中考专题复习六 方案设计问题
九年级复习应用题——方案设计型问题

(1)方程或不等式解决方案设计问题:首先要了解问题取材的生活背景;其次要弄清 题意,根据题意建构恰当的方程模型或不等式模型,求出所求未知数的取值范围;最 后再结合实际问题确定方案设计的种数. (2)择优型方案设计问题:这类问题一般方案已经给出,要求综合运用数学知识比较 确定哪种方案合理的问题.此类问题要注意两点:一是要符合问题描述的要求,二是 要具有代表性. (3)动手操作型方案设计问题:大体可分为三类,即图案设计类、图形拼接类、图形 分割类等.对于图案设计类,一般运用中心对称、轴对称或旋转等几何知识去解决; 对于图形拼接类,关键是抓住需要拼接的图形与所给图形之间的内在关系,然后逐一 组合;对于图形分割类,一般遵循由特殊到一般、由简单到复杂的动手操作过程.
故购进一件A种纪念品需要100元,购进一件B种纪念品需要50元. (2)设该商店购进A种纪念品x个,则购进B种纪念品有(100—x)个,
∵ x 为正整数,∴共有4种进货方案. (3)因为B种纪念品利润较高,故B种数量越多总利润越高,因此选择购A种50件,B种50件, 总利润=50×20+50×30=2500(元), 故当购进A种纪念品50件,B种纪念品50件时,可获最大利润,最大利润是2500元.
方案设计型问题
感悟提高 通过计算得出各个方案的数值,逐一比较.
变式测试1 某通讯器材商场,计划用60000元从厂家购进若干部新型手机,以满足市场
需求.已知该厂家生产三种不同型号的手机,出厂价分别为:甲种型号手机每部1800 元,乙种型号手机每部600元,丙种型号手机每部1200元. (1)若商场同时购进其中两种不同型号的手机共40部,并将60000元恰好用完,请你帮助 商场计算一下应如何购买; (2)若商场同时购进三种不同型号的手机共40部,并将60000元恰好用完,并且要求乙种型 号手机的购买数量不少于6部且不多于8部,请你求出商场每种型号手机的购买数量.
中考数学总复习 专题六 方案设计与决策(专题讲练+名师

专题六 方案设计与决策方案设计与决策在中考中是常见题型.涉及代数方面的有方程(组)、不等式(组)和函数两类;涉及几何方面的有测量、包装等.考向一 利用方程(组)或不等式(组)进行方案设计生活中许多实际问题需借助方程(组)或不等式(组)的求解,不仅如此还需要对方程(组)或不等式(组)的解,进行有针对性的分析作出方案设计与决策.【例1】 (2011湖南永州)某学校为开展“阳光体育”活动,计划拿出不超过3 000元的资金购买一批篮球、羽毛球拍和乒乓球拍,已知篮球、羽毛球拍和乒乓球拍的单价比为8∶3∶2,且其单价和为130元.(1)请问篮球、羽毛球拍和乒乓球拍的单价分别是多少元?(2)若要求购买篮球、羽毛球拍和乒乓球拍的总数量是80个(副),羽毛球拍的数量是篮球数量的4倍,且购买乒乓球拍的数量不超过15副,请问有几种购买方案?分析:(1)已知篮球、羽毛球拍和乒乓球拍的单价比为8∶3∶2,且其单价和为130元.可以设它们的单价分别为8x,3x,2x 元,列一元一次方程来解决;(2)根据购买篮球、羽毛球拍和乒乓球拍的总数量是80个(副),羽毛球拍的数量是篮球数量的4倍,找出羽毛球拍和乒乓球拍与篮球的关系,再根据购买乒乓球拍的数量不超过15副和不超过3 000元的资金购买一批篮球、羽毛球拍和乒乓球拍这两个不等关系列不等式组,求出篮球数量的范围,从而制定出方案.解:(1)因为篮球、羽毛球拍和乒乓球拍的单价比为8∶3∶2,所以,可以依次设它们的单价分别为8x,3x,2x 元,于是,得8x +3x +2x =130,解得x =10.所以,篮球、羽毛球拍和乒乓球拍的单价分别为80元、30元和20元.(2)设购买篮球的数量为y 个,则购买羽毛球拍的数量为4y 副,购买乒乓球拍的数量为(80-y -4y )副,根据题意,得⎩⎪⎨⎪⎧ 80y +30×4y +20(80-y -4y )≤3 000,80-y -4y ≤15,①② 由不等式①,得y ≤14,由不等式②,得y ≥13.于是,不等式组的解集为13≤y ≤14,因为y 取整数,所以y 只能取13或14.因此,一共有两个方案:方案一,当y =13时,篮球购买13个,羽毛球拍购买52副,乒乓球拍购买15副; 方案二,当y =14时,篮球购买14个,羽毛球拍购买56副,乒乓球拍购买10副. 方法归纳 本类型题目主要特点有:(1)当利用不等关系来确定取值范围时,要结合不等式的取值范围来讨论;(2)当利用方程来确定取值范围时,往往利用解的整数性来解答.需要说明的是利用方程(组)或不等式(组)进行方案设计常常可借助一次函数的性质进行决策.考向二 利用二次函数进行方案设计在商业活动或生产活动过程中常常遇到最优化问题.解决此类问题一般可借助二次函数以及二次函数的最大(小)值进行最优方案的选择或设计.【例2】 (2011江津)在“五个重庆”建设中,为了提高市民的宜居环境,某区规划修建一个文化广场(平面图形如图所示),其中四边形ABCD 是矩形,分别以AB ,BC ,CD ,DA 边为直径向外作半圆,若整个广场的周长为628米,设矩形的边长AB =y 米,BC =x 米.(注:取π=3.14)(1)试用含x 的代数式表示y .(2)现计划在矩形ABCD 区域上种植花草和铺设鹅卵石等,平均每平方米造价为428元,在四个半圆的区域上种植草坪及铺设花岗岩,平均每平方米造价为400元;①设该工程的总造价为w 元,求w 关于x 的函数关系式.②若该工程政府投入1千万元,问能否完成该工程的建设任务?若能,请列出设计方案,若不能,请说明理由.③若该工程在政府投入1千万元的基础上,又增加企业募捐资金64.82万元,但要求矩形的边BC 的长不超过AB 长的三分之二,且建设广场恰好用完所有资金,问:能否完成该工程的建设任务?若能,请列出所有可能的设计方案,若不能,请说明理由.分析:(1)根据圆周长列出关于x ,y 的等式;(2)①根据三个区域的面积和价格标准,列出关于x 的函数关系式;②比较二次函数的最小值与1千万的大小,给出判断;③根据“建设刚好把政府投入的1千万与企业募捐资金64.82万元刚好用完”列出相应的一元二次方程,解出方程的根,根据长宽的要求进行取舍.解:(1)由题意得πy +πx =628.∵π=3.14,∴3.14y +3.14x =628.∴x +y =200.则y =200-x .(2)①w =428xy +400π⎝ ⎛⎭⎪⎫y 22+400π⎝ ⎛⎭⎪⎫x 22=428x (200-x )+400×3.14×(200-x )24+400×3.14×x 24=200x 2-40 000x +12 560 000. ②仅靠政府投入的1千万元不能完成该工程的建设任务,其理由如下:由①知w =200(x -100)2+1.056×107>107,所以不能.③由题意,得x ≤23y ,即x ≤23(200-x ),解得x ≤80. ∴0≤x ≤80.又根据题意,得w =200(x -100)2+1.056×107=107+6.482×105.整理,得(x -100)2=441,解得x 1=79,x 2=121(不合题意,舍去).∴只能取x =79,则y =200-79=121.∴设计的方案是:AB 长为121米,BC 长为79米,再分别以各边为直径向外作半圆. 方法归纳 利用二次函数解决方案设计问题一般地需要先建立二次函数解析式,然后根据求二次函数最值的方法,即当x =-b 2a 时,y 有最大(小)值4ac -b 24a求得最值.最后要结合问题情境确定方案.注意有时确定最值时,需要考虑要在x 的取值范围内.考向三 利用几何知识进行方案设计与决策利用几何知识进行方案设计,不仅要有一定的几何作图能力,而且要能熟练地运用几何的有关性质及全等、相似、图形变换、方程及三角函数的有关知识,并注意充分发挥分类讨论、类比归纳、猜想验证等数学思想方法的作用.【例3】 某校数学研究性学习小组准备作测量旗杆的数学实践活动,来到旗杆下,发现旗杆AB 顶端A 垂下一段绳子ABC 如图1.经研究发现,原来制定的一系列测量方案,在此都不需要.如今只借助垂下的绳子和一根皮尺,在不攀爬旗杆的情况下,测量相关数据,就可以计算出旗杆的高度.图1(1)请你给出具体的测量方案,并写出推算旗杆高度的过程;(2)推测这个数学研究性学习小组原来制定的一系列测量旗杆的方案是什么?分析:针对该问题所提供的情境知道:(1)旗杆垂直于地面;(2)旗杆AB 顶端A 垂下一段绳子,即绳子比旗杆长出的部分可度量.因此可联系相关的数学知识利用勾股定理探讨具体测量方案.解:(1)测量方案设计如下:①测量绳子比旗杆多出的部分BC =a m ;②把绳子ABC 拉紧到地面D 处如图2,测量B 到D 的距离BD =b m.图2推算过程:设旗杆的高度为x m ,则AD 是(x +a ) m.在直角△ABD 中,根据AB 2+BD 2=AD 2得x 2+b 2=(x +a )2,x 2+b 2=x 2+a 2+2ax ,解得x =b 2-a 22a. (2)这个数学研究性学习小组原来制定的测量旗杆的方案可能有以下几个:图3 图4方法归纳 关于物体的测量是一个实际问题,因此必须考虑实际环境,结合实际环境,充分运用所学知识制定方案,制定方案时要遵循可操作性强、简单易行原则.第2个问题的测量方案还可有其他的,有兴趣的同学可自行进一步探讨.对于以上2种测量方案的相关计算方法,请同学们自己给出.一、选择题1.小芳家房屋装修时,选中了一种漂亮的正八边形地砖.建材店老板告诉她,只用一种八边形地砖是不能密辅地面的,便向她推荐了几种形状的地砖.你认为要使地面密铺,小芳应选择另一种形状的地砖是( )2.现有球迷150人欲同时租用A ,B ,C 三种型号客车去观看世界杯足球赛,其中A ,B ,C三种型号客车载客量分别为50人,30人,10人,要求每辆车必须载满,其中A型客车最多租2辆,则球迷们一次性到达赛场的租车方案有( )A.3种 B.4种 C.5种 D.6种二、填空题3.某班为筹备运动会,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下,有__________种购买方案.4.如图,点A1,A2,A3,A4是某市正方形道路网的部分交汇点,且它们都位于同一对角线上.某人从点A1出发,规定向右或向下行走,那么到达点A3的走法共有__________.三、解答题5.某楼盘一楼是车库(暂不出售),二楼至二十三楼均为商品房(对外销售).商品房售价方案如下:第八层售价为3 000元/米2,从第八层起每上升一层,每平方米的售价增加40元;反之,楼层每下降一层,每平方米的售价减少20元.已知商品房每套面积均为120平方米.开发商为购买者制定了两种购房方案:方案一:购买者先交纳首付金额(商品房总价的30%),再办理分期付款(即贷款).方案二:购买者若一次付清所有房款,则享受8%的优惠,并免收五年物业管理费(已知每月物业管理费为a元).(1)请写出每平方米售价y(元/米2)与楼层x(2≤x≤23,x是正整数)之间的函数解析式.