验问题的拒绝域为W,且当原假设H 0成立时,样本值(x 1,x 2,…,x n )落入W 的概率为0.15,则犯第一类错误的概率为###.[答案]:0.156.设样本的频数分布为X0 1 2 3 4 频数 1 3 2 1 2则样本方差s 2=###.[答案]:27.设X1,X2,,Xn 为来自正态总体N(μ,σ²)的一个简单随机样本,其中参数μ和σ²均未知,记,221Q )n i i X X ==-∑(,则假设H 0:μ=0的t 检验使用的统计量是###.(用X 和Q 表示)[答案]:Xt (1)n n Q =-8.设总体X~N(μ,σ²),X 1,X 2,…,X n 为来自总体X 的样本,则样本均值X =###.[答案]:n 2σ9.设总体X ~b,(np),0<p<1,X 1,X 2,…,X n 为其样本,则n 的矩估计是###.[答案]:X n p =10.设总体X ~[U,θ],(X 1,X 2,…,X n )是来自X 的样本,则θ的最大似然估计量是###.[答案]:{}12max X X X n θ=,,11.测得自动车床加工的10个零件的尺寸与规定尺寸的偏差(微米)如下:+2,+1,-2,+3,+2,+4,-2,+5,+3,+4.则零件尺寸偏差的数学期望的无偏估计量###.[答案]:212.设X 1,X 2,X 3,X 4是来自正态总体N(0,2)2的样本,令Y=(X 1+X 2)2+(X 3-X 4)2,则当C=###时CY ~x 2(2).[答案]:1/813.设容量n=10的样本的观察值为(8,7,6,9,8,7,5,9,6),则样本均值样本方差###.[答案]:s 2=214.设A.B 为随机事件,P(A)=0.5,P(B)=0.6,P(B|A)=0.8则P(B|A)=###.[答案]:0.715.若事件A 和事件B 相互独立,P(A)=α,P(B)=0.3,P (A⋃B )=0.7,则α=###.[答案]:3/716.设X ~N(2,σ²),且P{2<x<4}=0.3,则P{x<0}=###.[答案]:217.一射手对同一目标独立地进行四次射击,若至少命中一次的概率为80/81,则该射手的命中率为###.[答案]:2/318.三个人独立地解答一道难题,他们能单独正确解答的概率分别为1/5.1/3.1/4,则此难题被正确解答的概率为###.[答案]:3/519.设有一箱产品由三家工厂生产的其中1/2是第一加工厂生产的,其余两家工厂各生产1/4,又知第一.第二工厂生产的产品有2%的次品,第三工厂生产的产品有4%的次品,现从箱中任取一只,则取到的次品的概率为###.[答案]:2.5%20.一个盒子中有10个球,其中有3个红球,2个黑球,5个白球,从中取球两次,每次取一个(有放回)则:第二次取到黑球的概率为###.[答案]:0.221.由长期统计资料得知,某一地区在4月下雨(记事件A)的概率为4/15,刮风(记作事件B)概率为7/15,刮风又下雨(记作事件C)概率为1/10则:p(B|A)=###.[答案]:3/822.一盒子中黑球.红球.白球各占50%,30%,20%,从中任取一球,结果不是红球,则取到的是白球的概率为###.[答案]:2/723.某公共汽车站甲.乙丙动人分别独立地等1.2.3路汽车,设每个人等车时间(单位分钟)均服从[0,5]上的均匀分布,则三人中至少有两个人等车时间不超过2分钟的概率为###.[答案]:0.35224.若随机变量X ~(2,σ²)且p{2<X<4}=0.3,则p{X<2}=###.[答案]:0.525.若随机变量X ~N(-1,1),Y ~N(3,1)且X 和Y 相互独立,设随机变量Z=X-2Y+7,则Z ~###.[答案]:N(0,5)26.设随机变量X ~N(1,22),则EX 2=###.[答案]:5三.计算题1.已知100个产品中有5个次品,现从中有放回地取3次,每次任取1个,求在所取的3个中恰有2个次品的概率.[答案]:.007125.0)95.0()05.0(}2{223===C X P2.某人进行射击,设每次射击的命中率为0.02,独立射击400次,试求至少击中两次的概率.[答案]:).02.0,400(~b XX 的分布律为,)98.0()02.0(400}{400k k k k X P -⎪⎪⎭⎫ ⎝⎛==0,1,,400.k = 于是所求概率为}1{}0{1}2{=-=-=≥X P X P X P 399400)98.0)(02.0(400)98.0(1--=.9972.0=3.已知100个产品中有5个次品,现从中无放回地取3次,每次任取1个,求在所取的3个中恰有2个次品的概率.[答案]:.00618.0}2{310025195≈==C C C X P4.某一城市每天发生火灾的次数X 服从参数8.0=λ的泊松分布,求该城市一天内发生3次或3次以上火灾的概率.[答案]:由概率的性质,得}3{1}3{<-=≥X P X P }2{}1{}0{1=-=-=-=X P X P X P⎪⎪⎭⎫ ⎝⎛++-=-!28.0!18.0!08.012108.0e .0474.0≈5.