2019学年浙江省高中数学竞赛

合集下载

2019年浙江省高中数学竞赛试卷

2019年浙江省高中数学竞赛试卷
a
因此当 t= a 2
1 ,( S ) ABC max
a
a3
a2
, 1
------------- 14 分
3
令a
27
a2 1 8
(a 3)(8a2 3a 9) 0
a 3, a 3 297 16
a2 1 2
a
a1
3 2, a
297 (不合题意,舍去 ), a 3.
16
--------- 17 分
四、附加题: (本大题共有 2 小题,每题 25 分,共 50 分。) 21. 设 D,E,F 分别为△ ABC的三边 BC,CA,AB 上的点。 记
项的序号为( 1+2+3+…+4018)+2019=809428。
------------ 17 分
19. 设有红、黑、白三种颜色的球各 10 个。现将它们全部放入甲、乙两个袋子 中,要求每个袋子里三种颜色球都有, 且甲乙两个袋子中三种颜色球数之积相等。 问共有多少种放法。
解:设甲袋中的红、黑、白三种颜色的球数为 x, y , z ,则有 1 x, y, z 9 ,且
( x 2010 1)2 2 0
x 2010 1 ,解得
12. x R, 函数 f ( x) x
解答 2 s i n 的周期为 2
x
x
2sin 3cos 的最小正周期为 12 .
2
3
x 4, 3 c o的s周期为 6 ,所以函数 f x 的周( 期) 为
3
。1 2
13. 设 P 是圆 x2 y2 36 上一动点, A 点坐标为 20,0 。当 P 在圆上运动时,线
2019 年浙江省高中数学竞赛试卷

关于举行2019年高中各学科命题竞赛的通知【模板】

关于举行2019年高中各学科命题竞赛的通知【模板】

温教研高函〔2019〕312号关于举行2019年高中各学科命题竞赛的通知各县(市、区)教育局教研部门,市局直属各高中:为进一步深化课程改革,适应学考与高考改革,加强“考法”研究,发挥教学质量检测评价对深化课程改革与评价的导向和引领作用,经研究,决定举行2019年全市高中各学科命题竞赛活动。

现将有关事项通知如下:一、参加对象全市高中语文、数学、英语、思想政治、历史、地理、物理、化学、生物、通用技术、信息技术学科任课教师。

二、命题原则1.导向性。

以高中各学科的《课程标准》(2017年版)和《浙江省普通高中学科教学指导意见》(2014年版)为指导,以《2019年浙江省普通高考考试说明》《浙江省普通高中学业水平考试说明》(自2019年6月学考起使用)和《浙江省普通高校招生选考科目考试说明》(自2020年1月高考选考起使用)为依据,命题应具有较高的信度、效度,必要的区分度和适当的难度。

2.基础性。

侧重基础知识特别是主干知识的检测,考核学生掌握基础知识与基本技能,理解和掌握基本概念、基本原则、基本理论、基本规律,注重培养动手动脑,运用所学的知识发现问题、解决问题的能力。

3.创新性。

试题内容与形式具有创新性,题目必须原创或改编,杜绝抄袭;题目设计与答案设置具有开放性,体现深化普通高中课程改革和高考改革的新趋势。

4.规范性。

考试目标明确,命题科学规范、难度适中;试题严格按照考试说明规定的内容、结构和题型要求编写;题目、题干简洁,参考答案规范,不能出现科学性错误。

三、参赛要求1.以学校教研组或备课组为单位,组成命题参赛小组,最多署名5人。

每所高中学校每个学科各推荐选拔一个命题参赛小组,并经各县(市、区)教育局教研室或市局直属高中组织初评或初选后推荐参赛。

2.每个命题参赛小组命制本学科一份试题(包括试题、参考答案、评分标准和命题意图等),命题范围、题型、难度、考核要求与《2019年浙江省普通高考考试说明》《普通高等学校招生全国统一考试英语科考试说明》及《浙江省普通高校招生选考科目考试说明》(自2020年1月高考选考起使用)(各学科的具体要求见附件1),并填写《2019年**市高中各学科命题竞赛报名表》(见附件2)。

