光子晶体及其器件的研究进展
光子晶体的研究及其应用

光子晶体的研究及其应用光子晶体是指空间微结构周期性排列形成的光子带隙材料,这种材料具有特殊的光学性质。
光子带隙是指在一定频率范围内光子无法通过材料的性质,也即晶体对该频率的光波进行反射或吸收。
这种特殊性质让光子晶体成为一种重要的光学材料,在传感、通信、光学器件等领域具有广泛的应用前景。
一、光子晶体的发现光子晶体的研究起源于19世纪的布拉格散射现象。
20世纪80年代,在半导体技术的基础上,研究人员开始尝试制备光学晶体。
1992年,来自日本冈山大学的研究人员首次报道了用二氧化硅微球制备的三维光子晶体,引起了学术界的广泛关注。
此后,光子晶体研究迅速发展,不断涌现出各种新型材料和制备方法。
二、光子晶体的制备方法目前,光子晶体的制备方法主要包括自组装法、光刻法、原子层沉积法等多种方式。
其中,自组装法是其中最为常用的方法之一。
通过自组装技术,在介孔材料中添加有机分子和水,利用溶剂挥发和多种相互作用力的复合效应,可制备出具有周期性结构的光子晶体。
三、光子晶体的应用光子晶体的应用非常广泛,包括传感、通信、光学器件等多个领域。
1. 传感:光子晶体在传感领域的应用主要体现在生化传感和环境监测。
利用气敏材料、生物分子等将较小的变化转化为对光子晶体的微观结构和大小的影响,从而实现对较小物理量的测量和监测。
例如,利用光子晶体制备的生物芯片可实现对一系列生物分子的灵敏检测,具有在诊断和治疗等方面的广泛应用前景。
2. 通信:在通信领域,光子晶体可以作为光学滤波器来实现光信号的选择和放大,并可用于光纤通信系统、微波光子学等多种场合。
例如,利用光子晶体制备的微腔可实现高质量光学微腔,可在通信系统中用于调制、开关、振荡等多种操作。
3. 光学器件:最新的研究表明,在光学器件中,光子晶体可被应用于光电子集成领域,使光电器件变得更加紧凑和高效。
例如,利用纳米级光子晶体制备的激光器,可实现更高的输出功率和较低的阈值电流。
据估计,这些性能优良的光学器件未来可能取代现有的微电子器件,成为下一代高速处理和信息传输系统的核心。
光子晶体国外发展现状

光子晶体国外发展现状
光子晶体是一种具有周期性结构的光子材料,由于其具有光子禁带结构和光子导波效应,在光通信、传感和光电器件等领域具有广泛的应用潜力。
以下将介绍光子晶体在国外的发展现状。
在国外,光子晶体的研究和应用已经取得了很大的进展。
美国、日本和欧洲的一些研究机构和大学在光子晶体领域进行了深入的研究,并取得了许多重要成果。
在光通信领域,研究人员利用光子晶体的光子禁带结构和光子导波效应,开发出了一系列光子集成器件。
其中包括基于光子晶体波导的光开关、光调制器和光放大器等。
这些器件具有小尺寸、低损耗和高速度等优势,可以实现高容量和高速率的光通信系统。
在光传感领域,光子晶体具有优异的传感性能。
研究人员通过改变光子晶体的结构和材料,将光子晶体应用于气体传感、生物传感和化学传感等领域。
例如,利用光子晶体结构的反射光谱特性,可以实现对微小气体浓度变化的高灵敏度检测。
此外,光子晶体还在光子学器件、光子芯片和光子集成系统等领域得到了广泛应用。
研究人员通过光子晶体的设计和制备,可以实现复杂的光子器件和光子芯片结构,从而实现光信号的处理和控制。
总之,光子晶体在国外的发展取得了显著进展,在光通信、传感和光电器件等领域具有广泛的应用潜力。
随着技术的不断进
步和研究的深入,相信光子晶体将在未来发展中发挥更重要的作用。
光子晶体材料研究进展及应用前景

光子晶体材料研究进展及应用前景随着科学技术的不断进步,人们对于材料的研究也越来越深入。
在新材料领域中,光子晶体材料的研究一直备受关注。
它的出现不仅改变了传统材料的性质,而且在光电子、能源等领域具有广泛的应用前景。