(2)小张已筹到120 000元,若用方案一购房,他可以购买哪些楼层的商品房呢?(3)有人建议老王使用方案二购买第十六层,但他认为此方案还不如不免收物业管理费而直接享受9%的优惠划算.你认为老王的说法一定正确吗?请用具体数据阐明你的看法.6.一块洗衣肥皂长、宽、高分别是16 cm,6 cm,3 cm.一箱肥皂30条,请你为雕牌肥皂厂设计一种符合下列要求的包装箱,并使包装箱所用材料最少.(1)肥皂装箱时,相同的面积要互相对接;(2)包装箱是一个长方形;(3)装入肥皂后不留空隙.7.如图,飞机沿水平方向(A,B两点所在直线)飞行,前方有一座高山,为了避免飞机飞行过低,就必须测量山顶M到飞行路线AB的距离MN.飞机能够测量的数据有俯角和飞行距离(因安全因素,飞机不能飞到山顶的正上方N处才测飞行距离),请设计一个求距离MN 的方案,要求:(1)指出需要测量的数据(用字母表示,并在图中标出);(2)用测出的数据写出求距离MN的步骤.8.知识背景:恩施来凤有一处野生古杨梅群落,其野生杨梅是一种具有特殊价值的绿色食品.在当地市场出售时,基地要求“杨梅”用双层上盖的长方体纸箱封装(上盖纸板面积刚好等于底面面积的2倍,如图).(1)实际运用:如果要求纸箱的高为0.5米,底面是黄金矩形(宽与长的比是黄金比,取黄金比为0.6),体积为0.3立方米.①按方案1(如图)做一个纸箱,需要矩形硬纸板A1B1C1D1的面积是多少平方米?②小明认为,如果从节省材料的角度考虑,采用方案2(如图)的菱形硬纸板A2B2C2D2做一个纸箱比方案1更优,你认为呢?请说明理由.(2)拓展思维:北方一家水果商打算在基地购进一批“野生杨梅”,但他感觉(1)中的纸箱体积太大,搬运吃力,要求将纸箱的底面周长、底面面积和高都设计为原来的一半,你认为水果商的要求能办到吗?请利用函数图象验证.纸箱示意图纸箱展开图(方案1)纸箱展开图(方案2)备用图形参考答案专题提升演练1.B 正八边形的内角度数为135°,正三角形一个内角度数为60°,设密铺时,一个接缝点周围有m 块正八边形,n 块正三角形,则有135m +60n =360,通过试根,没有满足条件的正整数m ,n 的值使方程成立,因此A 选项错误;依次类推,分别把60°换成90°,120°,经过试根,只有90°可以找到满足条件的正整数m ,n 的值使方程成立,因此,选B.2.B 因为A 型车最多租用2辆,所以有两种情况,租用1辆A 型车或租用2辆A 型车,设租用B 型车x 辆,C 型车y 辆.①租用1辆A 型车时,50+30x +10y =150,其正整数解为⎩⎪⎨⎪⎧ x =1,y =7,⎩⎪⎨⎪⎧ x =2,y =4,⎩⎪⎨⎪⎧ x =3,y =1;②租用2辆A 型车时,100+30x +10y =150,其正整数解为⎩⎪⎨⎪⎧ x =1,y =2.综上所述,共有4种情况.3.2 设购买甲、乙两种运动服分别为x 套和y 套(x ,y 为正整数),依题意,得20x +35y =365,整理,得4x +7y =73.y =73-4x 7=11-4(x +1)7≥1. ∵x ,y 为正整数,∴x +1是7的倍数.∴⎩⎪⎨⎪⎧73-4x ≥7,x +1=7k (k 为正整数),解得27≤k ≤52, ∴整数k =1或2,∴⎩⎪⎨⎪⎧ x =6,y =7,或⎩⎪⎨⎪⎧x =13,y =3. 4.6种 从点A 1出发,先向下走有三种走法,先向右走也有三种走法,共6种.5.解:(1)1°当2≤x ≤8时,每平方米的售价应为:3 000-(8-x )×20=20x +2 840(元/平方米).2°当9≤x ≤23时,每平方米的售价应为:3 000+(x -8)·40=40x +2 680(元/平方米).∴y =⎩⎪⎨⎪⎧ 20x +2 840(2≤x ≤8),40x +2 680(9≤x ≤23),x 为正整数.(2)由(1)知:1°当2≤x ≤8时,小张首付款为(20x +2 840)·120·30%=36(20x +2 840)≤36(20·8+2 840)=108 000元<120 000元.∴2~8层可任选.2°当9≤x ≤23时,小张首付款为(40x +2 680)·120·30%=36(40x +2 680)元.36(40x +2 680)≤120 000,解得:x ≤493=1613. ∵x 为正整数,∴9≤x ≤16.综上得:小张用方案一可以购买二至十六层的任何一层.(3)若按方案二购买第十六层,则老王要实交房款为:y 1=(40·16+2 680)·120·92%-60a (元).若按老王的想法则要交房款为:y 2=(40·16+2 680)·120·91%(元).∵y 1-y 2=3 984-60a ,当y 1>y 2即y 1-y 2>0时,解得0<a <66.4,此时老王想法正确;当y 1≤y 2即y 1-y 2≤0时,解得a ≥66.4,此时老王想法不正确.6.解:方案一:以16×3的面相对连放三块构成底层,再如此放10层,整个表面积为最小值2 616 cm 2;方案二:以16×3的面相对连放五块构成底层,再如此放6层,整个表面积仍为最小值2 616 cm 2.7.解:答案不唯一.(1)如图,测出飞机在A 处对山顶的俯角为α,测出飞机在B 处对山顶的俯角为β,测出AB 的距离为d ,连接AM ,BM .(2)第一步,在Rt△AMN 中,tan α=MN AN ,∴AN =MN tan α; 第二步,在Rt△BMN 中,tan β=MN BN ,∴BN =MNtan β; 其中AN =d +BN ,解得MN =d ·tan α·tan βtan β-tan α.8.解:(1)①设这个纸箱底面的长为x ,则宽为0.6x .∵x ×0.6x ×0.5=0.3,∴x 2=1,解得x =1.由图示可知,1111A B C D S =[1+2×(0.5+0.5)]×[0.6+2×(0.5+0.3)]=3×2.2=6.6(平方米). ②方案2优惠.由图示可知,h 1h 1+1=0.30.3+0.8,解得h 1=38.h 2h 2+0.8=0.50.5+1,解得h 2=25.∴2222A B C D S =12×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫3+2×38×⎝ ⎛⎭⎪⎫2.2+2×25=12×⎝ ⎛⎭⎪⎫308×3=5.625(平方米). ∵5.625平方米<6.6平方米,∴采用方案2优惠.(2)设现在设计的纸箱的底面长为x 米,宽为y 米,则x +y =0.8,xy =0.3.即y =0.8-x 和y =0.3x ,其图象如图所示.因为两个函数图象无交点,所以要将纸箱的底面周长、底面面积和高都设计为原来的一半,水果商的这种要求不能办到.。
中考复习《方案设计问题》综合练习含答案

中考复习《方案设计问题》综合练习1、某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9000元;购买10副横拍球拍比购买5副直拍球拍多花费1600元.(1)求两种球拍每副各多少元?(2)若学校购买两种球拍共40副,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.2、为保障我国海外维和部队官兵的生活,现需通过A港口、B 港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:港口运费(元/台)甲库乙库A港14 20B港10 8(1)设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x的取值范围;(2)求出最低费用,并说明费用最低时的调配方案.3、)某商店购进甲乙两种商品,甲的进货单价比乙的进货单价高20元,已知20个甲商品的进货总价与25个乙商品的进货总价相同.(1)求甲、乙每个商品的进货单价;(2)若甲、乙两种商品共进货100件,要求两种商品的进货总价不高于9000元,同时甲商品按进价提高10%后的价格销售,乙商品按进价提高25%后的价格销售,两种商品全部售完后的销售总额不低于10480元,问有哪几种进货方案?(3)在条件(2)下,并且不再考虑其他因素,若甲乙两种商品全部售完,哪种方案利润最大?最大利润是多少?4、现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?5、荔枝是深圳的特色水果,小明的妈妈先购买了2千克桂味和3千克糯米糍,共花费90元;后又购买了1千克桂味和2千克糯米糍,共花费55元.(每次两种荔枝的售价都不变)(1)求桂味和糯米糍的售价分别是每千克多少元;(2)如果还需购买两种荔枝共12千克,要求糯米糍的数量不少于桂味数量的2倍,请设计一种购买方案,使所需总费用最低.6、倡导健康生活,推进全民健身,某社区要购进A,B两种型号的健身器材若干套,A,B两种型号健身器材的购买单价分别为每套310元,460元,且每种型号健身器材必须整套购买.(1)若购买A,B两种型号的健身器材共50套,且恰好支出20000元,求A,B两种型号健身器材各购买多少套?(2)若购买A,B两种型号的健身器材共50套,且支出不超过18000元,求A种型号健身器材至少要购买多少套?7、某中学开学初到商场购买A、B两种品牌的足球,购买A种品牌的足球50个,B种品牌的足球25个,共花费4500元,已知购买一个B种品牌的足球比购买一个A钟品牌的足球多花30元.(1)求购买一个A种品牌、一个B种品牌的足球各需多少元.(2)学校为了响应习总书记“足球进校园”的号召,决定再次购进A、B两种品牌足球共50个,正好赶上商场对商品价格进行调整,A品牌足球售价比第一次购买时提高4元,B品牌足球按第一次购买时售价的9折出售,如果学校此次购买A、B两种品牌足球的总费用不超过第一次花费的70%,且保证这次购买的B种品牌足球不少于23个,则这次学校有哪几种购买方案?(3)请你求出学校在第二次购买活动中最多需要多少资金?8、(列方程(组)及不等式解应用题)春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.9、公司有330台机器需要一次性运送到某地,计划租用甲、乙两种货车共8辆,已知每辆甲种货车一次最多运送机器45台、租车费用为400元,每辆乙种货车一次最多运送机器30台、租车费用为280元(1)设租用甲种货车x辆(x为非负整数),试填写表格.表一:给出能完成此项运送任务的最节省费用的租车方案,并说明理由.10、为了提高身体素质,有些人选择到专业的健身中心锻炼身体,某健身中心的消费方式如下:普通消费:35元/次;白金卡消费:购卡280元/张,凭卡免费消费10次再送2次;钻石卡消费:购卡560元/张,凭卡每次消费不再收费.以上消费卡使用年限均为一年,每位顾客只能购买一张卡,且只限本人使用.(1)李叔叔每年去该健身中心健身6次,他应选择哪种消费方式更合算?