某公共汽车站从上午7时起,每15分钟来一班车,即7:00,7:15,7:30,7:45等时刻有汽车到达此站,如果乘客到达此站时间X 是7:00到7:30之间的均匀随机变量,试求他候车时间少于5分钟的概率.[答案]:以7:00为起点0,以分为单位,依题意~X ),30,0(U ⎪⎩⎪⎨⎧<<=其它,0300,301)(x x f 为使候车时间X 少于5分钟,乘客必须在7:10到7:15之间,或在7:25到7:30之间到达车站,故所求概率为}3025{}1510{<<+<<X P X P 3130130130251510=+=⎰⎰dx dx6.某元件的寿命X 服从指数分布,已知其平均寿命为1000小时,求3个这样的元件使用1000小时,至少已有一个损坏的概率.[答案]:由题设知,X 的分布函数为.0,00,1)(1000⎪⎩⎪⎨⎧<≥-=-x x ex F x 由此得到}1000{1}1000{≤-=>X P X P .)1000(11-=-=e F各元件的寿命是否超过1000小时是独立的,用Y 表示三个元件中使用1000小时损坏的元件数,则).1,3(~1--e b Y所求概率为}0{1}1{=-=≥Y P Y P .1)()1(13310103----=--=e e e C7.设某项竞赛成绩N X ~(65,100),若按参赛人数的10%发奖,问获奖分数线应定为多少?[答案]:设获奖分数线为,0x 则求使1.0}{0=≥x X P 成立的.0x)(1}{1}{000x F x X P x X P -=<-=≥,1.0106510=⎪⎭⎫ ⎝⎛-Φ-=x 即,9.010650=⎪⎭⎫ ⎝⎛-Φx 查表得,29.110650=-x 解得,9.770=x 故分数线可定为78.8.设随机变量X 具有以下的分布律,试求2)1(-=X Y 的分布律. 4.01.03.02.02101i p X-[答案]:Y 所有可能的取值0,1,4,由,2.0}1{}4{,7.0}2{}0{}1{,1.0}1{}0)1{(}0{2=-=====+=======-==X P Y P X P X P Y P X P X P Y P即得Y 的分布律为9.已知随机变量X 的分布函数⎪⎩⎪⎨⎧>≤<≤=4,140,4/0,0)(x x x x x F ,求).(X E[答案]:随机变量X 的分布密度为,,040,4/1)()(⎩⎨⎧≤<='=其它x x F x f故.2841)()(40240==⋅==⎰⎰∞+∞-x dx x dx x xf X E 10.设05.0=α,求标准正态分布的水平0.05的上侧分位数和双侧分位数.[答案]:由于,95.005.01)(05.0=-=Φu 查标准正态分布函数值表可得,645.105.0=u 而水平0.05的双侧分位数为,025.0u 它满足:,975.0025.01)(025.0=-=Φu 查标准正态分布函数值表可得.96.1025.0=u 2χ分布.11.设),2,21(~2N X 2521,,,X X X 为X 的一个样本,求:(1)样本均值X 的数学期望与方差;(2)}.24.0|21{|≤-X P[答案]:)1(由于),2,21(~2N X 样本容量,25=n 所以,252,21~2⎪⎪⎭⎫⎝⎛N X 于是,21)(=X E .4.0252)(22==X D)2(由),4.0,21(~2N X 得),1,0(~4.021N X - 故⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤-=≤-6.04.021}24.0|21{|X P X P .4514.01)6.0(2=-Φ=12.⎪⎩⎪⎨⎧≤<≤≤--+=其它100101)(x x x A x x f ,则求常数A.期望EX 及方差DX. [答案]:011(1)x dx -=++⎰10()A x dx -⎰,得A=1 ()EX xf x dx +∞-∞==⎰01(1)x x dx -++⎰10(1)0x x dx -=⎰ 22()EX x f x dx +∞-∞==⎰021(1)x x dx -++⎰120(1)1/6x x dx -=⎰ 61)D(x)22=-=EX EX (。
概率论与数理统计试题与答案()

概率论与数理统计试题与答案(2012-2013-1)概率统计模拟题一一、填空题(本题满分18分,每题3分)1、设,3.0)(,7.0)(=-=B A P A P 则)(AB P = 。
2、设随机变量p)B(3,~Y p),B(2,~X ,若95)1(=≥X p ,则=≥)1(Y p 。
3、设X 与Y 相互独立,1,2==DY DX ,则=+-)543(Y X D 。
4、设随机变量X 的方差为2,则根据契比雪夫不等式有≤≥}2EX -X {P 。
5、设)X ,,X ,(X n 21 为来自总体)10(2χ的样本,则统计量∑==n1i i X Y 服从分布。
6、设正态总体),(2σμN ,2σ未知,则μ的置信度为α-1的置信区间的长度=L 。