本文将介绍光子晶体材料的研究进展及其应用前景。
一、光子晶体材料的基础概念光子晶体材料,其实就是一种具有光子带隙的晶体材料。
简单来说,就是通过在材料中引入周期性结构,从而达到对于某些频率的光线有选择性的反射或折射,使其不能通过材料的表面,从而形成光子带隙。
光子晶体材料不仅可以对于光线起到滤波器的作用,而且具有传统材料所没有的一些新颖性质,比如能够在材料内部引发较为复杂的相互作用,从而实现信息处理、光学传输等。
二、光子晶体材料的研究进展1. 光子晶体材料的制备光子晶体材料的制备是研究的基础。
传统的光子晶体材料制备方法包括光刻、等离子体刻蚀、溶胶-凝胶法等。
然而,这些方法不仅操作复杂,而且成本较高。
因此,研究人员开始关注通过自组装的方法制备光子晶体材料。
目前,自组装光子晶体材料的制备方法包括: 溶液自组装法、模板法、电沉积法、表面修饰法等。
这些新的制备方法的出现,使得光子晶体材料制备变得更加容易和便捷。
2. 光子晶体材料特殊性质的研究对于光子晶体材料的特殊性质的研究,则是深入理解该材料的关键所在。
目前,研究人员发现,由于光子晶体具有纳米级别的周期性结构,其表现出来的性质和传统材料是不同的,比如光子晶体的多级结构和空洞结构的存在使得材料中存在的能带不止一个,从而能够过滤更宽波长的光线。
此外,研究人员还发现当光子晶体中存在缺陷时,其在光电子学、微波强度识别、传感器等方面的应用具有广泛的前景。
三、光子晶体材料的应用前景1. 光子晶体过滤器由于光子晶体材料能够对于特定波长的光线进行选择性的反射或折射,发挥着像过滤器一样的作用,因此其被广泛地应用于光子晶体过滤器的制造中。
在光纤通讯技术方面,光子晶体过滤器可以滤除带宽噪声,提高信号的传输质量和分辨率;在图像处理方面,它可以过滤掉光干扰,减少图像的噪声和失真,提高图像的清晰度和质量。
光子晶体材料研究进展及应用前景

光子晶体材料研究进展及应用前景光子晶体是一种光物理学中的新材料,具有优异的光学性能和应用前景。
近年来,随着科技的不断发展,光子晶体的研究进展也在不断加快,在光子晶体的制备、性能调控和应用方面都取得了一系列重要突破。
光子晶体的制备主要有两种方法:自组装法和纳米加工法。
自组装法利用物质在一定条件下自发形成周期性结构,可以制备出大面积、高品质的光子晶体。
纳米加工法则通过纳米尺度的加工手段实现对材料结构的精确控制,可以制备出更复杂的结构和性能。
这两种方法的结合使得光子晶体的制备更加灵活多样化。
光子晶体具有优异的光学性能,主要体现在三个方面:光子禁带、色散调控和非线性光学效应。
光子禁带是指在光子晶体中存在一定范围内的频率范围,光波无法传播的现象。
光子禁带的宽度和位置可以通过调控光子晶体的周期、孔隙比例和折射率实现。
色散调控则是指调控光子晶体中光波的传播速度和传播方向,可以实现光波的聚焦、解聚和波导等功能。
非线性光学效应是指在强光场作用下,光子晶体中光波的能量转换和非线性响应现象。
这些光学性能使得光子晶体在激光器、光通信、传感器、光电存储等领域具有广泛应用的潜力。
在激光器领域,光子晶体可以作为优质的光学反射镜、激光输出镜和模式选择器,提高激光器的输出功率和谐振器质量因子,实现高性能激光器。
在光通信领域,光子晶体可以用于光合集器、耦合器、滤波器和光学开关等光学器件,提高光路的集成度和性能。
在传感器领域,光子晶体可以用于生物传感器、气体传感器、液体传感器和光子晶体光纤等,实现高灵敏度和快速响应的传感器。
在光电存储领域,光子晶体可以用于光学存储介质和光子晶体薄膜,实现大容量、高速和可重写的光存储。
除此之外,光子晶体还有许多其他的应用前景。
例如,在太阳能领域,光子晶体可以用于制备高效率的光伏材料和光学镜面,提高太阳能电池的能量转换效率。