(2)设一年内去该健身中心健身x次(x为正整数),所需总费用为y元,请分别写出选择普通消费和白金卡消费的y与x的函数关系式;(3)王阿姨每年去该健身中心健身至少18次,请通过计算帮助王阿姨选择最合算的消费方式.11、州)我州某养殖场计划购买甲、乙两种鱼苗600条,甲种鱼苗每条16元,乙种鱼苗每条20元,相关资料表明:甲、乙两种鱼苗的成活率为80%,90%(1)若购买这两种鱼苗共用去11000元,则甲、乙两种鱼苗各购买多少条?(2)若要使这批鱼苗的总成活率不低于85%,则乙种鱼苗至少购买多少条?(3)在(2)的条件下,应如何选购鱼苗,使购买鱼苗的总费用最低?最低费用是多少?12、小丽购买学习用品的收据如表,因污损导致部分数据无法识别,根据下表,解决下列问题:(1)小丽买了自动铅笔、记号笔各几支?(2)若小丽再次购买软皮笔记本和自动铅笔两种文具,共花费15元,则有哪几种不同的购买方案?商品名单价(元)数量(个)金额(元)签字笔 3 2 6自动铅笔1.5 ●●记号笔 4 ●●软皮笔记本● 2 9圆规 3.5 1 ●合计8 2813、随着信息技术的快速发展,“互联网+”渗透到我们日常生活的各个领域,网上在线学习交流已不再是梦,现有某教学网站策划了A,B两种上网学习的月收费方式:收费方式月使用费/元包时上网时间/h超时费/(元/min)A 7 25 0.01B m n 0.01的收费金额分别为y A,y B.(1)如图是y B与x之间函数关系的图象,请根据图象填空:m=________ n=________(2)写出与x之间的函数关系式.(3)选择哪种方式上网学习合算,为什么?14、在学习概率的课堂上,老师提出问题:只有一张电影票,小明和小刚想通过抽取扑克牌的游戏来决定谁去看电影,请你设计一个对小明和小刚都公平的方案.甲同学的方案:将红桃2、3、4、5四张牌背面向上,小明先抽一张,小刚从剩下的三张牌中抽一张,若两张牌上的数字之和是奇数,则小明看电影,否则小刚看电影.(1)甲同学的方案公平吗?请用列表或画树状图的方法说明;(2)乙同学将甲的方案修改为只用红桃2、3、4三张牌,抽取方式及规则不变,乙的方案公平吗?(只回答,不说明理由)15、新农村社区改造中,有一部分楼盘要对外销售,某楼盘共23层,销售价格如下:第八层楼房售价为4000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套楼房面积均为120米2.若购买者一次性付清所有房款,开发商有两种优惠方案:方案一:降价8%,另外每套楼房赠送a元装修基金;方案二:降价10%,没有其他赠送.(1)请写出售价y(元/米2)与楼层x(1≤x≤23,x取整数)之间的函数关系式;(2)老王要购买第十六层的一套楼房,若他一次性付清购房款,请帮他计算哪种优惠方案更加合算.16、斯)某足球协会举办了一次足球联赛,其记分规定及奖励方案如下表:胜一场平一场负一场积分 3 1 0奖金(元/人)1300 500 0当比赛进行到第11轮结束(每队均须比赛11场)时,A队共积17分,每赛一场,每名参赛队员均得出场费300元.设A队其中一名参赛队员所得的奖金与出场费的和为w(元).(1)试说明w是否能等于11400元.(2)通过计算,判断A队胜、平、负各几场,并说明w可能的最大值.17、甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同.“五一期间”,两家均推出了优惠方案,甲采摘园的优惠方案是:游客进园需购买50元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,设某游客的草莓采摘量为x(千克),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元),图中折线OAB表示y2与x之间的函数关系.(1)甲、乙两采摘园优惠前的草莓销售价格是每千克________元;(2)求y1、y2与x的函数表达式;(3)在图中画出y1与x的函数图象,并写出选择甲采摘园所需总费用较少时,草莓采摘量x的范围.18、课本中有一个例题:有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?这个例题的答案是:当窗户半圆的半径约为0.35m时,透光面积最大值约为1.05m2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m,利用图3,解答下列问题:(1)若AB为1m,求此时窗户的透光面积?(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.19、某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x名游客的某团队,收取总费用为y元.(1)求y关于x的函数表达式;(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m的取值范围.答案【答案】1.(1)解:设直拍球拍每副x元,横拍球每副y元,由题意得,,解得,,答:直拍球拍每副220元,横拍球每副260元(2)解:设购买直拍球拍m副,则购买横拍球(40﹣m)副,由题意得,m≤3(40﹣m),解得,m≤30,设买40副球拍所需的费用为w,则w=(220+20)m+(260+20)(40﹣m)=﹣40m+11200,∵﹣40<0,∴w随m的增大而减小,∴当m=30时,w取最大值,最大值为﹣40×30+11200=10000(元).答:购买直拍球拍30副,则购买横拍球10副时,费用最少2.【答案】(1)解:设从甲仓库运x吨往A港口,则从甲仓库运往B港口的有(80﹣x)吨,从乙仓库运往A港口的有(100﹣x)吨,运往B港口的有50﹣(80﹣x)=(x﹣30)吨,所以y=14x+20(100﹣x)+10(80﹣x)+8(x﹣30)=﹣8x+2560,x的取值范围是30≤x≤80(2)解:由(1)得y=﹣8x+2560y随x增大而减少,所以当x=80时总运费最小,当x=80时,y=﹣8×80+2560=1920,此时方案为:把甲仓库的全部运往A港口,再从乙仓库运20吨往A港口,乙仓库的余下的全部运往B港口3.【答案】(1)解:设甲每个商品的进货单价是x元,每个乙商品的进货单价是y元.根据题意得:,解得:,答:甲商品的单价是每件100元,乙每件80元(2)解:设甲进货x件,乙进货(100﹣x)件.根据题意得:,解得:48≤x≤50.又∵x是正整数,则x的正整数值是48或49或50,则有3种进货方案(3)解:销售的利润w=100×10%x+80(100﹣x)×25%,即w=2000﹣10x,则当x取得最小值48时,w取得最大值,是2000﹣10×48=1520(元).此时,乙进的件数是100﹣48=52(件).答:当甲进48件,乙进52件时,最大的利润是1520元4.【答案】(1)解:由题意知:当0<x≤1时,y甲=22x;当1<x时,y甲=22+15(x﹣1)=15x+7.y乙=16x+3.(2)解:①当0<x≤1时,令y甲<y乙,即22x<16x+3,解得:0<x<;令y甲=y乙,即22x=16x+3,解得:x= ;令y甲>y乙,即22x>16x+3,解得:<x≤1.②x>1时,令y甲<y乙,即15x+7<16x+3,解得:x>4;令y甲=y乙,即15x+7=16x+3,解得:x=4;令y甲>y乙,即15x+7>16x+3,解得:0<x<4.综上可知:当<x<4时,选乙快递公司省钱;当x=4或x= 时,选甲、乙两家快递公司快递费一样多;当0<x<或x>4时,选甲快递公司省钱.5.【答案】(1)解:设桂味的售价为每千克x元,糯米糍的售价为每千克y元;根据题意得:,解得:;答:桂味的售价为每千克15元,糯米糍的售价为每千克20元.(2)解:设购买桂味t千克,总费用为W元,则购买糯米糍(12﹣t)千克,根据题意得:12﹣t≥2t,∴t≤4,∵W=15t+20(12﹣t)=﹣5t+240,k=﹣5<0,∴W随t的增大而减小,∴当t=4时,W的最小值=220(元),此时12﹣4=8;答:购买桂味4千克,糯米糍8千克时,所需总费用最低.6、【答案】(1)解:设购买A种型号健身器材x套,B型器材健身器材y套,根据题意,得:,解得:,答:购买A种型号健身器材20套,B型器材健身器材30套(2)解:设购买A型号健身器材m套,根据题意,得:310m+460(50﹣m)≤18000,解得:m≥33 ,∵m为整数,∴m的最小值为34,答:A种型号健身器材至少要购买34套7.【答案】(1)解:设A种品牌足球的单价为x元,B种品牌足球的单价为y元,依题意得:,解得:.答:购买一个A种品牌的足球需要50元,购买一个B种品牌的足球需要80元.(2)解:设第二次购买A种足球m个,则购买B中足球(50﹣m)个,依题意得:,解得:25≤m≤27.故这次学校购买足球有三种方案:方案一:购买A种足球25个,B种足球25个;方案二:购买A种足球26个,B种足球24个;方案三:购买A种足球27个,B种足球23个.(3)解:∵第二次购买足球时,A种足球单价为50+4=54(元),B种足球单价为80×0.9=72(元),∴当购买方案中B种足球最多时,费用最高,即方案一花钱最多.∴25×54+25×72=3150(元).答:学校在第二次购买活动中最多需要3150元资金.8.【答案】(1)解:设甲种商品每件的进价为x元,乙种商品每件的进价为y元,依题意得:,解得:,答:甲种商品每件的进价为30元,乙种商品每件的进价为70元.(2)解:设该商场购进甲种商品m件,则购进乙种商品(100﹣m)件,由已知得:m≥4(100﹣m),解得:m≥80.设卖完A、B两种商品商场的利润为w,则w=(40﹣30)m+(90﹣70)(100﹣m)=﹣10m+2000,∴当m=80时,w取最大值,最大利润为1200元.故该商场获利最大的进货方案为甲商品购进80件、乙商品购进20件,最大利润为1200元.9.【答案】(1)315;45x;30;﹣30x+240;1200;400x;1400;﹣280x+2240 (2)解:能完成此项运送任务的最节省费用的租车方案是甲车6辆,乙车2辆,理由:当租用甲种货车x辆时,设两种货车的总费用为y元,则两种货车的总费用为:y=400x+(﹣280x+2240)=120x+2240,又∵45x+(﹣30x+240)≥330,解得x≥6,∵120>0,∴在函数y=120x+2240中,y随x的增大而增大,∴当x=6时,y取得最小值,即能完成此项运送任务的最节省费用的租车方案是甲种货车6辆,乙种货车2辆.10【答案】(1)解:35×6=210(元),210<280<560,∴李叔叔选择普通消费方式更合算(2)解:根据题意得:y普通=35x.x>12时,y白金卡=280+35(x﹣12)当x≤12时,y白金卡=280;当=35x ﹣140. ∴y 白金卡=(3)解:当x=18时,y 普通=35×18=630;y 白金卡=35×18﹣140=490; 令y 白金卡=560,即35x ﹣140=560, 解得:x=20.