(按下侧分位数) 二、选择题(本题满分15分,每题3分) 1、 若A 与自身独立,则( )(A)0)(=A P ; (B) 1)(=A P ;(C) 1)(0<<A P ; (D) 0)(=A P 或1)(=A P 2、下列数列中,是概率分布的是( )(A) 4,3,2,1,0,15)(==x xx p ; (B) 3,2,1,0,65)(2=-=x x x p (C) 6,5,4,3,41)(==x x p ; (D) 5,4,3,2,1,251)(=+=x x x p 3、设),(~p n B X ,则有( )(A) np X E 2)12(=- (B) )1(4)12(p np X D -=- (C) 14)12(+=+np X E (D) 1)1(4)12(+-=+p np X D4、设随机变量),(~2σμN X ,则随着σ的增大,概率()σμ<-X P ( )。
(A)单调增大 (B)单调减小 (C)保持不变 (D)增减不定5、设),,,(21n X X X 是来自总体),(~2σμN X 的一个样本,X 与2S 分别为样本均值与样本方差,则下列结果错误..的是( )。
概率论与数理统计试卷及问题详解

模拟试题一一、填空题(每空3分,共45分)1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = P( A ∪B) =2、设事件A 与B 独立,A 与B 都不发生的概率为19,A 发生且B 不发生的概率与B 发生且A 不发生的概率相等,则A 发生的概率为: ;3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率 ;4、已知随机变量X 的密度函数为:,0()1/4,020,2x Ae x x x x ϕ⎧<⎪=≤<⎨⎪≥⎩, 则常数A= , 分布函数F (x )= , 概率{0.51}P X -<<= ;5、设随机变量X~ B(2,p)、Y~ B(1,p),若{1}5/9P X ≥=,则p = ,若X 与Y 独立,则Z=max(X,Y)的分布律: ;6、设~(200,0.01),~(4),X B Y P 且X 与Y 相互独立,则D(2X-3Y)= , COV(2X-3Y, X)= ;7、设125,,,X X X 是总体~(0,1)X N 的简单随机样本,则当k = 时,~(3)Y t =;8、设总体~(0,)0X U θθ>为未知参数,12,,,n X X X 为其样本,11ni i X X n ==∑为样本均值,则θ的矩估计量为: 。
9、设样本129,,,X X X 来自正态总体(,1.44)N a ,计算得样本观察值10x =,求参数a 的置信度为95%的置信区间: ;二、计算题(35分)1、 (12分)设连续型随机变量X 的密度函数为:1,02()20,x x x ϕ⎧≤≤⎪=⎨⎪⎩其它求:1){|21|2}P X -<;2)2Y X =的密度函数()Y y ϕ;3)(21)E X -; 2、(12分)设随机变量(X,Y)的密度函数为1/4,||,02,(,)0,y x x x y ϕ<<<⎧=⎨⎩其他1) 求边缘密度函数(),()X Y x y ϕϕ; 2) 问X 与Y 是否独立?是否相关? 3) 计算Z = X + Y 的密度函数()Z z ϕ;3、(11分)设总体X 的概率密度函数为:1,0(),000xe x x x θϕθθ-⎧≥⎪=>⎨⎪<⎩X 1,X 2,…,X n 是取自总体X 的简单随机样本。
概率论与数理统计习题2及答案

当时,F 故X 的分布函数(X)=P (XWx) =10,X < 022—,0<x<I 35 34 - A —,1 < x < 2 35x>2习题3•设在15只同类型零件中有2只为次品,在英中取3次,毎次任取1只,作不放回抽样. 以X 表示取出的次品个数,求: (1) (2) (3) X 的分布律: X 的分布函数并作图; P{X<lhP{I<X <-),P)I<%<-),P{l<x<2}・ 2 2 2 【解】 x=at2・CP(X=O) = »±・C ;5 35 心)半』C ; 35C" 1P(X=2) =卑=丄・C :5 35故X 的分布律为(2)当 xvO 时,F (X)=P (X<x) =0当OWxvl 时, 当lWxv2时,22 F (X)=P(XWx) =P(X=O)= —3534F (X)=P (XWx) =P(X=O)+P{X=1)= —1 I 22P (X<l) = F(i) = —,2 2 353 3 34 34P (KX <-) = F(-)-F(l) = --- — = 02 2 35 353 3 12P (1<X <-) = P(X = 1) + P(1<X<-)亠2 2 3534 1 P(1<X<2)=F(2)-F(1)-P(X =2) = 1-衣-务=0.4•射手向目标独立地进行了 3次射击,每次击中率为,求3次射击中击中目标的次数的分布 律及分布函数,并求3次射击中至少击中2次的概率. 【解】设X 表示击中目标的次数•则X<K 1. 