在生物医学领域,光子晶体可以用于生物分析、药物传输、光热治疗和细胞成像等,实现精确控制和定位的生物操作。
光子晶体材料的研究进展及其应用前景

光子晶体材料的研究进展及其应用前景随着科学技术的不断进步,人类在材料领域的研究也逐渐深入。
其中,光子晶体材料作为一种前沿材料,受到越来越多的关注和研究。
本文将从定义、研究进展和应用前景三个方面介绍光子晶体材料。
一、定义光子晶体材料是一种新型晶体材料,具有周期性的光学性质,与普通石墨烯等材料不同,它是一种具有光学结构的材料。
所谓光学结构,是指物质的微小结构排列形成的一种如同棋盘格一样的结构,这种结构可以限定光的传播方向和波长范围。
二、研究进展1. 光子晶体材料的制备技术不断提高光子晶体材料的制备技术主要包括自组装、浸渍、拉伸、方法等多种方法。
近年来,制备技术不断提高,材料的质量和稳定性也得到了不断提高。
2. 光子晶体材料的性质研究逐渐深入在光子晶体材料的制备基础上,人们开始对其性质进行深入研究。
例如光子晶体材料的透过光谱、反射谱和色散曲线等性质都成为了研究对象。
通过对这些性质的研究,人们可以了解材料的光学性质,并进一步研究材料的应用前景。
3. 光子晶体材料的应用领域不断扩展光子晶体材料可以应用于电子领域、化学领域、材料研究领域等多个领域,其应用前景越来越广阔。
例如可以应用于储能器件、传感器、太阳能电池等领域。
三、应用前景1. 储能器件光子晶体材料具有高禁带宽度和低折射率等性质,与常规储能材料相比,其储能能力和稳定性得到了良好提升。
因此,光子晶体材料被广泛应用于储能器件领域。
2. 传感器光子晶体材料具有高灵敏度和选择性等性质,这使得光子晶体材料可以应用于传感器领域。
例如可以应用于气体、水质、温度传感等领域,使得传感器的快速响应和灵敏度得到了良好提高。
3. 太阳能电池光子晶体材料可以制备成具有不同孔径和结构的二维和三维结构,这使得其可以作为高效太阳能电池的构建单元。
例如可以制备成具有周期性微纳结构的薄膜,该薄膜具有较高的吸收率和低反射率,因此被广泛应用于太阳能电池领域。
综上所述,光子晶体材料作为一种新型晶体材料,具有众多优良的性质,并且在应用领域上具有广泛的发展前景。
光子晶体技术的研究进展与应用前景

光子晶体技术的研究进展与应用前景光子晶体是指在纳米尺度的范围内,通过控制材料的晶格结构使得电磁波的传输特性发生改变的一种新型材料。
随着纳米技术的不断发展和进步,光子晶体技术也在不断地被研究和应用。
其应用领域包括光电子学、光信息处理、基础研究等众多领域,其前景非常广阔。
一、光子晶体的基本原理光子晶体是由空气或其他物质的等间距排列的球形或柱形结构组成。
其特点是具有周期性结构,制备时要求每个元部件的大小和位置要满足一定的限制。
在光子晶体中,当光子的波长和晶格常数具有相同的数量级时,发生Bragg衍射。
由于光子晶体的等间距排列结构和Bragg衍射的原理,使得其具有优异的光学性能。
因此,光子晶体被应用在许多领域中,如光电子材料、光信息处理、生物医学等领域。
二、光子晶体的应用1.光子晶体的应用于太阳能电池光子晶体能够有效地控制光子的传输,这使其成为一个理想的材料用来提高太阳能电池的效率。
通过将光子晶体嵌入到太阳能电池中,可以增强太阳能电池的吸收效率,提高太阳能电池的转换效率。
事实上,研究发现,将光子晶体嵌入到太阳能电池中,其转换效率可以提高约30%。
因此,光子晶体在太阳能电池中的应用是非常有前途的。
2. 光子晶体的应用于生物医学光子晶体能够通过改变光子的波长,来识别某种特定的生物大分子,例如蛋白质和DNA等。
这一特点使得光子晶体在生物医学领域中的应用具有很大的潜力。
例如,可以使用光子晶体来制备高灵敏的生物传感器,以检测某种特定的生物分子。