2019年重庆市学考选考浙江省高中数学竞赛预赛试题与解答

2019年重庆市学考选考浙江省高中数学竞赛预赛试题与解答

2019年“中南传媒湖南新教材杯”重庆市高中数学竞赛 暨全国高中数学联赛(重庆赛区)预赛试题参考答案一、填空题(每小题8分,共64分)1.设A 为三元集合(三个不同实数组成的集合),集合{|,,}B x y x y A x y =+∈≠,若222{log 6,log 10,log 15}B =,则集合A =________. 答案:22{1,log 3,log 5}提示:设222{log ,log ,log }A a b c =,其中0.a b c <<<则6,10,15.ab bc ad ===解得2,3,5a b c ===,从而22{1,log 3,log 5}A =。

2.函数 的最小值为 ,最大值为 ,则________.答案:提示:设 ,则 且 ,∴ .,令, . 令 得 , , , ∴ , ,∴.3. ________. 答案:提示:.4.已知向量 , , 满足 ,且 ,若 为 , 的夹角,则 ________. 答案:提示:∵ ∴ ∴ ∵ ∴又∵ ∴ ∴.5.已知复数 , , 使得为纯虚数, , ,则 的最小值是________.1提示:设 ,则 ,由已知∴∴ ∴ ∴ 。

当12321,,(1)2z z i z i ===+时,最小值能取到。

6.已知正四面体可容纳10个半径为1的小球,则正四面体棱长的最小值为________. 答案:提示:当正四面体棱长最小时,设棱长为 ,此时,一、二、三层分别有1、3、6个小球, 且相邻小球两两相切,注意到重心分四面体的高为 ,所以正四面体的高, 得7. 设()f x 是定义在(0,)+∞上的单调函数,对任意0x >有4()f x x >-,4(())3f f x x+=,则(8)f = . 答案:72提示:由题意存在00x >使0()3f x =。

又因()f x 是(0,)+∞上的单调函数,这样的00x >是唯一的,再由004(())3f f x x +=得00044()3x f x x x=+=+解得04x =或01x =-(舍)。

2019年浙江省绍兴市诸暨理浦中学高三数学文联考试题含解析

2019年浙江省绍兴市诸暨理浦中学高三数学文联考试题含解析

2019年浙江省绍兴市诸暨理浦中学高三数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知全集,集合,集合,则集合为()A.[-1,1] B.[0,1] C.(0,1] D.[-1,0)参考答案:C2. 是虚数单位,则复数在复平面内对应的点在().第一象限.第二象限.第三象限.第四象限参考答案:D,所以对应点位,在第四象限,选D.3. 若某几何体的三视图(单位:cm)如图所示,其中左视图是一个边长为2的正三角形,则这个几何体的体积是()A.2cm2 B. cm3 C.3cm3 D.3cm3参考答案:B【考点】L!:由三视图求面积、体积.【分析】由几何体的三视图得到原几何体的底面积与高,进而得到该几何体的体积.【解答】解:由几何体的三视图可知,该几何体为底面是直角梯形,高为的四棱锥,其中直角梯形两底长分别为1和2,高是2.故这个几何体的体积是×[(1+2)×2]×=(cm3).故选:B.4. 过抛物线y2=2px(p>0)的焦点,斜率为的直线被抛物线截得的线段长为25,则该抛物线的准线方程为()A.x=﹣8 B.x=﹣4 C.x=﹣2 D.x=﹣1参考答案:B【考点】抛物线的简单性质.【分析】求出直线方程,联立直线方程和抛物线方程转化为一元二次方程,根据抛物线的弦长公式进行求解即可.【解答】解:∵过抛物线y2=2px(p>0)的焦点为(,0),∴斜率为的直线方程为y=(x﹣),代入y2=2px,得[(x﹣)]2=2px,整理得8x2﹣17px+2p2=0,∴A(x1,y1),B(x2,y2),则x1+x2=,∵|AB|=x1+x2+p=+p=25,∴p=25,则p=8,则抛物线的直线方程为x=﹣=﹣4,故选:B5. i是虚数单位,若 (a,b∈R),则乘积ab的值是A.-15B.-3C.3D.15参考答案:B∵.∴a=-1,b=3.∴ab=-3,故选择B.6. 投掷一枚质地均匀的骰子两次,若第一次面向上的点数小于第二次面向上的点数我们称其为前效实验,若第二次面向上的点数小于第一次面向上的点数我们称其为后效实验,若两次面向上的点数相等我们称其为等效试验.那么一个人投掷该骰子两次后出现等效实验的概率是()....参考答案:B7. 函数的图象可看成将函数的图象()A.向左平移个单位得到 B.各点纵坐标不变,横坐标伸长的原来的4倍得到C.向右平移个单位得到 D.各点纵坐标不变,横坐标缩短的原来的倍得到参考答案:A8. 下列函数中,与函数y=有相同定义域的是().A.f(x)=|x| B.f(x)= C.f(x)=ln x D.f(x)=ex参考答案:C9. 设为单位向量,其中向量,向量,且向量在上的投影为2,则与的夹角为A. B. C. D.参考答案:C10. 已知双曲线的一条渐近线方程为,则此双曲线的离心率为A. B. C. D.参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11. 设,不等式对恒成立,则的取值范围为。