2, 3.p(x = 0) = (0.2)3 =0・008 p(x =1) = C ;O.8(O.2)2 = 0.096 P(X = 2) = C^(0.8)'0.2 = 0.384 p(x= 3) = (0.8)3 =0.512故X 的分布律为 XP分布函数0, 0.00&F(X ) = W ・104.0.48&P(X > 2) = P(X = 2) + P(X = 3) = 0.8965. (1)设随机变量X 的分布律为P(X=.}=Z.k\尖中后0, r 2,…,人>0为常数,试确定常数G (2)设随机变虽X 的分布律为 p{X=k )=a/N, k=l. 2,…,N,x<0 0<%<1 1<%<2 2<x<3x>3试确世常数G【解】(1)由分布律的性质知1=》P(X =k) = u》——=ad D k!{2)由分布律的性质知N N\ = ^P{X=k}=^- = aA-l £-1 N即 a =6.甲、乙两人投篮,投中的概率分别为“今^$投3次,求:(1)两人投中次数柑等的概率;(2)甲比乙投中次数多的概率•【解】分别令X、y表示甲、乙投中次数,则XF (3,) y~b(3.(1)p(x = r)= p(x=o,y=o)+p(x=ty = i)+p(x = 2,r=2)+p(X=3.y=3)=(0・4)'(0・3)' + C"0.6(0.4)-C"0.7(03)- +C;(O・6)2O・4C;(O・7)2O・3 + (O・6)3(O・7)3=0.32076⑵ p(x>y)= p(x = i,r=o)+p(x = 2,y=o)+p(x=3,r = o)+p(x = 2,y=i)+p(x=3,y = i)+p(x=xr = 2)=C;O・6(O・4)2(O・3)3 +C;(O・6)2O・4(O・3)3 +(O・6)3(O・3)3 +C;(O・6)2O・4C;O・7(O・3)2 +(O・6)3C;O・7(O・3)2 + (O・6)3C;(O・7)2O・37•设某机场每天有200架飞机在此降落,任一飞机在某一时刻降落的概率设为,且设齐飞机降落是相互独立的.试问该机场需配备多少条跑道,才能保证某一时刻飞机需立即降落而没有空闲跑逍的概率小于(每条跑道只能允许一架飞机降落)【解】设X为某一时刻需立即降落的飞机数,则X~b(200八设机场需配备W条跑逍,则有P(X > TV) <0,01200为 C 爲(0.02)气0.98严"vO.Olt-N'+i利用泊松近似A = np = 200 X 0.02 = 4. » 宀4*P(X>N)= Z ——<0.01 jt-A+i k!査表得WM9.故机场至少应配备9条跑道.8.已知在五重伯努利试脸中成功的次数X 满足P{X=1}=P{X=2},求概率P{X=4}. 【解】设在每次试验中成功的概率为P,则P(X=4) = Ct(-/- = —. '3 3 2439.设事件A 在每一次试验中发生的概率为,当人发生不少于3次时,指示灯发出信号, (1) (2) 【解】 所以进行了 5次独立试验,试求指示灯发出信号的概率:进行了 7次独立试验,试求指示灯发出信号的概率. (1)设X 表示5次独立试验中A 发生的次数,则X~6(5,) 5P(X >3) = XC ;(O ・3)Z(O ・7)I =0.16308(2)令y 表示7次独立试验中人发生的次数,则Y-b (7r)P{Y > 3) = 2^C ;(03/ (0・7)F = 0.35293X-310•某公安局在长度为f 的时间间隔内收到的紧急呼救的次数X 服从参数为(坨)t 的泊松分布,而与时间间隔起点无关(时间以小时计).<1)求某一天中午12时至下午3时没收到呼救的概率; (2)求某一天中午12时至下午5时至少收到1次呼救的概率..3【解】(1) P(X=0) = e"^5(2) P(X >1) = 1-P(X =0) = l-e"^11•设 P{X=k}=C*/(l-p)--\ 后012P{y=m}=CS"(l - 〃)m=0,1,23/4分别为随机变Sx, y 的概率分布,如果已知P{xMi}=#,试求p{Y^i},54【解】因为P(X>l) = j,故P(X<1) = £.P(X<1) = P(X=O) = (1 — “)2(1-卩)冷,P (r> I ) = l-P (r = 0) = 1-(1-/?/= — «.0.802478112•某教科书岀版了 2000册,因装订等原因造成错误的概率为,试求在这2000册书中恰有 5册错误的概率.【解】令X 为2000册书中错误的册数,则XF (2000,・利用泊松近似计算,A = np = 2000 X 0.001 =2p(x= 5” ^^ = 0.00185!3 I13•进行某种试验,成功的概率为一,失败的概率为丄•以X 表示试验首次成功所需试验的次4 4数,试写出X 的分布律,并计算X 取偶数的概率.【解】X =12…人…P(X = 2) + P(X=4)+…+ P(X=2幻 + … =1.2+(1/2+...+(丄严4 4 4 4 4 43 4 1 =—• =— 4-($5414. 有2500名同一年龄和同社会阶层的人参加了保险公司的人寿保险.