此外,光子晶体还可以用于制备药物传输系统,以实现精准治疗。
由于其在生物医学领域的广泛应用,光子晶体技术已经逐渐成为了当今生物医学领域的热门研究课题。
3.光子晶体的应用于光纤通信光子晶体能够通过调整光子的传输效应来控制光纤中的波导,并且能够使波导具有更好的光学性能。
这使光子晶体成为一种理想的材料,用于光纤通信中的波导制备。
实际上,光子晶体在现代光纤通信网络中已经开始得到广泛的应用。
光子晶体制造中的前沿技术与趋势分析

光子晶体制造中的前沿技术与趋势分析光子晶体是一种具有特殊性质的材料,它能够控制光的传播,从而实现光的操控。
随着科技的不断发展,光子晶体制造技术也在不断进步,并呈现出一些前沿技术和趋势。
一、光子晶体的制造技术目前,光子晶体的制造技术主要包括微纳加工技术和薄膜制备技术。
微纳加工技术主要是通过在硅片上制作微纳结构,从而实现对光的操控。
薄膜制备技术则是通过物理或化学方法制备光子晶体薄膜,从而实现大面积、高精度的光子晶体制造。
二、前沿技术1. 光子晶体自组装技术:自组装技术是一种新型的纳米制造技术,它能够在纳米尺度上实现对材料的自我组装。
这种技术可以实现大面积、高精度的光子晶体制备,具有广阔的应用前景。
2. 光子晶体三维结构制造技术:三维结构光子晶体可以实现对光的全方向控制,因此具有更广泛的应用前景。
目前,研究者们正在研究如何利用三维打印技术、激光烧蚀等技术制造三维结构光子晶体。
3. 光子晶体与量子点的复合制造技术:量子点是一种具有特殊性能的纳米材料,它可以与光子晶体结合,实现更精确的光操控。
目前,研究者们正在研究如何将量子点与光子晶体复合制造,从而开发出更高效、更精确的光子器件。
三、趋势分析1. 规模化制造:随着技术的不断进步,光子晶体的制备将逐渐实现规模化制造,从而满足大规模应用的需求。
2. 智能化控制:未来,光子晶体的制造将更加智能化,通过引入人工智能技术,实现更精确的光操控。
3. 多功能化:光子晶体将逐渐实现多功能化,不仅可以用于光操控,还可以与其他材料结合,实现更广泛的应用。
总之,光子晶体制造中的前沿技术和趋势分析表明,未来光子晶体将在更多领域得到应用,并成为未来科技发展的重要方向之一。
光子晶体的拓扑效应与边缘态研究进展

光子晶体的拓扑效应与边缘态研究进展光子晶体作为一种具有周期性调控光传播的材料,在过去几十年里受到了广泛的研究和应用。
随着研究的深入,人们发现光子晶体中存在一种特殊的现象,被称为拓扑效应。
这一效应不仅在物理学领域引起了广泛的兴趣,还开辟了在光学通信、能源转换等方面的新应用。
本文将介绍光子晶体的拓扑效应与边缘态的研究进展。
一、光子晶体的基本原理光子晶体是一种具有周期性折射率分布的材料,其周期性结构可以通过周期性排列的介质材料或微纳米结构实现。
与电子晶体类似,光子晶体可以通过禁带结构来控制光的传播特性,从而实现对光的频率、波长等参数的调控。
二、光子晶体的拓扑效应在传统的光子晶体中,光的传播方式被认为是平庸的,没有什么特殊性质。
然而,随着对拓扑的研究深入,人们意识到光子晶体中存在着一种特殊的拓扑效应。
拓扑效应是指一种物理体系在局部微观尺度上的拓扑不变性,在全局宏观尺度上会表现出一些奇特的性质。
光子晶体的拓扑效应主要体现在其能带结构中。
在光子晶体的禁带中,存在一些能带的拓扑不变量,如陈数、托普拉索不变量等。
这些不变量可以描述能带之间的拓扑性质,如拓扑绝缘体、拓扑半金属等。
通过调控光子晶体的结构参数,可以实现这些拓扑性质在光子晶体中的展示。
三、光子晶体的边缘态光子晶体中特殊的拓扑性质不仅体现在其内部的能带结构中,还表现在边界上的边缘态。
边缘态是指光子晶体中由于拓扑不变性引起的特殊能带,其能谱在边缘或缺陷处出现。