浙江省杭州市2019届高三高考命题比赛模拟数学试卷12Word版含答案

浙江省杭州市2019届高三高考命题比赛模拟数学试卷12Word版含答案


(命题意图:考察函数的图像,属中档题) 【预设难度系数】 0.65
8. (改编自 2017 浙江测试卷) 在三棱锥 D ABC 中,记二面角 C AB D 的平面角为 , 直线 DA 与平面 ABC 所成的角为 1,直线 DA 与 BC 所成的角为 2 ,则( )
A.
1
B.
1
C.
2
D.
2
(命题意图:考察立体几何线线角、线面角问题,属中档偏难题)
【预设难度系数】 0.55
10. 已知函数 f x
a x2 x 3,x 1,
x 2,x 1.

x
R ,若关于 x 的不等式 f x
立,则 a 的取值范围是(

x a 在 R 上恒成
2
47
A.
,2
16
47 39
B.
,
16 16
C. 2 3,2
39 D. 2 3,
16
(命题意图:考察分段函数的应用及不等式恒成立问题,属较难题) 【预设难度系数】 0.5
若事件 A 在一次试验中发生的概率是 p,则 n 次独立重复试验中事件 A 恰好发生 k 次的概
率 Pn (k )
C
k n
pk
(1
p) n k (k
0,1,2,
, n)
台体的体积公式 V
1 ( S1
3
S1S2 S2 )h
其中 S1 , S2 分别表示台体的上、 下底面积, h 表
示台体的高

锥体的体积公式 V
A. 2
B. 1,2
C. 1,2,4
D. 1,2,4,5
2
(命题意图:考察集合的关系与集合的运算,属容易题)

2019浙江卷 数学(解析版)

2019浙江卷 数学(解析版)