在一年中每个人死亡 的概率为,毎个参加保险的人在1月1日须交12元保险费,而在死亡时家属可从保险 公司领取2000元赔偿金•求: (1) 保险公司亏本的概率;(2) 保险公司获利分别不少于10000元、20000元的概率. 【解】以“年”为单位来考虑.(1)在1月1日,保险公司总收入为2500X12=30000元. 设1年中死亡人数为X,则X~b (25g,则所求概率为故得从而P(2000X >30000) = P(X>15) = \-P(X < 14)由于I)很大,p很小• A=np=5.故用泊松近似,有M e时P(X > 15)^1-工^^总0・000069*•<)k!(2) P(保险公司获利不少于10000)=P(3OOOO-2OOOX > 10000) = P(X < 10)即保险公司获利不少于10000元的概率在98%以上P (保险公司获利不少于 20000) = P(30000-2000X > 20000) = P(X <5)5 ■呻迄一“.6窗即保险公司获利不少于20000元的概率约为62%15.已知随机变量X的密度函数为/(x)=^e ni, 8*+8. 求:(1〉人值:(2) P{O<X<1}; (3)F(x)・【解】(1)由/(x)d.r = 1得=J = 2J0 Ae"*d.v = 2A/?(0 < X < 1)=丄[「dx =丄(1 一 e")2" 2当 x<0 时,F(x) = J — e*dv = — e"2 2当心0时,F(x) = J ■^e~'^Av = J ¥&+[£「血十产F(x) =17•在区间[0, o]上任意投掷一个质点,以X表示这质点的坐标,设这质点落在[0, g] 中任意小区间内的概率与这小区间长度成正比例,试求X的分布函数.【解】由题意知X-U[0.o],密度函数为八1 2P(X>3) = J^-dv = -故所求概率为厂C 净出;(討=等19•设顾客在某银行的窗口等待服务的时间X(以分钟计)服从指数分布£(-).某顾客在窗口等待服务,若超过10分钟他就离开•他一个月要到银行5次,以y 表示一个月内他未等 到服务而离开窗口的次数,试写出Y 的分布律,并求P{g?l}・ 【解】依题意知X~E(-) •即英密度函数为^5-e 蔦 X > 0 0,x<0该顾客未等到服务而离开的概率为1 2P(X>10) = p-e"'dLv = e-'y~b(5・r),即其分布律为f(x) = 一,0<x<« a0, 其他故当xvO 时F (X)=0当 0 WxWo 时 F(x)=『f(t}dt = J ; yaM =J^idZ = - 当 x>a 时,F (X)=1 即分布函数0,x<0F(x)=Q<x<a x>a18•设随机变量X 在[2, 值大于3的概率. 【解】XP ⑵5),即5]上服从均匀分布•现对X 进行三次独立观测,求至少有两次的观测2<%<5/W = b'0, 其他P (y = £) = C (mi-r )Lk =0,12345P (r> I ) = l-P (y = 0) = l-(l-e--/=0.516720.某人乘汽车去火车站乘火车,有两条路可走.第一条路程较短但交通拥挤,所需时间X 服 从W (40, 102);第二条路程较长,但阻塞少,所需时间X 服从W (50, 4?). (1) 若动身时离火车开车只有1小时,问应走哪条路能乘上火车的把握大些 (2) 又若离火车开车时间只有45分钟,问应走哪条路赶上火车把握大些 【解】(1)若走第一条路,X-N (40. 102),则若泄:第二条路,X-N (50, 42),则p(X<60) = Px-40 60-40----- < ------- 10 10= 0(2) = 0.97727P(X<60) = P(X-5Q 60-50、---------- <I 4= 0(2.5) = 0.9938 卄故走第二条路乘上火车的把握大些. (2) 若 X"/(40, 102〉,贝I]P{X < 45) = pf X二° <45 j = 0(0.5) = 0.6915若 X~N (50, 42〉,则p(X <45) = P(X-5Q 45-501---------- <I 4= 0(-1.25)= 1-0(1.25) = 0.1056故走第一条路乘上火车的把握大些.21•设 X~N (3, 22),CD 求 P{2<X<5}» P{ 4<X<10}> P{|X| >2}, P{X>3}; (2)确总 c 使 P{X>c}=P{X^c}.【解】(1)P (2<X<5) = P=0(1) — 0 —一 =0 ⑴-1 + 0 -I 2丿 (2 = 0.8413-1 + 0.6915 = 0.5328 12P(-4<X <10) = P(-4-3X-3 10-3、 -------- < ----------- < -----------I 2 22 J2 12丿=0.9996P(l Xl>2) = P(X>2) + P(X <-2)P(X>3) = P(^^^>—) = 1-0(0) = 0.52 2⑵C=322•由某机器生产的螺栓长度(cm ) X-N C ),规定长度在±内为合格品,求一螺栓为不合格品 的概率•=1-0(2) + 0(-2) = 2[1- 0(2)] =0.045623•—工厂生产的电子管寿命X (小时)服从正态分布N (160, 02),若要求P{120VXW200} 允许。