当18≤x≤19时,选择白金卡消费最合算;当x=20时,选择白金卡消费和钻石卡消费费用相同;当x≥21时,选择钻石卡消费最合算 11【答案】(1)解:设购买甲种鱼苗x 条,乙种鱼苗y 条, 根据题意得:,解得:,答:购买甲种鱼苗350条,乙种鱼苗250条(2)解:设购买乙种鱼苗m 条,则购买甲种鱼苗(600﹣m )条, 根据题意得:90%m+80%(600﹣m )≥85%×600, 解得:m≥300,答:购买乙种鱼苗至少300条(3)解:设购买鱼苗的总费用为w 元,则w=20m+16(600﹣m )=4m+9600, ∵4>0,∴w 随m 的增大而增大, 又∵m≥300,∴当m=300时,w 取最小值,w 最小值=4×300+9600=10800(元). 答:当购买甲种鱼苗300条,乙种鱼苗300条时,总费用最低,最低费用为10800元 12【答案】(1)解:设小丽购买自动铅笔x 支,记号笔y 支,根据题意可得:,解得:,答:小丽购买自动铅笔1支,记号笔2支(2)解:设小丽购买软皮笔记本m本,自动铅笔n支,根据题意可得:m+1.5n=15,∵m,n为正整数,∴或或,答:共3种方案:1本软皮笔记本与7支记号笔;2本软皮笔记本与4支记号笔;3本软皮笔记本与1支记号笔13【答案】(1)10;50(2)解:y A与x之间的函数关系式为:当x≤25时,y A=7,当x>25时,y A=7+(x﹣25)×60×0.01,∴y A=0.6x﹣8,∴y A=;(3)解:∵y B与x之间函数关系为:当x≤50时,y B=10,当x>50时,y B=10+(x﹣50)×60×0.01=0.6x﹣20,当0<x≤25时,y A=7,y B=50,∴y A<y B,∴选择A方式上网学习合算,当25<x≤50时.y A=y B,即0.6x﹣8=10,解得;x=30,∴当25<x<30时,y A<y B,选择A方式上网学习合算,当x=30时,y A=y B,选择哪种方式上网学习都行,当30<x≤50,y A>y B,选择B方式上网学习合算,当x>50时,∵y A=0.6x﹣8,y B=0.6x﹣20,y A>y B,∴选择B方式上网学习合算,综上所述:当0<x<30时,y A<y B,选择A方式上网学习合算,当x=30时,y A=y B,选择哪种方式上网学习都行,当x>30时,y A>y B,选择B方式上网学习合算.14【答案】(1)解:甲同学的方案不公平.理由如下:列表法,小明2 3 4 5小刚2 (2,3)(2,4)(2,5)3 (3,2)(3,4)(3,5)4 (4,2)(4,3)(4,5)5 (5,2)(5,3)(5,4)所有可能出现的结果共有12种,其中抽出的牌面上的数字之和为奇数的有:8种,故小明获胜的概率为:,则小刚获胜的概率为:,故此游戏两人获胜的概率不相同,即他们的游戏规则不公平;(2)解:不公平.理由如下:小明2 3 4小刚2 (2,3)(2,4)3 (3,2)(3,4)4 (4,2)(4,3)所有可能出现的结果共有6种,其中抽出的牌面上的数字之和为奇数的有:4种,故小明获胜的概率为:,则小刚获胜的概率为:,故此游戏两人获胜的概率不相同,即他们的游戏规则不公平.15【答案】(1)解:当1≤x≤8时,每平方米的售价应为:y=4000﹣(8﹣x)×30=30x+3760(元/平方米)当9≤x≤23时,每平方米的售价应为:y=4000+(x﹣8)×50=50x+3600(元/平方米).∴y=(2)解:第十六层楼房的每平方米的价格为:50×16+3600=4400(元/平方米),按照方案一所交房款为:W1=4400×120×(1﹣8%)﹣a=485760﹣a(元),按照方案二所交房款为:W2=4400×120×(1﹣10%)=475200(元),当W1>W2时,即485760﹣a>475200,解得:0<a<10560,当W1<W2时,即485760﹣a<475200,解得:a>10560,∴当0<a<10560时,方案二合算;当a>10560时,方案一合算.16【答案】(1)解:设A队胜x场,平y场由题意得:,解得:.因为x+y=2+11=13,即胜2场,平11场与总共比赛11场不符,故w不能等于11400元.(2)解:由3x+y=17,得y=17﹣3x所以只能有下三种情况:①当x=3时,y=8,即胜3场,平8场,负0场;②当x=4时,y=5,即胜4场,平5场,负2场;③当x=5时,y=2,即胜5场,平2场,负4场.又w=1300x+500y+3300将y=17﹣3x代入得:w=﹣200x+11800因为k=-200<0,所以y随x的增大而减小.所以,当x=3时,w最大=﹣200×3+11800=11200(元)17【答案】(1)30(2)解:由题意y1=18x+50,y2=(3)解:函数y1的图象如图所示,由解得,所以点F坐标(,125),由解得,所以点E坐标(,650).由图象可知甲采摘园所需总费用较少时<x<.18【答案】(1)解:由已知可得:AD= = ,则S=1×= m2,(2)解:设AB=xm,则AD=3﹣m,∵,∴,设窗户面积为S,由已知得:,当x= m时,且x= m在的范围内,,∴与课本中的例题比较,现在窗户透光面积的最大值变大.19【答案】(1)解:y= .(2)解:由(1)可知当0<x≤30或m<x<100,函数值y都是随着x是增加而增加,当30<x≤m时,y=﹣x2+150x=﹣(x﹣75)2+5625,∵a=﹣1<0,∴x≤75时,y随着x增加而增加,∴为了让收取的总费用随着团队中人数的增加而增加,∴30<m≤75。
中考题中“方案设计型”问题的解法

中考题中“方案设计型”问题的解法2001年各地中考试题中出现了许多高质量的方案设计型题目,以激励学生运用数学知识和思想方法去解决现实生活中的问题,现介绍这类中考题的几种解法,供同学们毕业复习时参考。
一、用一元一次方程来解例1:我省某地生产的一种绿色蔬菜,在市场上若直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元。
当地一家农工商公司收获这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季节等条件限制,公司必须用15天的时间将这批蔬菜全部销售加工完毕。
为此,公司研制了在种可行方案:方案一:将蔬菜全部进行粗加工。
方案二:尽可能多的对蔬菜进行精加工,没来得及进行加工的蔬菜,在市场上直接出售。
方案三:将一部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好用15天完成。
你认为哪种方案获利最多?为什么?二、用一元一次不等式来解例2:某园林的门票每张10元,一次使用,考虑到人们的不同需求,也为了吸引更多的游客,该园林除了保留原来的售票方法外,还推出了一种“购买个人年票”的售票方法(个人年票从购买日起,可供持票者使用一年),年票分为A、B、C三类:A类年票每张120元,持票者进入园林时,无需再购买门票:B类门票每张60元,持票者进入该园林时,需再购买门票,每次2元,C类门票每张40元,持票者进入该园林时,需再购买门票,每次3元。
(1)如果你只选择一种购买门票的方法,并且你计划在一年中用80元在该园林的门票上,试通过计算,找出可使进入该园林的次数最多的购票方式。
(2)求一年中进入该园林至少超过多少次时,购买A类年票比较合算?三、用方程与不等式混合组来解例3:在双休日,某公司决定组织48名员工到附近一水上公园坐船游园,公司先派四、用分式方程来解例4:“丽园”开发公司生产的960件新产品,需要精加工后才能投放市场,现有甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完这批产品比乙工厂单独加工完这批产品多用20天,而乙工厂每天比甲工厂多加工8件产品,公司需付甲工厂加工费用每天80元,乙工厂加工费用每天120元。
人教版九年级数学中考总复习 专题六 方案设计题 含解析及答案

专题六方案设计题专题提升演练1.一位园艺设计师计划在一块形状为直角三角形且有一个内角为60°的绿化带上种植四种不同的花卉,要求种植的四种花卉组成面积分别相等、形状完全相同的几何图案.某同学为此提供了如图所示的四种设计方案.其中可以满足园艺设计师要求的有()A.2种B.3种C.4种D.1种2.小明设计了一个利用两块相同的长方体木块测量一张桌子高度的方案,首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是()A.73 cmB.74 cmC.75 cmD.76 cm3.某化工厂,现有A种原料52 kg,B种原料64 kg,现用这些原料生产甲、乙两种产品共20件.已知生产1件甲种产品需要A种原料3 kg,B种原料2 kg;生产1件乙种产品需要A种原料2 kg,B种原料4 kg,则生产方案的种数为()A.4B.5C.6D.74.某市有甲、乙两家液化气站,他们的每罐液化气的价格、质量都相同.为了促销,甲站的液化气每罐降价25%销售;乙站的液化气第1罐按原价销售,从第2罐开始以7折优惠销售,若小明家购买8罐液化气,则最省钱的方法是买站的.5.从边长为a的大正方形纸板中间挖去一个边长为b的小正方形后,其截成的四个相同的等腰梯形(如图①)可以拼成一个平行四边形(如图②).现有一张平行四边形纸片ABCD(如图③),已知∠A=45°,AB=6,AD=4.若将该纸片按图②的方式截成四个相同的等腰梯形,然后按图①的方式拼图,则得到的大正方形的面积为 .+6√26.某市准备争创全国卫生城市,某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍. (1)求温馨提示牌和垃圾箱的单价各是多少元;(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10 000元,请你列举出所有购买方案,并指出哪种方案所需资金最少,最少是多少元.设温馨提示牌的单价是x 元, 则垃圾箱的单价是3x 元,由题意得2x+3×3x=550,解得x=50.故温馨提示牌的单价是50元,垃圾箱的单价是150元. (2)设购买温馨提示牌m 个, 则购买垃圾箱(100-m )个,由题意得50m+150(100-m )≤10000, 解得m ≥50.又100-m ≥48,∴m ≤52.∵m 为整数,∴m 的取值为50,51,52. 方案一:当m=50时,100-m=50,即购买50个温馨提示牌和50个垃圾箱,其费用为50×50+50×150=10000(元); 方案二:当m=51时,100-m=49,即购买51个温馨提示牌和49个垃圾箱,其费用为51×50+49×150=9900(元);方案三:当m=52时,100-m=48,即购买52个温馨提示牌和48个垃圾箱,其费用为52×50+48×150=9800(元).∵10000>9900>9800,∴方案三所需资金最少,最少是9800元.7.