2019年普通高等学校招生全国统一考试(浙江卷)数学参考公式:选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}101B =-,,,则U A B =I ð( )A. {}1-B. {}0,1C. {}1,2,3-D. {}1,0,1,3-【答案】A 【解析】 【分析】本题借根据交集、补集的定义可得.容易题,注重了基础知识、基本计算能力的考查.【详解】={1,3}U C A -,则(){1}U C A B =-I 【点睛】易于理解集补集的概念、交集概念有误2.渐近线方程为0x y ±=的双曲线的离心率是( )A. B. 1C.D. 2【答案】C 【解析】 【分析】本题根据双曲线的渐近线方程可求得1a b ==,进一步可得离心率.容易题,注重了双曲线基础知识、基本计算能力的考查.【详解】因为双曲线的渐近线为0x y ±=,所以==1a b,则c =,双曲线的离心率ce a==【点睛】理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.3.若实数,x y 满足约束条件3403400x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩,则32z x y =+的最大值是( )A. 1-B. 1C. 10D. 12【答案】C 【解析】 【分析】本题是简单线性规划问题的基本题型,根据“画、移、解”等步骤可得解.题目难度不大题,注重了基础知识、基本技能的考查.【详解】在平面直角坐标系内画出题中的不等式组表示的平面区域为以(-1,1),(1,-1),(2,2)为顶点的三角形区域(包含边界),由图易得当目标函数=3+2z x y 经过平面区域的点(2,2)时,=3+2z x y 取最大值max 322210z =⨯+⨯=.【点睛】解答此类问题,要求作图要准确,观察要仔细.往往由于由于作图欠准确而影响答案的准确程度,也有可能在解方程组的过程中出错.4.祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容易”称为祖暅原理,利用该原理可以得到柱体体积公式V Sh =柱体,其中S 是柱体的底面积,h 是柱体的高,若某柱体的三视图如图所示,则该柱体的体积是( )A. 158B. 162C. 182D. 32【答案】B 【解析】 【分析】本题首先根据三视图,还原得到几何体—棱柱,根据题目给定的数据,计算几何体的体积.常规题目.难度不大,注重了基础知识、视图用图能力、基本计算能力的考查.【详解】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为264633616222++⎛⎫⨯+⨯⨯=⎪⎝⎭. 【点睛】易错点有二,一是不能正确还原几何体;二是计算体积有误.为避免出错,应注重多观察、细心算. 5.若0,0ab >>,则“4a b +≤”是 “4ab ≤”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A 【解析】 【分析】本题根据基本不等式,结合选项,判断得出充分性成立,利用“特殊值法”,通过特取,a b 的值,推出矛盾,确定必要性不成立.题目有一定难度,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当0, 0a >b >时,2a b ab +≥,则当4a b +≤时,有24ab a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立,综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件.【点睛】易出现的错误有,一是基本不等式掌握不熟,导致判断失误;二是不能灵活的应用“赋值法”,通过特取,a b 的值,从假设情况下推出合理结果或矛盾结果.6.在同一直角坐标系中,函数11,log (02a x y y x a a ⎛⎫==+> ⎪⎝⎭且0)a ≠的图象可能是( ) A. B.C. D.【答案】D 【解析】 【分析】本题通过讨论a 的不同取值情况,分别讨论本题指数函数、对数函数的图象和,结合选项,判断得出正确结论.题目不难,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当01a <<时,函数xy a =过定点(0,1)且单调递减,则函数1x y a=过定点(0,1)且单调递增,函数1log 2a y x ⎛⎫=+⎪⎝⎭过定点1(,0)2且单调递减,D 选项符合;当1a >时,函数x y a =过定点(0,1)且单调递增,则函数1xy a =过定点(0,1)且单调递减,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,02)且单调递增,各选项均不符合.综上,选D.【点睛】易出现的错误有,一是指数函数、对数函数的图象和性质掌握不熟,导致判断失误;二是不能通过讨论a 的不同取值范围,认识函数的单调性.7.设01a <<,则随机变量X 的分布列是:则当a 在()0,1内增大时( ) A. ()D X 增大 B. ()D X 减小C. ()D X 先增大后减小D. ()D X 先减小后增大【答案】D 【解析】 【分析】 研究方差随a 变化增大或减小规律,常用方法就是将方差用参数a 表示,应用函数知识求解.本题根据方差与期望的关系,将方差表示为a 的二次函数,二测函数的图象和性质解题.题目有一定综合性,注重重要知识、基础知识、运算求解能力的考查. 【详解】方法1:由分布列得1()3aE X +=,则 2222111111211()01333333926a a a D X a a +++⎛⎫⎛⎫⎛⎫⎛⎫=-⨯+-⨯+-⨯=-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,则当a 在(0,1)内增大时,()D X 先减小后增大.