概率论与数理统计模拟试题及答案

概率论与数理统计试题 考试时间:120分钟 试卷总分100分 题号 一 二 三 四 五 六 七 八 九 十 总分 得分 评卷教师一、填空题(满分15分)1.已知3.0)(=B P ,7.0)(=⋃B A P ,且A 与B 相互独立,则=)(A P 。
2.设随机变量X 服从参数为二项分布,且21}0{==X P ,则=p 。
3.设),3(~2σN X ,且1.0}0{=<X P ,则=<<}63{X P4.已知DX=1,DY=2,且X 和Y 相互独立,则D(2X-Y)=5.已知随机变量X 服从自由度为n 的t 分布,则随机变量2X 服从的分布是 。
二、选择题(满分15分)1.抛掷3枚均匀对称的硬币,恰好有两枚正面向上的概率是 。
装订线(A )0.125, (B )0.25, (C )0.375, (D )0.5 2.有γ个球,随机地放在n 个盒子中(γ≤n),则某指定的γ个盒子中各有一球的概率为 。
(A )γγn ! (B )γγn C r n ! (C )nn γ! (D) n n n C γγ! 3.设随机变量X 的概率密度为||)(x ce x f -=,则c = 。
(A )-21(B )0 (C )21 (D )14.掷一颗骰子600次,求“一点” 出现次数的均值为 。
(A )50 (B )100 (C )120 (D )1505.设总体X 在),(ρμρμ+-上服从均匀分布,则参数μ的矩估计量为 。
(A )x 1 (B )∑=-n i i X n 111 (C )∑=-n i i X n 1211 (D )x 三、计算题(满分60分)1.某商店拥有某产品共计12件,其中4件次品,已经售出2件,现从剩下的10件产品中任取一件,求这件是正品的概率。
2.设某种电子元件的寿命服从正态分布N (40,100),随机地取5个元件,求恰有两个元件寿命小于50的概率。
(8413.0)1(=Φ,9772.0)2(=Φ)3.在区间(0,1)中随机地取两个数,求事件“两数之和小于56”的概率。
概率论与数理统计2含答案

一.填空题(共10分)已知P(A)=12,P BA c h=34,P(B) =58,则P( A ∣B ) =______ 。
设随机变量X 服从参数为 λ 的泊松分布,且已知P{ X= 7 } =P{ X= 9 },则 λ =___________。
3、样本(,,,)X X X n 12 来自总体2~(, )X N μσ,则22(1)~n n S σ- ______________;()~n X S μ- ____________。
其中X 为样本均值,S n X X n i n 22111=--=∑()。
4、设X X X n 12,, 是来自正态总体N (,)μσ2的样本,记1nn i ii Y a X ==∑,若n Y 为μ的无偏估计,则12,,...n a a a 满足的等式为 。
5、设总体~(1,)X B p ,其中未知参数01<<p , X X X n 12,, 是X 的 样本,则p的矩估计为________,样本的似然函数为_________。
(f x p p p x x(;)()=-1 为 X的 概 率 密 度 函 数 ) 二、选择题(共10分)6、4, 1, 0.6XY DX DY ρ===,则(32)D X Y -=( )。
( A ) 40 ( B ) 34 ( C ) 25.6( D ) 17.67、样本(,,,)X X X n 12 来自总体X ,已知X 服从参数λ=1的指数分布,则Max X X X n {,,,}12 的分布函数为( )。
( A )F z z e z z()=<-≥R S T - 0010 ( B ) F z z e z z n()()=<-≥R S T - 0010 ( C ) F z z e z z ()=<≥R S T - 000 ( D )0 0()n 0nzz F Z e z -<⎧=⎨≥⎩ 8、随机变量~(1,1)X N ,记X 的概率密度为f(x),分布函数为F( x ),则有( )。
概率论与数理统计试习题与答案

设 为来自总体 的一个样本, 服从指数分布,其密度函数为 ,其中 为未知参数,试求 的矩估计量和极大似然估计量。
八、(本题满分12分)
设某市青少年犯罪的年龄构成服从正态分布,今随机抽取9名罪犯,其年龄如下:22,17,19,25,25,18,16,23,24,试以95%的概率判断犯罪青少年的年龄是否为18岁。
概率论与数理统计试题与答案(2012-2013-1)
概率统计模拟题一
一、填空题(本题满分18分,每题3分)
1、设 则 =。
2、设随机变量 ,若 ,则 。
3、设 与 相互独立, ,则 。
4、设随机变量 的方差为2,则根据契比雪夫不等式有 。
5、设 为来自总体 的样本,则统计量 服从
分布。