边缘态在光子晶体中的出现,使得光子晶体在边缘上能够实现单向传输,而在体态中保持传统的双向传输。
这一特性可以被应用在光学器件中,如光波导、光隔离器等,提高其传输效率和性能。
四、典型的光子晶体拓扑效应研究在过去的研究中,人们发现了一系列具有典型拓扑效应的光子晶体。
例如,三维光子晶体中的“倍频超导体”效应,可以实现光子的倍频传输。
二维拓扑绝缘体则具有边缘态的扩展面积,使光的传输更加稳定。
此外,还有一些研究关注光子晶体的拓扑等效理论,将其与其他光学系统进行比较与分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
深圳大学研究生课程论文题目光子晶体及其器件的研究进展成绩专业课程名称、代码年级姓名学号时间2016 年12 月任课教师子晶体及其器件的研究进展摘要:光子晶体是一种具有光子带隙的新型材料,通过设计可以人为调控经典波的传输。
由于光子晶体具有很多新颖的特性,使其成为微纳光子学和量子光学的重要研究领域。
随着微加工技术的进步和理论的深入研究,光子晶体在信息光学以及多功能传感器等多个学科中也得到了广泛应用。
本文介绍了光子晶体及其特征,概述了光子晶体器件的设计方法和加工制作流程,论述现阶段发展的几种光子晶体器件,并对光子晶体器件的发展趋势做了展望。
关键词:光子晶体;光子晶体的应用;发展趋势Research progress of photonic crystals and devicesAbstract:Photonic crystal is a new material with photonic band gap, which can regulate the transmission of classical wave artificially. Because it has many novel properties of photonic crystal, which is becoming an important research field of micro nano Photonics and quantum optics. With the progress of micro machining technology and theoretical research, photonic crystals have been widely used in many fields such as information optics and multifunction sensors. This paper introduces the photonic crystals and its characteristics, summarizes the design method and process of the photonic crystal devices in the production process, discusses several kinds of photonic crystal devices at this stage of development, and the development trend of photonic crystal devices is prospected.Key words:Photonic crystal; application of photonic crystal; development trend1引言在过去的半个世纪里,随着人们对电子在物质尤其是半导体中运动规律的研究,使得对电子控制能力的增加,从而产生了各种微电子器件以及大规模的集成电路,推动了电子工业和现代信息产业的迅猛发展,半导体技术在人们生活中扮演着越来越重要的角色。