方法2:则()222221(1)222213()()03399924a a a a D X E X E X a ⎡⎤+-+⎛⎫=-=++-==-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ 故选D.【点睛】易出现的错误有,一是数学期望、方差以及二者之间的关系掌握不熟,无从着手;二是计算能力差,不能正确得到二次函数表达式.8.设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P AC B --的平面角为γ,则( )A. ,βγαγ<<B.,βαβγ<<C.,βαγα<< D. ,αβγβ<<【答案】B 【解析】 【分析】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小.而充分利用图形特征,则可事倍功半.【详解】方法1:如图G 为AC 中点,V 在底面ABC 的投影为O ,则P 在底面投影D 在线段AO 上,过D 作DE 垂直AE ,易得//PE VG ,过P 作//PF AC 交VG 于F ,过D 作//DH AC ,交BG 于H ,则,,BPF PBD PED α=∠β=∠γ=∠,则cos cos PF EG DH BDPB PB PB PBα===<=β,即αβ>,tan tan PD PDED BDγ=>=β,即y >β,综上所述,答案为B.方法2:由最小角定理βα<,记V AB C --的平面角为γ'(显然γ'=γ)由最大角定理β<γ'=γ,故选B.法2:(特殊位置)取V ABC -为正四面体,P 为VA 中点,易得cos sin ,sin sin 6633α=⇒α=β=γ=,故选B. 【点睛】常规解法下易出现的错误有,不能正确作图得出各种角.未能想到利用“特殊位置法”,寻求简便解法.9.已知,a b R ∈,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩,若函数()y f x ax b =--恰有三个零点,则( ) A. 1,0a b <-< B. 1,0a b <-> C. 1,0a b >-> D. 1,0a b >-<【答案】C 【解析】 【分析】当0x <时,()(1)y f x ax b x ax b a x b =--=--=--最多一个零点;当0x …时,32321111()(1)(1)3232y f x ax b x a x ax ax b x a x b =--=-++--=-+-,利用导数研究函数的单调性,根据单调性画函数草图,根据草图可得.【详解】当0x <时,()(1)0y f x ax b x ax b a x b =--=--=--=,得1bx a=-;()y f x ax b =--最多一个零点;当0x …时,32321111()(1)(1)3232y f x ax b x a x ax ax b x a x b =--=-++--=-+-, 2(1)y x a x '=-+,当10a +…,即1a -…时,0y '…,()y f x ax b =--在[0,)+∞上递增,()y f x ax b =--最多一个零点.不合题意;当10a +>,即1a <-时,令0y '>得[1x a ∈+,)+∞,函数递增,令0y '<得[0x ∈,1)a +,函数递减;函数最多有2个零点;根据题意函数()y f x ax b =--恰有3个零点⇔函数()y f x ax b =--在(,0)-∞上有一个零点,在[0,)+∞上有2个零点,如右图:∴01b a <-且3211(1)(1)(1)032b a a a b ->⎧⎪⎨+-++-<⎪⎩, 解得0b <,10a ->,31(1)6b a >-+. 故选:C .【点睛】遇到此类问题,不少考生会一筹莫展.由于方程中涉及,a b 两个参数,故按“一元化”想法,逐步分类讨论,这一过程中有可能分类不全面、不彻底..10.设,a b R ∈,数列{}n a 中,21,n n n a a a a b +==+,N n *∈ ,则( )A. 当101,102b a => B. 当101,104b a => C. 当102,10b a =-> D. 当104,10b a =->【答案】A 【解析】 【分析】本题综合性较强,注重重要知识、基础知识、运算求解能力、分类讨论思想的考查.本题从确定不动点出发,通过研究选项得解.【详解】选项B:不动点满足221142x x x⎛⎫-+=-=⎪⎝⎭时,如图,若1110,,22na a a⎛⎫=∈<⎪⎝⎭,排除如图,若a不动点12则12na=选项C:不动点满足22192024x x x⎛⎫--=--=⎪⎝⎭,不动点为ax12-,令2a=,则210na=<,排除选项D:不动点满足221174024x x x⎛⎫--=--=⎪⎝⎭,不动点17122x=±,令17122a=±,则171102na=<,排除.选项A:证明:当12b=时,2222132431113117,,12224216a a a a a a=+≥=+≥=+≥≥,处理一:可依次迭代到10a;处理二:当4n≥时,221112n n na a a+=+≥≥,则117117171161616log2log log2nn n na a a-++>⇒>则12117(4)16nna n-+⎛⎫≥≥⎪⎝⎭,则626410217164646311114710161616216a⨯⎛⎫⎛⎫≥=+=++⨯+⋯⋯>++>⎪ ⎪⎝⎭⎝⎭.故选A【点睛】遇到此类问题,不少考生会一筹莫展.利用函数方程思想,通过研究函数的不动点,进一步讨论a的可能取值,利用“排除法”求解.非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分11.复数11z i=+(i 为虚数单位),则||z =________.【答案】2【解析】 【分析】本题先计算z ,而后求其模.或直接利用模的性质计算. 容易题,注重基础知识、运算求解能力的考查.【详解】1|||1|2z i ===+. 【点睛】本题考查了复数模的运算,属于简单题.12.