6、设正态总体 , 未知,则 的置信度为 的置信区间的长度 。(按下侧分位数)
对 求导,得
五、(本题满分10分)解: ;
六、(本题满分13分)矩估计: ,
极大似然估计:似然函数 ,
,
七、(本题满分12分)解:欲检验假设
因 未知,故采用 检验,取检验统计量 ,今 , , , , ,拒绝域为 ,因 的观察值 ,未落入拒绝域内,故在 下接受原假设。
八、(本题满分8分)因 ,故
概率统计模拟题二
试求: (1)常数 ; (2) 落在 内的概率; (3) 的分布函数 。
五、(本题满分12分)
设随机变量 与 相互独立,下表给出了二维随机变量 的联合分布律及关于 和 边缘分布律中的某些数值,试将其余数值求出。
六、(本题满分10分)设一工厂生产某种设备,其寿命 (以年计)的概率密度函数为:
工厂规定,出售的设备若在售出一年之内损坏可予以调换。若工厂售出一台设备赢利100元,调换一台设备厂方需花费300元,试求厂方出售一台设备净赢利的数学期望。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京语言大学网络教育学院
概率论与数理统计模拟试卷2
第I 卷(客观卷)
一、单项选择题(每题3分,共45分)
1、设A,B 是两个对立事件,P (A )>0 ,P (B )>0,则( )一定不成立。
(A )P (A)=1-P (B ) (B )P (A│B)=0 (C )P (A│B )=1
(D )P (A B )=1
2、已知随机变量X 的概率密度为f X (x ),令X Y 2-=,则Y 的概率密度f Y (y)为( )。
(A )2f X (-2y) (B )f X ()-y 2
(C )-
-1
22
f y X () (D )1
2
2
f y X ()-
3、设A,B,C 是三个相互独立的事件,且0<P (C )<1,则在下列给定的四对事件中不相互独立的是( )。
(A )A
B C 与 (B )AC C 与 (C )A B C -与
(D )AB C 与
4、如果()F x 是( ),则()F x 一定不可以是连续型随机变量的分布函数。
(A )非负函数 (B )连续函数 (C )有界函数 (D )单调减少函数
5、下列二元函数中,( )可以作为连续型随机变量的联合概率密度。
(A )cos 01(,)220
x x y f x y ππ⎧
-≤≤≤≤⎪=⎨⎪⎩其它
(B )1
cos 0(,)22
20
x x y g x y ππ⎧
-≤≤
≤≤
⎪=⎨⎪⎩其它
(C ) cos 001
(,)0
x x y x y π
ϕ≤≤≤≤⎧=⎨
⎩其它
(D )1
cos 00(,)20
x x y h x y π
⎧
≤≤≤≤
⎪=⎨
⎪⎩其它
6、设F(x)是离散型随机变量的分布函数,若()P b ξ==( ),则
()()()P a b F b F a ξ<<=- 成立。
(A )()()F a F b - (B )()()F b F a - (C )()()F a F b +
(D )1
7、已知随机变量ξ,η的方差D ξ,D η均存在,则下列等式中,( )一定不成立。
(A )D ()ξη-= D ξ—D η
(B )D ()ξη-= ()()2
2E E ξηξη---⎡⎤⎣⎦ (C )D ()ξη-=2cov(,)D D ξηξη+- (D )D ()ξη-=()()2
E E E ξξηη---⎡⎤⎣⎦
8、设随机变量ξ的期望E ξ,方差D ξ及2
E ξ都存在,则一定有( )。
(A )E ξ≥0 (B )D ξ≥0 (C )()2
E ξ≥2
E ξ
(D )2
E ξ≥E ξ
9、设有独立随机变量序列12,,,,
n X X X ,… 具有如下分布律:
1
21
21
n X a a n n
P n
n
则( )契比雪夫定理。
(A )不满足 (B )满足
(C )不一定 (D )以上都不对
10、假设随机变量X 服从分布()t n ,则2
1X 服从分布( )。
(A )2
1(,2)X F n (B )2
1(,1)X F n (C )21(1)X
t n -
(D )2
1(1,)X
F n
11、样本1100,,(1)X X n >来自标准正态分布总体2(,),N X S μσ与分别是样本均值与
样本标准差,则下面结论不成立的有( )。
(A )2
X S 与相互独立
(B )2
X S 与(n-1)相互独立
(C )2
2
11
()n
i
i X X
X σ
=-∑与
相互独立
(D )22
1
1
()n
i
i X X
μσ
=-∑与
相互独立
12、假设1,,n X X 是来自正态总体()
2,N μσ的一个样本,参数μ与2σ未知,假设
22
0:0H σσ≥,则在显著水平0.05α=下,该检验的拒绝域R 是( )。
(A )19.02K ≥
(B )16.92K ≥
(C ) 2.719.02K K ≤≥或 (D ) 3.3K ≤
13、在0H 为原假设,1H 为备择假设的假设检验中,若显著性水平为α,则( )。
00111001()(|);()(|);()(|);
()(|).