目前半导体技术正向着高速化和高集成化方向的发展,不可避免地引发了一系列问题。
当信息处理的频率和信号带宽越来越高时,通过金属线传输电子会带来难以克服的发热问题和带宽限制;而线宽减小到深纳米尺度时,相邻导线的量子隧穿效应成为电子器件发展的重要瓶颈。
这迫使人们越来越关注光信息处理技术,并尝试用光器件来替代部分传统电子器件,以突破上述瓶颈限制。
实现这一目标的关键在于如何将光子器件尺寸降低至微纳米量级,并能与微电子电路集成在同一芯片上。
目前比较有效的方法有三种:纳米线波导,表面等离子体和光子晶体。
其中,光子晶体具有体积小、损耗低和功能丰富等多种优点,被认为是最有前途的光子集成材料,称为光子半导体[1],它是1987年才提出的新概念和新材料。
这种材料有一个显著的特点是它可以如人所愿地控制光子的运动。
由于其独特的特性,光子晶体可以制作全新原理或以前所不能制作的高性能光学器件,在光通讯上也有重要的用途,如用光子晶体器件来替代传统的电子器件,信息通讯的速度快得无法想象。
用光子晶体做成的光子集成芯片,可以像集成电路对电子的控制一样对光子进行控制,从而实现全光信息处理,在全光通信网、光量子信息、光子计算机等诸多研究领域有着诱人的应用前景。
工作于可见光波段的光子晶体器件典型尺寸通常为微米、亚微米量级,却可实现导光、分光、滤光以及波分复用等很多功能,非常有利于光路集成。
目前,电路芯片集成度已经逐渐受到“电子瓶颈”效应的限制,这是因为电子带电荷,相互之间存在库仑作用,互相干扰,产生热效应,因此集成度过高时将严重影响传输速度,而光子呈电中性,并具有高于电子好几个数量级的传播速度,不仅可以大幅提高集成度,还可以大幅提高信息传递速率。
光子晶体器件还有一个突出优点:损耗极低且基本可以实现无损传输,这意味着可以节约大量的光中继放大设备,极大的降低建设成本,同时很多相应的通信技术难题如:光放大后的信号畸变问题、光传输中的电子瓶颈问题等也迎刃而解。
光子晶体器件的研究已经引起国内外众多知名科研机构和公司的广泛重视,形成了包括材料学、物理学、化学、微细加工、电子工程、微电子等多学科交叉的研究热点[2]。
光子晶体的研究已经开展了多年, 纵观其发展历程, 研究领域主要集中在[3]:①完全禁带光子晶体结构的理论设计和计算;②光子晶体的制备;③光子晶体带隙所产生的物理效应和光波在光子晶体中的传播规律;④光子晶体中的非线性效应;⑤利用光子晶体制备光子器件展开对光子晶体应用领域的探索。
这5 个领域的发展相辅相成、互相促进, 而其中三维光子晶体能产生全方向的完全禁带, 相比一维、二维光子晶体仅能产生方向禁带, 具有更普遍的实用性, 因此占据了光子晶体研究中很大的份额。
2 光子晶体2.1光子晶体的定义光子晶体是指具有光子带隙的周期性介电结构材料,所谓光子带隙是由于介电常数不同的材料在空间周期性排列导致介电常数的空间周期性,使得光折射率产生周期性分布,光在其中传播时产生能带结构,在带隙中的光子频率被禁止传播,因此称光子禁带,具有光子禁带特征的材料称光子晶体。
依据不同的分类标准,可以将光子晶体分为不同的种类:按电磁波的波长不同,可分为微波光子晶体、红外波光子晶体、可见光子晶体等;按材料种类不同,可分为金属光子晶体、半导体光子晶体、氧化物光子晶体和聚合物光子晶体等;按用途不同,又可分为光子晶体微腔、光子晶体波导、光子晶体光纤和光子晶体激光器等;按折射率周期性变化的空间维度不同,则可分为一维(1D)光子晶体、二维(2D)和三维(3D)光子晶体,如图1所示。
图1 一维、二维和三维光子晶体示意图2.1.1 光子晶体的基本特性(1)光子带隙在光子晶体中,由于折射率n存在空间上的周期性分布,光子的运动规律类似于周期性变化势场下晶体中电子的运动规律,在其中传播的光的色散曲线也会形成带状结构。