已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆相切于点(2,1)A --,则m =_____,r =______.【答案】 (1). 2m =- (2). r =【解析】 【分析】本题主要考查圆的方程、直线与圆的位置关系.首先通过确定直线AC 的斜率,进一步得到其方程,将(0,)m 代入后求得m ,计算得解.【详解】可知11:1(2)22AC k AC y x =-⇒+=-+,把(0,)m 代入得2m =-,此时||r AC ===【点睛】:解答直线与圆的位置关系问题,往往要借助于数与形的结合,特别是要注意应用圆的几何性质.13.在二项式9)x 的展开式中,常数项是________;系数为有理数的项的个数是_______.【答案】 (1). (2). 5 【解析】 【分析】本题主要考查二项式定理、二项展开式的通项公式、二项式系数,属于常规题目.从写出二项展开式的通项入手,根据要求,考察x 的幂指数,使问题得解.【详解】9(2)x +的通项为919(2)(0,1,29)rr r r T C x r -+==L 可得常数项为0919(2)162T C ==,因系数为有理数,1,3,5,7,9r =,有246810T , T , T , T , T 共5个项【点睛】此类问题解法比较明确,首要的是要准确记忆通项公式,特别是“幂指数”不能记混,其次,计算要细心,确保结果正确.14.在V ABC 中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =____;cos ABD ∠=________.【答案】 (1). 1225 (2). 7210【解析】 【分析】本题主要考查解三角形问题,即正弦定理、三角恒等变换、数形结合思想及函数方程思想.通过引入CD x =,在BDC ∆、ABD ∆中应用正弦定理,建立方程,进而得解.. 【详解】在ABD ∆中,正弦定理有:sin sin AB BD ADB BAC =∠∠,而34,4AB ADB π=∠=,22AC AB BC 5=+=,34sin ,cos 55BC AB BAC BAC AC AC ∠==∠==,所以122BD =. 72cos cos()coscos sinsin 4410ABD BDC BAC BAC BAC ππ∠=∠-∠=∠+∠=【点睛】解答解三角形问题,要注意充分利用图形特征.15.已知椭圆22195x y+=的左焦点为F,点P在椭圆上且在x轴的上方,若线段PF的中点在以原点O为圆心,OF为半径的圆上,则直线PF的斜率是_______.【答案】15【解析】【分析】结合图形可以发现,利用三角形中位线定理,将线段长度用坐标表示考点圆的方程,与椭圆方程联立可进一步求解.利用焦半径及三角形中位线定理,则更为简洁.【详解】方法1:由题意可知||=|2OF OM|=c=,由中位线定理可得12||4PF OM==,设(,)P x y可得22(2)16x y-+=,联立方程22195x y+=可解得321,22x x=-=(舍),点P在椭圆上且在x轴的上方,求得315,2P⎛⎫-⎪⎪⎝⎭,所以1521512PFk==方法2:焦半径公式应用解析1:由题意可知|2OF|=|OM|=c=,由中位线定理可得12||4PF OM==,即342p pa ex x-=⇒=-求得315,2P ⎛⎫-⎪ ⎪⎝⎭,所以1521512PF k ==.【点睛】本题主要考查椭圆的标准方程、椭圆的几何性质、直线与圆的位置关系,利用数形结合思想,是解答解析几何问题的重要途径.16.已知a R ∈,函数3()f x ax x =-,若存在t R ∈,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是____. 【答案】max 43a = 【解析】 【分析】本题主要考查含参绝对值不等式、函数方程思想及数形结合思想,属于能力型考题.从研究()2(2)()23642f t f t a t t +-=++-入手,令2364[1,)m t t =++∈+∞,从而使问题加以转化,通过绘制函数图象,观察得解.【详解】使得()()222(2)()2(2)(2))223642f t f t a t t t t a t t +-=•++++-=++-,使得令2364[1,)m t t =++∈+∞,则原不等式转化为存在11,|1|3m am ≥-≤,由折线函数,如图只需113a -≤,即43a ≤,即a 的最大值是43【点睛】对于函数不等式问题,需充分利用转化与化归思想、数形结合思想.17.已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍±1时,123456||AB BC CD DA AC BD λλλλλλ+++++u u u r u u u r u u u r u u u r u u u r u u u r的最小值是________;最大值是_______.【答案】 (1). 0 (2). 25【解析】 【分析】本题主要考查平面向量的应用,题目难度较大.从引入“基向量”入手,简化模的表现形式,利用转化与化归思想将问题逐步简化. 【详解】()()12345613562456AB BC CD DA AC BD AB AD λ+λ+λ+λ+λ+λ=λ-λ+λ-λ+λ-λ+λ+λu u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v要使123456AB BC CD DA AC BD λ+λ+λ+λ+λ+λu u u v u u u v u u u v u u u v u u u v u u u v的最小,只需要135562460λ-λ+λ-λ=λ-λ+λ+λ=,此时只需要取1234561,1,1,1,1,1λ=λ=-λ=λ=λ=λ= 此时123456min0AB BC CD DA AC BDλ+λ+λ+λ+λ+λ=u u u v u u u v u u u v u u u v u u u v u u u v等号成立当且仅当1356,,λ-λλ-λ均非负或者均非正,并且2456,,λ-λλ+λ均非负或者均非正。