某旅行团32人在景区A 游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人. (1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B 游玩.景区B 的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童. ①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1 200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.设该旅行团中成人x 人,少年y 人,根据题意,得{x +y +10=32,x =y +12,解得{x =17,y =5,故该旅行团中成人17人,少年5人.(2)①由题意得,所需门票的总费用是:100×8+100×0.8×5+100×0.6×(10-8)=1320(元). ②设可以安排成人a 人,少年b 人带队, 则1≤a ≤17,1≤b ≤5. 当10≤a ≤17时,若a=10,则费用为100×10+100×0.8×b ≤1200,解得b ≤52, ∴b 的最大值是2,此时a+b=12,费用为1160元. 若a=11,则费用为100×11+100×0.8×b ≤1200,解得b ≤54, ∴b 的最大值是1,此时a+b=12,费用为1180元.若a ≥12,则100a ≥1200,即成人门票至少需要1200元,不合题意,舍去.当1≤a<10时,若a=9,则费用为100×9+100×0.8×b+100×0.6×1≤1200,解得b ≤3, ∴b 的最大值是3,a+b=12,费用为1200元.若a=8,则费用为100×8+100×0.8×b+100×0.6×2≤1200,解得b ≤72,∴b 的最大值是3,a+b=11<12,不合题意,舍去.同理,当a<8时,a+b<12,不合题意,舍去.综上所述,最多可以安排成人和少年共12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人.其中成人10人,少年2人时购票费用最少.。
全国版2020年中考数学热点专题冲刺6方案设计问题

7方案设计问题热点专题中考要求》中明确提岀要培养学生“用数学的眼光去认识自己所生活的环《全日制义务教育数学课程标准(实验稿)年中考试卷中境与社会”,学会“数学地思考”,即运用数学的知识、方法去分析事物、思考问题,2019有一类方案设计题,特点是题中给出几种方案让考生通过计算选取最佳方案,或给岀设计要求,让考生自己设计方案,这种方案有时不止一种,因而又具有开放型题的特点,此种题型考查考生的数学应用意识,命题的背景广泛,题者的青睐,它要求学生根据題意设计符合条件的方案,主要有函数思想、分类讨论的思想、统计与概率、锐角力要求较高,符合新课标的理念组三角函数方程或不等式设计测量安装方案问题考向1他们制定了测量方案,并利用.小组开展了测量本校旗杆高度的实践活动综合与实践(1 . 2019 •山西)某他们在该旗杆底部所在的平地上,选取两个不同测点,分别测量了该旗杆顶端的课余时间完成了实地测量.为了减小测量误差,小组在测量仰角的度数以及两个测点之间的距离时,.仰角以及这两个测点之间的距离).(都分别测量了两次并取他们的平均值作为测量结果,测量数据如下表不完整课题测量旗杆的高度组长:XXX 组员:xxx,xxx,xxx 成员测量角度的仪器,皮尺等测量工具.考生自由施展才华的空间大,因此倍受命或对己知方案进行评判,涉及的知识点.)的应用以及图形变换等,对学生的能B丄第一次测量项目第二次平均值25.7 ° 25.8 ° Z GCE的度数25.6 °测量数据GDE Z的度数31 ° 30.8 ° 31.25.6m 5.4mA, B之间的距离_____ m.之间的距离的平均值是两次测量任务一:A,B.综合与实践GH的高度小组求岀学校旗杆根据以上测量结果,请你帮助该任务二:参考数据:sin25.7 °~ 0.43 , cos25.7 °~ 0.90 , tan25.7 °~ 0.48 , sin31 °~ 0.52 , cos31 °~ 0.86 ,(tan31 ° - 0.60)的方案,但利用物体在阳光下的影子测量旗杆的高度综合与实践任务三:该小组在制定方案时,讨论过).未被采纳你认为其原因可能是什么?(写岀一条即可=5.5m平均值:=(5.4+5.6)- 2解:任务一,CD=AB=5.5,设EG=xm ,由题意可得,四边形任务二:ACDBACEH都是矩形,••• EH=AC=1.5 DEG中,Z DEG=90 , Z GDE=31,△在Rt EGx「. DE=,T tan31 ° =, ,o31tanDE 在Rt△ CEG中,Z CEG=90 , Z GCE=25.7°,EGx, • CE= ■/ tan25.7 °= ------------ ----------------- o25.7tanCExx x=13.2 ,, • DE— =5.5 , •v CD=CE—------------ ----------------- oo31tan25.7tan「. GH=GE+EH=13.2+1.5=14.7.答:旗杆GH的高度为14.7m.任务三:答案不唯一:没有太阳光,旗杆底部不可到达,测量旗杆影子的长度遇到困难等2. (2019 •常德)如图是一种淋浴喷头,右图是的示意图,若用支架把喷头固定在A点处,手柄长AB=25cm ?AB=37°,喷岀的水流BC与D的夹角Z AB行程的夹角Z ABC=72,现在住户要求:当人站与墙壁ABDD在E处淋浴时,水流正好喷洒在人体的C处,且使DE=50cmCE=130cm问:安装师傅应将支架固定在离地面多高的位置?(参考数据:sin37 °~ 0.60 ,cos37°~ 0.80 ,tan37 ° ~ 0.75 , sin72 °~ 0.95 ,cos72 °~ 0.31 , tan72 °~ 3.08 , sin35 °~ 0.57 , cos35 °~ 0.82 , tan35 °~0.70 ).90° CE / ADE=由题意可知于点M NAD//解:过B点作MN// DE分别交直线AD和直线EC?MAB= /AB=37°, Rt△ ABM中,Z sinMN=DE「.四边形DMNE^矩形,AMB h BNC=90°, , MD=NE 在DAMMB, ••• MN=DE=50=20 v, /. AM=AB cos37 °=25 X 0.8 , /• MB=AB sin37 °=25 X 0.6=15 , cos Z MAB_______________ ABAB90°.・・Z BCN=NBC=18°—53°- 72°=55 ° , 53°, vZ ABM=90 —37°=Z ABC=72 ,•••/ NB=50- 15=35, 35BNAM=180-,「. AD=MD- CN==5Q •EN=CN+CE=50+130=180=MD—55° =35°.在厶BNC中,tan Z BCN= ___________ 0.75CN —20=160 (cm).答:安装师傅应将支架固定在离地面160cm高的位4x+3y=10700;3x+4y=10300,解得,x=1700, y=1300;答:租用A型客车的费用1700元,B型客车的费用是1300元.(2)设租用A型客车a辆,B型客车b辆,根据题意得45a+30b>240; 1700a+1300b<10000;16-2b100-13b^a?, v a, b 均为正整数,•- a=2, b=5;a=4 , b=2 •两种方案,----------- -------- 3171700?2?1300^5?9900 (元)当a=2, b=5 时,费用为,31:MT置.2 设计方案搭配问题考向两B,某校计划组织240名师生到红色教育基地开展革命传统教育活动,旅游公司有A1. (2019 •遵义)型3型客车和辆BB人,型客车每辆载客量30人,若租用4辆AA种客车可供租用,型客车每辆载客量45 10300元型客车和4辆B型客车共需费用辆客车共需费用10700元;若租用3A两型客车,每辆费用分别是多少元;A, B)求租用(1 1万元,你有几种租车方案?哪种方案最省钱?)为使(2240名师生有车坐,且租车总费用不超过元,根据题意得y型客车的费用是B元,x型客车的费用是A)设租用1 (解.1700?1?1300?2?9400 (元),时,费用为 当a=4, b=2答:租用A 型客车4辆,B 型客车2辆时费用最低,最低费用为9400元.(1) 请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某学校组织 240名师生集体外岀活动,拟租用甲、乙两种客车共 6辆,一次将全部师生送到指定地点.若每辆甲种客车的租金为 400元,每辆乙种客车的租金为 280元,请给岀最节省费用的租车方案,并求岀最低费用.解:(1)设辆甲种客车与 1辆乙种客车的载客量分别为 a 人,b 人,1 2a+3b=180,a =45, ???? if 人.45人和30答:1辆甲种客车与1,解得辆乙种 客车的载客量分别为??+2b=105ba =30.???? (2)设租用甲种客车x 辆,租车费用为y元,根据题意,得 y=400x+280 ( 6 - x ) =120x+1680 .由45x+30 ( 6- x ) > 240,得x > 4. •/ 120> 0,二y 随x 的增大而增大,•••当x 为最小值4时, y 值最小.即租用甲种客车 4辆,乙种客车2辆,费用最低, 此时,最低费用y=120 X 4+1680=2160 (元). 3. ( 2019浙江省温州市) 某旅行团32人在景区A 游玩,他们由成人、少年和儿童组成•已知儿 童10人,成人比少年多 12人.(1)求该旅行团中成人与少年分别是多少人 ?(2)因时间充裕,该团准备让成人和少年(至少各 1名)带领10名儿童去另一景区 B 游玩•景 区B 的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童•①若由成人 8人和少年5人带队,则所需门票的总费用是多少元 ?②若剩余经费只有 1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队 ?求所有满足条件的方案,并指出哪种方案购票费用最少.【解题过程】(1)该旅行团中成人有 x 人,少年有y 人,根据题意,得:x?/?10?32x?17??解得.答:该旅行团中成人有17人,少年有5人;?2?y?12y25??