A P H H
B P H H
C P H H
D P H H αααα====接受成立接受成立接受成立接受成立
14、样本()1,
,3n X X n ≥取自总体X ,则下列估计量中,不是总体期望μ的无偏估
计量有( )。
(A )X
(B )12n X X X ++
+
(C )10.1(64)n X X +
(D )123X X X +-
15、如果1ˆθ与2ˆθ都是总体未知参数θ的估计量,称1ˆθ比2ˆθ有效,则1ˆθ与2
ˆθ的期望与方差一定满足( )。
(A )1ˆE θ2ˆE θ=,1ˆD θ2ˆD θ≤ (B )1ˆE θ2ˆE θ≠,1ˆD θ2ˆD θ≤ (C )1ˆE θ2ˆE θ≤,1
ˆD θ2ˆD θ≤ (D )1ˆE θ2ˆE θ=,1ˆD θ2
ˆD θ=
第II 卷(主观卷)
二、填空题(每题3分,共15分)
1、设A 与B 是相互独立的事件,已知21)(=
A P ,3
1)(=B P ,则=+)(B A P 。
2、某电子元件的寿命X 的概率密度为(单位:h )
2
0,
()1000,f x x ⎧⎪
=⎨⎪⎩
10001000x x ≤>
装有5个这种电子元件的系统在使用的前1500h 内正好有2个元件需要更换的概率
是 。
3、设ξ为一随机变量,若()10D ξ=10,则D ξ= 。
4、对于两个正态总体()21
1
,N
μσ与()2
22,N μσ,则假设22
12:H
σσ=的F 检验使用
的统计量22
12F S S =,当第1个样本容量10m =,第2个样本容量13n =时,在显著
水平0.10α=下,其拒绝域R 为 。
5、设总体2
~(,)X N μσ,2
σ已知,μ为未知参数,1(,
,)n X X 为样本,又()x Φ表
示标准正态分布(0,1)N 的分布函数,已知(1.96)0.975,(1.64)0.95,μΦ=Φ=的置信
水平为0.95的置信区间
为X X ⎛
-+ ⎝
,其中11n i i X X n ==∑,则
λ= 。
三、计算题(每题10分,共40分)
1、 10个球中有3个红球7个绿球,随机地分给10个小朋友,每人一球,则最后三个分到球的小朋友恰有一个得到红球的概率是多少?
2、设随机变量X 与Y 同分布,X 的密度函数为()2
380
x
f x ⎧⎪=⎨⎪⎩ 02x <<其他, 设
{}A X a =>与{}B Y a =>相互独立,且()3
4
P A B =
,求a 的值. 3、设连续型随机变量ξ的分布函数为()3
8120
2
x F x x
x ⎧-≥⎪=⎨⎪<⎩,求ξ的期望与方差的
值。
4、设121,,
,,n n X X X X +是来自正态总体()
2
,N μσ的样本,
2
211
11,()1n n i i i i X X S
X X n n ====-∑∑,则统计量Y =
一、单项选择题:1、B 2、D 3、B 4、D 5、B 6、B 7、A 8、B 9、B 10、
B 11、D 12、D 13、
C 14、B 15、A 二、填空题:1、
32
2、80243
3、110
4、{}2.80.3F F ≥≤或
5、1.96
三、计算题:(必须有必要的计算过程)
1、12
373
10
C C C 2
3、3E ξ=,3D ξ=
4、()1t n -。