2019年浙江省高考理科数学试卷及答案解析【word版】

2019年浙江省高考理科数学试卷及答案解析【word版】

2019年普通高等学校招生全国统一考试(浙江卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出 的四个选项中,只有一项是符合题目要求的.(1)设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A , 则=A C U ( ) A. ∅ B. }2{ C. }5{ D. }5,2{(2)已知是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件(3)某几何体的三视图(单位:cm )如图所示,则此几何体的 表面积是 A. 902cm B. 1292cm C. 1322cm D. 1382cm4.为了得到函数 x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像( )A.向右平移4π个单位 B.向左平移4π个单位 C.向右平移12π个单位 D.向左平移12π个单位5.在46)1()1(y x ++的展开式中,记nm y x 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f )( )A.45B.60C.120D. 2106.已知函数则且,3)3()2()1(0,)(23≤-=-=-≤+++=f f f c bx ax x x f ( )A.3≤cB.63≤<cC.96≤<cD. 9>c 7.在同意直角坐标系中,函数x x g x x x f a a log )(),0()(=≥=的图像可能是( )8.记,max{,},x x y x y y x y ≥⎧=⎨<⎩,,min{,},y x yx y x x y≥⎧=⎨<⎩,设,a b 为平面向量,则( )A.min{||,||}min{||,||}a b a b a b +-≤B.min{||,||}min{||,||}a b a b a b +-≥C.2222min{||,||}||||a b a b a b +-≥+ D.2222min{||,||}||||a b a b a b +-≤+9.已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球 ()3,3m n ≥≥,从乙盒中随机抽取()1,2i i =个球放入甲盒中.(a )放入个球后,甲盒中含有红球的个数记为()1,2ii ξ=;(b )放入个球后,从甲盒中取1个球是红球的概率记为 ()1,2i p i =. 则A.()()1212,p p E E ξξ><B.()()1212,p p E E ξξ<>C.()()1212,p p E E ξξ>>D.()()1212,p p E E ξξ<<10.设函数21)(x x f =,),(2)(22x x x f -=|2sin |31)(3x x f π=,99,,2,1,0,99==i ia i ,记|)()(||)()(||)()(|98991201a f a f a f a f a f a f I k k k k k k k -++-+-= ,.3,2,1=k 则A.321I I I <<B. 312I I I <<C. 231I I I <<D. 123I I I << 二、填空题:本大题共7小题,每小题4分,共28分.11.若某程序框图如图所示,当输入50时,则该程序运算后输出的 结果是________.12.随机变量ξ的取值为0,1,2,若()105P ξ==,()1E ξ=,则()D ξ=________. 13.当实数x ,y 满足240,10,1,x y x y x +-≤⎧⎪--≤⎨⎪≥⎩时, 14ax y ≤+≤恒成立,则实数a 的取值范围是________.14.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_____种(用数字作答).15.设函数()⎪⎩⎪⎨⎧≥-<+=0,0,22x x x x x x f 若()()2≤a f f ,则实数a 的取值范围是______16.设直线)0(03≠=+-m m y x 与双曲线12222=-by a x (0a b >>)两条渐近线分别交于点B A ,,若点)0,(m P 满足PB PA =,则该双曲线的离心率是__________17、如图,某人在垂直于水平地面的墙面前的点处进行射击训练. 已知点到墙面的距离为,某目标点沿墙面的射击线移动,此人为了准确瞄准目标点,需计算由点观察点的仰角的大小.若则的最大值19(本题满分14分)已知数列{}n a 和{}n b 满足()()*∈=N n a a a nb n 221 . 若{}na 为 等比数列,且.6,2231b ba +==(1)求n a 与n b ; (2)设()*∈-=N n b a c nn n 11。

2019年浙江省高中数学竞赛试题参考解答与评分标准

2019年浙江省高中数学竞赛试题参考解答与评分标准

2019年浙江省高中数学竞赛试题参考解答与评分标准说明:本试卷分为A 卷和B 卷:A 卷由本试卷的22题组成,即10道选择题,7道填空题、3道解答题和2道附加题;B 卷由本试卷的前20题组成,即10道选择题,7道填空题和3道解答题。