(2 [①二•成人8人可免费带8名儿童,•••所需门票的总费用为: 100 X 8+100 X 0.8 X 5+100 X 0.6 X (10-8)=1320( 元). ②设可以安排成人 a 人、少年b 人带队,则1 < a < 17,K b < 5.5, a=10 时,100 X 10+80b < 1200,• b w 设 10< a < 17 时,(i) 当— 2 a+b=12,费用为 1160 元;•b=2,此时 *大«(ii) 当 a=11 时,100 X 11+80b w 1200, 5, • b=1 • b w ,此时 a+b=12 , 费用为1180元;最大值一4(iii) 当a > 12时,100a > 1200,即成人门票至少需要 1200元,不符 合题意,舍去.设 1 w a v 10 时,(i) 当 a=9 时,100 X 9+80b+60w 1200,• b w 3, • b=3,此时 a+b=12,费用为 1200 元;最大值7, 当 a=8 时,100 X 8+80b+60 X 2w 1200,• b w (ii) — 2二b=3,此时a+b=11 v 12,不符合题意,舍去; 最大值(iii) 同理,当a v 8时,a+b v 12,不符合题意,舍去.综上所述,最多可以安排成人和少年共 12人带队,有三个方案:成人10人、少年2人; 成人11人、少年1人; 成人9人、少年3人.2. (2019山东滨州,22,12分)有甲、乙两种客车, 为180人,1辆甲种客车与2辆乙种客车的总载客量为2辆甲种客车与 105 人. 3辆乙种客车的总载客量其中当成人10人、少年2人时购票费用最少.考向3设计产品销售方案问题1. (2019 •赤峰)某校开展校园艺术节系列活动,派小明到文体超市购买若干个文具袋作为奖品•这种文具袋标价每个10元,请认真阅读结账时老板与小明的对话:)结合两人的对话内容,求小明原计划购买文具袋多少个?(1元.其中400支作为补充奖品,两次购买奖品总支岀不超过50)学校决定,再次购买钢笔和签字笔共 2 (.钢笔标价每支8元,签字笔标价每支6元,经过沟通,这次老板给予8折优惠,那么小明最多可购买钢笔多少支?解:(1)设小明原计划购买文具袋x个,则实际购买了(x+1)个,依题意得:10 (x+1 )X 0.85=10x - 17 .解得x=17 .答:小明原计划购买文具袋17个.(2)设小明可购买钢笔y支,则购买签字笔(50 - x)支,依题意得:[8y+6 (50 - y)] X 80%< 400-- —17X 10+17 .解得y < 4.375 .即y=4 •答:明最多可购买钢笔4支.最大值2. (2019 •孝感)为了加快“智慧校园”建设,某市准备为试点学校采购一批A、B两种型号的一体机,经过市场调查发现,今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.(1)求今年每套A型、B型一体机的价格各是多少万元?(2)该市明年计划采购A型、B型一体机1100套,考虑物价因素,预计明年每套A型一体机的价格比今年上涨25%,每套B型一体机的价格不变,若购买B型一体机的总费用不低于购买A型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?解:(1)设今年每套A型一体机的价格为x万元,每套B型一体机的价格为y万元y-x=0.6x=1.2?由题意得:解得??00x+200y=960y=1.8?故今年每套A型一体机的价格为1.2万元,每套B型一体机的价格为 1.8万元.(2)设该市明年购买A型一体机m套,则购买B型一体机(1100-m)套,由题意得:1.8 (1100-m )> 1.2 (1+25% m,解得me 600设明年需投入W万元,W=1.2X(1+25%)m+1.8 (1100-m)=-0.3m+1980••• -0.3<0 ,••• W随m的增大而减小•/ m e 600,•当m=600 时,W有最小值为-0.3 X 600+1980=1800.故该市明年至少需投入1800万元才能完成采购计划.考向4设计图案问题1. (2019 •河北)如图3,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂照n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为()2D3C6C【答案】【解析】如图所示,3.「.n的最小值为个小等边三角的小等边三角形构成的网格,每个网格图中由52图1,图都是有边长为1)2. (2019 •宁波形已图上阴影,请在余下的空白小等边三角形中,按下列要求选取一个图上阴影:;个阴影小等边三角形中组成一个轴对称图形(1)使得6.6(2)使得个阴影小等边三角形中组成一个中心对称图形)2中,均只需画岀符合条件的一种情形请将两个小题一次作答在图(1,图.解:(1)画岀下列其中一种即可画岀下列其中一种即可(2)。
初中数学方案设计型问题(word版+详解答案)

方案设计型问题【考题研究】方案设计型问题,是指根据问题所提供的信息,运用学过的技能和方法,进行设计和操作,然后通过分析、计算、证明等,确定出最佳方案的一类数学问题。
随着新课程改革的不断深入,一些新颖、灵活、密切联系实际的方案设计问题正越来越受到中考命题人员的喜爱,这些问题主要考查学生动手操作能力和创新能力,这也是新课程所要求的核心内容之一。
【解题攻略】(1)方程或不等式解决方案设计问题:首先要了解问题取材的生活背景;其次要弄清题意,根据题意建构恰当的方程模型或不等式模型,求出所求未知数的取值范围;最后再结合实际问题确定方案设计的种数.(2)择优型方案设计问题:这类问题一般方案已经给出,要求综合运用数学知识比较确定哪种方案合理.此类问题要注意两点:一是要符合问题描述的要求,二是要具有代表性.(3)操作型问题:大体可分为三类,即图案设计类、图形拼接类、图形分割类等.对于图案设计类,一般运用中心对称、轴对称或旋转等几何知识去解决;对于图形拼接类,关键是抓住需要拼接的图形与所给图形之间的内在关系,然后逐一组合;对于图形分割类,一般遵循由特殊到一般、由简单到复杂的动手操作过程.【解题类型及其思路】方案设计型问题涉及生产生活的方方面面,如:测量、购物、生产配料、汽车调配、图形拼接等。
所用到的数学知识有方程、不等式、函数、解直角三角形、概率和统计等知识。
这类问题的应用性非常突出,题目一般较长,做题之前要认真读题,理解题意,选择和构造合适的数学模型,通过数学求解,最终解决问题。
解答此类问题必须具有扎实的基础知识和灵活运用知识的能力,另外,解题时还要注重综合运用转化思想、数形结合的思想、方程函数思想及分类讨论等各种数学思想。
【典例指引】类型一【利用不等式(组)设计方案】【典例指引1】光明小区房屋外墙美化工程工地有大量货物需要运输,某车队有载重量为8吨和10吨的卡车共15辆,所有车辆运输一次能运输128吨货物.(1)求该车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的扩大,车队需要一次运输货物170吨以上,为了完成任务,车队准备增购这两种卡车共5辆(两种车都购买),请写出所有可能的购车方案.【举一反三】如果第一次租用2辆A型车和1辆B型车装运水果,一次运货10吨;第二次租用1辆A型车和2辆B型车装水果,一次运货11吨(两次运货都是满载)①求每辆A型车和B型车满载时各装水果多少吨?②现有31吨水果需运出,计划同时租用A型车和B型车一次运完,且每辆车都恰好装满,请设计出有哪几种租车方案?③若A型车每辆租金200元,B型车每辆租金300元,问哪种租车方案最省钱,最省钱的方案总共租金多少钱?类型二【利用方程(组)设计方案】【典例指引2】星光橱具店购进电饭煲和电压锅两种电器进行销售,其进价与售价如表:进价(元/台)售价(元/台)电饭煲200250电压锅160200(1)一季度,橱具店购进这两种电器共30台,用去了5600元,并且全部售完,问橱具店在该买卖中赚了多少钱?(2)为了满足市场需求,二季度橱具店决定用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的56,问橱具店有哪几种进货方案?并说明理由;(3)在(2)的条件下,请你通过计算判断,哪种进货方案橱具店赚钱最多?【举一反三】为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A 型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?(3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?类型三【利用一次函数的性质与不等式(组)设计方案】【典例指引3】某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的35,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?【举一反三】1.新农村社区改造中,有一部分楼盘要对外销售.某楼盘共23层,销售价格如下:第八层楼房售价为4 000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套房面积均为120米2.若购买者一次性付清所有房款,开发商有两种优惠方案:(方案一)降价8%,另外每套房赠送a元装修基金;(方案二)降价10%,没有其他赠送.(1)请写出售价y(元/米2)与楼层x(1≤x≤23,x取整数)之间的函数表达式;(2)老王要购买第十六层的一套房,若他一次性付清所有房款,请帮他计算哪种优惠方案更加合算.2.某市A,B两个蔬菜基地得知四川C,D两个灾民安置点分别急需蔬菜240t和260t的消息后,决定调运蔬菜支援灾区,已知A蔬菜基地有蔬菜200t,B蔬菜基地有蔬菜300t,现将这些蔬菜全部调运C,D两个灾区安置点.从A地运往C,D两处的费用分别为每吨20元和25元,从B地运往C,D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.(1)请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值;(2)设A,B两个蔬菜基地的总运费为w元,求出w与x之间的函数关系式,并求总运费最小的调运方案;(3)经过抢修,从B地到C处的路况得到进一步改善,缩短了运输时间,运费每吨减少m元(m>0),其余线路的运费不变,试讨论总运费最小的调动方案.【新题训练】1.某化妆品店老板到厂家购A、B两种品牌店化妆品,若购进A品牌的化妆品5套,B品牌的化妆品6套,需要950元;若购进A品牌的化妆品3套,B品牌的化妆品2套,需要450元.(1)求A、B两种品牌的化妆品每套进价分别为多少元?(2)若销售1套A品牌的化妆品可获利30元,销售1套B品牌的化妆品可获利20元,根据市场需求,化妆品店老板决定,购进B品牌化妆品的数量比购进A品牌的化妆品数量的2倍还多4套,且B品牌化妆品最多可购进40套,这样化妆品全部售出后,可使总的获利不少于1200元,问有几种进货方案?如何进货?2.