在一定条件下,其带与带之间将会出现光子禁带。
因此,对于存在光子禁带的光子晶体来说,不是所有频率的光都可在其中传播,相应于光子禁带的频率范围内的光不能透过光子晶体,会被完全地反射回去。
如果在一定频率范围内,任何偏振与传播方向的光都被严格地禁止传播,则将这种光子禁带称为完整光子禁带,它是最有应用前景的光子晶体,这种现象也只有在三维光子晶体中才能出现[4]。
(2)光子局域1987年John发现在一种经过精心设计的无序介电材料组成的超晶格中,光子呈现出很强的Anderson局域。
如果在光子晶体中引入某种程度的缺陷,就会在光子禁带中引入新的电磁波模式,与缺陷态频率吻合的光子有可能被局域在缺陷位置,这就是所谓的光子局域。
一旦偏离缺陷处,光就迅速衰减。
这种现象就是由光子局域的存在引起的,它主要是针对光子晶体缺陷而言的。
若晶体原有的对称性被破坏,在光子晶体的禁带中就可能出现光子局域。
2.2 光子晶体器件的设计方法光子晶体概念提出之初完全是基于固体物理中的能带理论,把光子晶体对光子的作用类比为半导体中原子点阵对电子的作用,因此像倒格矢、布里渊区、散射图等描述固体能带的概念也被用来描述光子晶体的禁带。
实践证明,这种类比是十分有益的。
然而此种理论仅仅把电磁场当成标量波处理,没有考虑其矢量特性,所以不够精确。
于是90年代出现了平面波展开法(PWM)[5],其基本原理是把周期变化的介电常数按傅里叶变换展开,再把电场矢量以布洛赫波展开,这样电磁场的双旋度方程就可以转化为求解久期方程的特征函数和特征值,从而可以通过数值计算方法求解。
由于此种方法考虑了电磁场的矢量特征,所以计算结果与实验结果吻合较好,大大提高了光子晶体能带结构计算的精度,而且此种方法原理简单,运算量较小,直到目前,它仍然是光子晶体器件设计主流方法之一。
不过,PWM的前提条件是介电常数必须是周期变化的,周期性一旦破坏,计算误差就大大增加,因此用PWM计算有缺陷存在的光子晶体器件的能带就存在一定的局限性。
到90年代中期,有限时域差分法(FDTD)被引入了光子晶体研究领域。
这种方法不需要介质结构周期性这一假设,基本原理是对Maxwell方程的两个旋度方程进行有限差分,然后加入周期性边界条件,从而得到离散的电磁场矩阵方程。
二维光子晶体原胞做10x10的剖分就可满足精度要求,计算效率比PWM高。
而且可以进行时域仿真,动态地显示光场的传播行为,因此这种方法的使用频率相当高。
不过由于在三维情况下数据量急剧加大,将会出现数字结果不稳定,故而不能用作三维光子禁带结构的计算。
后来,又有学者开始用有限元方法来求解光子带隙。
有限元方法是求解数理边值问题的一种很重要的数值技术,在结构分析领域应用非常广泛,在计算电磁学中的应用已有30余年。
这种方法的优点在于离散单元的形状可以是任意的,而且可以根据需要在同一模型中的不同区域选择不同的单元网格密度,其形成的系数矩阵是稀疏的,故求解效率相对FDTD而言要高,尤其是在三维情况下更是如此。
不过这种方法的理论公式极为复杂,编程难度较大,目前在光子晶体器件的设计中应用最多的还是FDTD和PWM。
2.3 光子晶体的研究器件的加工制作一维光子晶体是周期排列的多层介质膜结构,因此它可以用传统的镀膜工艺加工完成,难度相对较低。
二维和三维光子晶体的加工难度就大大增加了,主要表现在两个方面[6]:1)晶胞单元尺寸小。
目前研究的热点波段集中在近红外,也就是光通信波段,对应的光子晶体晶胞特征尺寸在亚微米数量级,已经接近甚至超过微细加工工艺目前的分辨率极限,加工难度可想而知。
2)形状的控制。
对于二维就是刻蚀深度问题,即在保证刻蚀深度的前提下,如何提高侧壁陡直度,减少钻蚀。