学校准备租用一批汽车去韶山研学,现有甲、乙两种大客车,甲种客车每辆载客量45人,乙种客车每辆载客量30人.已知1辆甲种客车和3辆乙种客车需租金1320元,3辆甲种客车和2辆乙种客车共需租金1860元.(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?(2)学校计划租用甲、乙两种客车共8辆,送330名师生集体外出活动,总费用不超过3360元,则共有哪几种租车方案?3.5.1劳动节,某校决定组织甲乙两队参加义务劳动,并购买队服.下面是服装厂给出的服装的价格表:经调查:两个队共75人(甲队人数不少于40人),如果分别各自购买队服,两队共需花费5600元,请回答以下问题:(1)如果甲、乙两队联合起来购买服装,那么比各自购买服装最多可以节省_________.(2)甲、乙两队各有多少名学生?(3)到了现场,因工作分配需要,临时决定从甲队抽调a人,从乙队抽调b人,组成丙队(要求从每队抽调的人数不少于10人),现已知重新组队后,甲队平均每人需植树1棵;乙队平均每人需植树4棵;丙队平均每人需植树6棵,甲乙丙三队共需植树265棵,请写出所有的抽调方案.4.每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元.(1)求甲、乙两种型号设备的价格;(2)该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有几种购买方案;(3)在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月,若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.5.某手机经销商计划同时购进一批甲、乙两种型号的手机,已知每部甲种型号的手机进价比每部乙种型号的手机进价多200元,且购进3部甲型号手机和2部乙型号手机,共需要资金9600元;(1)求甲、乙型号手机每部进价为多少元?(2)该店计划购进甲、乙两种型号的手机共20台进行销售,现已有顾客预定了8台甲种型号手机,且该店投入购进手机的资金不多于3.8万元,请求出有几种进货方案?并请写出进货方案.(3)售出一部甲种型号手机,利润率为30%,乙种型号手机的售价为2520元.为了促销,公司决定每售出一台乙型号手机,返还顾客现金m元充话费,而甲型号手机售价不变,要使(2)中所有方案获利相同,求m的值.6.某电器超市销售每台进价分别为160元、120元的A、B两种型号的电风扇,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.7.某公司要将本公司100吨货物运往某地销售,经与运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货物18吨,已知租用1辆甲型汽车和2辆乙型汽车共需费用2600元;租用2辆甲型汽车和1辆乙型汽车共需费用2500元,且同一型号汽车每辆租车费用相同.(1)求租用辆甲型汽车、一辆乙型汽车的费用分别是多少元?(2)若这个公司计划此次租车费用不超过5200元,通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用,8.今年义乌市准备争创全国卫生城市,某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?9.2019年暑假期间,某学校计划租用8辆客车送280名师生参加社会实践活动,现有甲、乙两种客车,它们的载客量和租金如表,设租用甲种客车x辆,租车总费用为w元.甲种客车乙种客车载客量(人/辆)30 40租金(元/辆)270 320(1)求出w(元)与x(辆)之间函数关系式,并直接写出....自变量x的取值范围;(2)选择怎样的租车方案所需的费用最低?最低费用多少元?10.随着春节临近,某儿童游乐场推出了甲、乙两种消费卡,设消费次数为x时,所需费用为y元,且y与x的函数关系如图所示. 根据图中信息,解答下列问题;(1)分别求出选择这两种卡消费时,y关于x的函数表达式.(2)求出B点坐标.(3)洋洋爸爸准备240元钱用于洋洋在该游乐场消费,请问选择哪种消费卡划算?11.甲、乙两家商场以同样价格出售相同的商品,在同一促销期间两家商场都让利酬宾,让利方式如下:甲商场所有商品都按原价的8.5折出售,乙商场只对一次购物中超过200元后的价格部分按原价的7.5折出售.某顾客打算在促销期间到这两家商场中的一家去购物,设该顾客在一次购物中的购物金额的原价为x (x>0)元,让利后的购物金额为y元.(1)分别就甲、乙两家商场写出y关于x的函数解析式;(2)该顾客应如何选择这两家商场去购物会更省钱?并说明理由.12.我区注重城市绿化提高市民生活质量,新建林荫公园计划购买甲、乙两种树苗共800株,甲种树苗每株12元,乙种树苗每株15元.相关资料表明:甲、乙两种树苗的成活率分别为85%、90%.(1)若购买这两种树苗共用去10500元,则甲、乙两种树苗各购买多少株?(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.13.某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费.②银卡售价150元/张,每次凭卡另收10元.暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数.设游泳x次时,所需总费用为y元.(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.14.随着人民生活水平不断提高,家庭轿车的拥有量逐年增加,据统计,某小区16年底拥有家庭轿车640辆,到18年底家庭轿车拥有量达到了1000辆.(1)若该小区家庭轿车的年平均增长量都相同,请求出这个增长率;(2)为了缓解停车矛盾,该小区计划投入15万元用于再建若干个停车位,若室内每个车位0.4万元,露天车位每个0.1万元,考虑到实际因素,计划露天车位数量大于室内车位数量的2倍,但小于室内数量的3.5倍,求出所有可能的方案.15.为奖励在演讲比赛中获奖的同学,班主任派学习委员小明为获奖同学买奖品,要求每人一件.小明到文具店看了商品后,决定奖品在钢笔和笔记本中选择.如果买4个笔记本和2支钢笔,则需86元;如果买3个笔记本和1支钢笔,则需57元.(1)求购买每个笔记本和钢笔分别为多少元?(2)售货员提示,买钢笔有优惠,具体方法是:如果买钢笔超过10支,那么超出部分可以享受8折优惠,若买x(x>0)支钢笔需要花y元,请你求出y与x的函数关系式;(3)在(2)的条件下,小明决定买同一种奖品,数量超过10个,请帮小明判断买哪种奖品省钱.16.某农产品生产基地收获红薯192吨,准备运给甲、乙两地的承包商进行包销.该基地用大、小两种货车共18辆恰好能一次性运完这批红薯,已知这两种货车的载重量分别为14吨/吨和8吨/辆,运往甲、乙两地的运费如下表:(1)求这两种货车各用多少辆;(2)如果安排10辆货车前往甲地,其余货车前往乙地,其中前往甲地的大货车为a辆,总运费为w元,求w关于a的函数关系式;(3)在(2)的条件下,若甲地的承包商包销的红薯不少于96吨,请你设计出使总运费最低的货车调配方案,并求出最低总运费.17.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.(1)A、B两种商品的单价分别是多少元?(2)已知该商店购买A、B两种商品共30件,要求购买B商品的数量不高于A商品数量的2倍,且该商店购买的A、B两种商品的总费用不超过276元,那么该商店有几种购买方案?(3)若购买A种商品m件,实际购买时A种商品下降了a(a>0)元,B种商品上涨了3a元,在(2)的条件下,此时购买这两种商品所需的最少费用为1076元,求m的值.18.为了迎接“六•一”儿童节.某儿童运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?该专卖店要获得最大利润应如何进货?方案设计型问题【考题研究】方案设计型问题,是指根据问题所提供的信息,运用学过的技能和方法,进行设计和操作,然后通过分析、计算、证明等,确定出最佳方案的一类数学问题。
中考方案设计题解题策略

中考方案设计题解题策略资料编号:202403271920 方案设计题是河南中考必考题型,分值9分,综合考查方程(组)、不等式(组)、函数及其性质等知识点,综合性较强,此外,这种题型阅读量大,数据多,关系复杂,既有等量关系(列方程(组)、函数关系式),又有非等量关系(不等关系)(列不等式或不等式组),同学们在审题时一定要小心谨慎.在确定最佳方案时,一般按下面的步骤和顺序解决问题:①找出题目中的不等关系,列出关于自变量的不等式或不等式组,求解获得自变量的取值范围;如果题目没有设出自变量,那么我们需要根据题意选择合适的量设为自变量.需要特别注意的是,在设自变量时,表示自变量的字母不能与前面问题中表示未知数的字母相同.②设出因变量,找出题目中的等量关系,列出函数关系式;一般选择总费用、总利润等作为因变量,所列出的函数关系式(目标函数)多为一次函数或二次函数.如果列出的目标函数是二次函数,往往还需要通过配方将一般式化为顶点式.③根据所列函数的性质,结合自变量的取值范围,确定取得最佳方案的条件,计算出最佳方案.④注意正确作答.下面,举两个具体的例子.例1.(9分)“互联网+”让我国经济更具活力.牡丹花会期间,某网店直接从工厂购进A、B两款花会纪念钥匙扣进行销售,进货价和销售价如下表:(1)进的件数;(2)第一次购进的花会纪念钥匙扣销售完后,该网店计划再次购进A、B两款钥匙扣共200件(进货价和销售价都不变),且第二次进货总价不高于4800元.网店这次应如何设计进货方案,才能获得最大销售利润,最大利润是多少?分析:(1)“购进A、B两款钥匙扣共50件”这个条件告诉我们,两个未知数之间存在着约束关系,所以我们只需要设出一个未知数即可,另一个未知数可以用所设的未知数表示出来,建立一元一次方程,而不用建立二元一次方程组.条件“用1100元购进A、B两款钥匙扣共50件”包含了等量关系,我们据此列出方程;(2)面对方案设计问题,我们往往建立目标函数,利用函数的性质,结合自变量的取值范围,确定最佳方案.第一步设出自变量,根据题目中的不等关系列出关于自变量的不等式或不等式组,求解获得自变量的取值范围.本题可设该网店再次购进A款钥匙扣a件,则根据B款钥匙扣()a200件,根据条件“第二次进货总价不高于4800元”列出关-于a的不等式,求解获得a的取值范围,即自变量a的取值范围.第二步设出因变量,把该网店第二次进货获得的销售利润作为因变量,设为W,根据销售利润等于A款的利润与B款的利润之和列出W关于a的函数关系式,化简整理成最简形式,并在解析式的后面标注自变量的取值范围.特别强调,如果建立的目标函数是二次函数,往往要将一般式化为顶点式.第三步确定最佳方案,注意这一步的规范书写.最后不要忘记作答,作答要详细.解:(1)设购进A款钥匙扣x件,则根据B款钥匙扣()x50件,由题意可得:-()1100+x-x………………………………………………………2分502520=解之得:30=x…………………………………………………………………3分-(件)50=3020答:购进A款钥匙扣30件,根据B款钥匙扣20件;…………………………4分(2)设购进A款钥匙扣a件,则购进B款钥匙扣()a200件,由题意可得:-()a20≤480025a-+200解之得: a≥40 ………………………………………………………………5分设该网店第二次进货销售完后的利润为W元,由题意可得:()()()a372530=20020-aW-+-整理得:2400W(a≥40)…………………………………………6分=a-2+∵0-2<∴W随a的增大而减小………………………………………………………7分∴当40-⨯W………8分+==a时,W取得最大值,最大值为23202=240040此时,160200=-(件)40答:当购进A款钥匙扣40件,B款钥匙扣160件,才能获得最大销售利润,最大利润是2320元.…………………………………………………………………9分例2.(9分)2023年春节档电影《满江红》热映,进一步激发观众爱国之情.帝都南阳与名将岳飞有着一段传送至今的历史——公元1138年,岳飞统军过南阳到武侯祠敬拜诸葛亮,雨夜含泪手书前后《出师表》,为南阳留下来千古绝唱“三绝碑”.某超市采购了两批同样的《出师表》纪念品挂件,第一批花了3300元,第二批花了4000元,已知第一批每个挂件的进价是第二批的1.1倍,且第二批比第一批多购进25个.(1)求第二批每个挂件的进价;(2)两批挂件售完后,该超市以第二批每个挂件的进价又采购一批同样的挂件,经市场调查发现,当售价为每个60元时,每周能卖出40个,若每降1元,每周多卖10个,由于货源紧缺,每周最多能卖90个,求每个挂件售价定为多少元时,每周可获得最大利润?最大利润是多少?分析:(1)设第二批每个挂件的进价为x元,根据条件“第二批比第一批多购进25个”提供的等量关系可列出关于x的分式方程.需要指出的是,分式方程的解要检验;(2)将每个挂件的售价作为自变量,设为m元,每周获得的利润作为因变量,设为W元,根据条件“每周最多能卖90个”提供的不等关系列出关于m的不等式,求解获得自变量m的取值范围,根据每周的利润=每件的利润⨯每周的销量建立W 关于m的函数关系式.如果这个函数关系式是二次函数,那么要将函数解析式化为顶点式.二次函数的最值跟抛物线的开口方向、对称轴和自变量的取值范围都有关系,因此在确定二次函数的最值时最好在草稿纸上画出函数图象的简图,结合图象确定最值以及取得最值的条件.解:(1)设第二批每个挂件的进价是x 元,由题意可得:2540001.13300-=xx ………………………………………………………2分 解之得:40=x ………………………………………………………3分 经检验,40=x 是原方程的解,符合题意答:第二批每个挂件的进价是40元; …………………………………………4分(2)设每个挂件售价定为m 元,由题意可得:1601040m -⨯+≤90 解之得:m ≥55 ………………………………………………………5分 设每周获得的利润为W 元,则有()⎪⎭⎫ ⎝⎛-⨯+-=160104040m m W 整理得:()144052102+--=m W (m ≥55)…………………………………7分 ∵010<-∴当52>m 时,W 随m 的增大而减小 ………………………………………8分 ∵m ≥55∴当55=m 时,W 取得最大值,最大值为()135014405255102=+-⨯-=W (元) 答:每个挂件售价定为55元时,每周可获得最大利润,最大利润是1350元.…9分 通过两个实际的例子我们可以看出,方案设计题的阅读量是比较大的,审题时一定要小心谨慎,弄清楚每个数据的含义,找出具体的等量关系和不等关系,建立正确的方程(组)和不等式(组).要学会过程的规范书写,特别是怎样利用函数的性质,结合自变量的取值范围确定最佳方案.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考专题复习六方案设计问题
方案设计问题要求以方案设计的形式解决数学问题,问题情境包含实际问题情境和数学问题情境,设计目标有图形设计问题、测量方案问题、经济方案问题等。
包含类型:(1)图形设计方案题(2)测量方案设计题(3)经济方案设计题
常用的解题策略:1.利用不等式、一次函数解决问题2.利用二次函数解决问题
注意点:对出现的方案进行分析,是否符合实际情况。
1.一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有()
A.4种B.3种C.2种D.1种
2.如图,有一张长为5宽为3的矩形纸片ABCD,要通过适当的剪拼,得到一个与之面积相等的正方形.
(1)该正方形的边长为_______(结果保留根号);
(2)现要求只能用两条裁剪线,请你设计一种裁剪的方法,在图中画出裁剪线,并简要说明剪拼的过程__________ ___.
3.如图,方格纸中每个小方格都是边长为1的正方形,我们把以格点连线为边的多边形称为“格点多边形”.图中四边形ABCD就是一个格点四边形.
(1)图中四边形ABCD的面积为_______;
(2)在所给的方格纸上画一个格点三角形EFG,使△EFG的面积等于四边形ABCD的面积.
4.我校为迎接县中学生篮球比赛,计划购买A、B两种篮球共20个供学生训练使用.若购买A种篮球6个,则购买两种篮球共需费用720元;若购买A种篮球12个,则购买两种篮球共需费用840元.
(1)A、B两种篮球单价各多少元?
(2)若购买A种篮球不少于8个,所需费用总额不超过800元.请你按要求设计出所
有的购买方案供学校参考,并分别计算出每种方案购买A、B两种篮球的个数及所需费用.
5.如图1,有一张菱形纸片ABCD,AC=8,BD=6.
(1)请沿着AC剪一刀,把它分成两部分,把剪开的两部分拼成一个平行四边形,在图2中用实线画出你所拼成的平行四边形;若沿着BD剪开,请在图3中用实线画出拼成的平行四边形;并直接写出这两个平行四边形的周长.
(2)沿着一条直线剪开,拼成与上述两种都不全等的平行四边形,请在图4中用实线画出拼成的平行四边形(注:上述所画的平行四边形都不能与原菱形全等)周长为____ ___
6.如图所示,小吴和小黄在玩转盘游戏时,准备了两个可以自由转动的转盘甲、乙,每个转盘被分成面积相等的几个扇形区域,并在每个扇形区域内标上数字,游戏规则:同时转动两个转盘,当转盘停止转动后,指针所指扇形区域内的数字之和为4,5或6时,则小吴胜否则小黄胜。
(如果指针恰好在分割线上,那么重转一次,直到指针指向某一扇形区域为止)(1)这个游戏规则对双方公平吗?说说你的理由;
(2)请你设计一个对双方都公平的游戏规则.
7.为实现区域教育均衡发展,我市计划对某县A、B两类薄弱学校全部进行改造.根据预算,共需资金1575万元.改造一所A类学校和两所B类学校共需资金230万元;改造两所A类学校和一所B类学校共需资金205万元.
(1)改造一所A类学校和一所B类学校所需的资金分别是多少万元?
(2)若该县的A类学校不超过5所,则B类学校至少有多少所?
(3)我市计划今年对该县A、B两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过400万元;地方财政投入的改造资金
不少于70万元,其中地方财政投入到A、B两类学校的改造资金分别为每所10万元和15万元.请你通过计算求出有几种改造方案?
8.今春以来,某市遭遇了百年不遇的严重旱灾,“旱灾无情人有情”.该市民政部门给某镇捐献200件饮用水和120件蔬菜.现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和
蔬菜全部
..运往该镇.甲、乙两种货车的装载情况和所需运费如下表,请你根据所提供的信息,解答下列问题:
饮用水蔬菜运费
甲40件10件400元/辆
乙20件20件360元/辆
(1)运输部门安排甲、乙两种货车时有哪几种方案?
(2)运输部门应选择哪种方案可使运费最少?最少运费是多少?
9.(1)请说明图中①、②两段函数图象的实际意义.
(2)写出批发该种水果的资金金额w(元)与批发量m(kg)之间的函数关系式;在下图的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果.
(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图(2)所示,该经销商拟每日售出60kg以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.
10.某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y (元/件)与月销量x (件)的函数关系式为:y =1001-x +150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w 内(元)(利润 = 销售额-成本-广告费).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a 元/件(a 为常数,10≤a ≤40),当月销量为x (件)时,每月还需缴纳100
1x 2 元的附加费,设月利润为w 外(元)(利润 = 销售额-成本-附加费). (1)当x = 1000时,y = 元/件,w 内 = 元;
(2)分别求出w 内,w 外与x 间的函数关系式(不必写x 的取值范围);
(3)当x 为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a 的值;
(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大?
11.阳光明媚的一天,数学兴趣小组的同学去操场上测量旗杆的高度,他们带了以下测量工具:皮具、三角尺、标杆、小平面镜等.首先,小明说:“我们用皮尺和三角尺(含30︒角)来测量”.于是大家一起动手,测得小明与旗杆的距离AC 为15㎝,小明的眼睛与地面的距离为1.6㎝,如图9(甲)所示.然后,小红和小强提出了自己的想法.小红说:“我用皮尺和标杆能测出旗杆的高度.”小强说:“我用皮尺和小平面镜也能测出旗杆的高度!” 根据以上情景,解答下列问题:
(1)利用图9(甲),请你帮助小明求出旗杆AB 的高度(结果保留整数.参考数据:5.030sin =︒,87.030cos ≈︒,58.030tan ≈︒,73.130cot ≈︒);
(2)你认为小红和小强提出的方案可行吗?如果可行,请选择一中
..方案在图(乙)中画出
测量示意图,并简述
..测量步骤.。