一、选择题(本大题共有10小题,每题只有一个正确答案,将正确答案的序号填入题干后的括号里,多选、不选、错选均不得分,每题5分,共50分)1. 已知53[,]42ππθ∈ D ) A .2sin θ B. 2sin θ- C. 2cos θ- D. 2cos θ解答:因为53[,]42ππθ∈cos sin cos sin θθθθ--+ 2c o s θ=。

正确答案为D 。

2.如果复数()()21a i i ++的模为4,则实数a 的值为( C )A. 2B.C. 2±D. ±42a =⇒=±。

正确答案为C 。

3. 设A ,B 为两个互不相同的集合,命题P :x A B ∈⋂, 命题q :x A ∈或x B ∈,则p 是q 的( B )A. 充分且必要条件B. 充分非必要条件C. 必要非充分条件D. 非充分且非必要条件 解答:P 是q 的充分非必要条件。

正确答案为B 。

4. 过椭圆2212x y +=的右焦点2F 作倾斜角为45弦AB ,则AB 为( C )A.B. C. 3 D. 解答:椭圆的右焦点为(1,0),则弦AB 为1,y x =-代入椭圆方程得21243400,33x x x x AB -=⇒==⇒==。

正确答案为C 。

5. 函数150()51xxx f x x -⎧-≥=⎨-<⎩,则该函数为( A )A. 单调增加函数、奇函数B. 单调递减函数、偶函数C. 单调增加函数、偶函数D. 单调递减函数、奇函数解答:由单调性和奇偶性定义知道函数为单调增加的奇函数。

正确答案为A 。

6. 设有一立体的三视图如下,则该立体体积为( A )正视图 侧视图 俯视图(圆和正方形)A. 4+52πB. 4+32πC. 4+2π D. 4+π解答:该几何体是一个圆柱与一个长方体的组成,其中重叠了一部分(2π),所以该几何体的体积为52213422πππ⨯⨯+-=+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019学年浙江省高中数学竞赛一、填空题:本大题共10个小题,每小题8分,共80分.1. 在多项式103)2()1(+-x x 的展开式中6x 的系数为2. 已知5log )35(log 172+=-a a ,则实数a=3. 设()b ax x x f ++=2在[]1,0中两个实数根,则b a 22-的取值范围为4. 设R y x ∈,,且1)sin(sin sin cos cos cos sin 222222=+-+-y x y x y x x x ,则x -y= 5. .已知两个命题,命题P :函数())0(log >=x x x f a 单调递增;命题q :函数)(1)(2R x ax x x g ∈++=.若q p ∨为真命题,q p ∧为假命题,则实数a 的取值范围为6. 设S 是⎪⎭⎫ ⎝⎛85,0中所有有理数的集合,对简分数()1,,=∈q p S p q ,定义函数()32,1=+=⎪⎪⎭⎫ ⎝⎛x f p q p q f 则在S 中根的个数为 7. 已知动点P ,M ,N 分别在x 轴上,圆()()12122=-+-y x 和圆()()34322=-+-y x 上,则PN PM +的最小值8. 已知棱长为1的正四面体ABC P -,PC 的中点为D ,动点E 在线段AD 上,则直线BE 与平面ABC 所成的角的取值范围为9. 已知平面向量→a ,→b ,→c ,满足1=→a ,2=→b ,3=→c ,10<<λ,若0=⋅→→c b ,则→→→---c b a )1(λλ所有取不到值的集合为10. 已知()⎩⎨⎧≥-<-=0,10,22x x x x x f ,方程()()04212122=*---+-+a x x f x x x f 有三个根321x x x <<.若)(21223x x x x -=-,则实数a=二、解答题:本大题共5个小题,满分120分,将答案填在答题纸上11. 设.,2,1,)(316)(,32)(2121 =+=+=+n x f x x f x x f n n 对每个n ,求x x f n 3)(=的实数解。

12. 已知椭圆12622=+y x 的右焦点为F ,过F 的直线)2(-=x k y 交椭圆于P ,Q 两点(0≠k ),若PQ 的中点为原点,直线ON 交直线x=3于M.(1)求∠MFQ 的大小;(2)求MFPQ 的最大值. 13. 设数列{}n a 满足: ,3,2,1,2,221=≤=-+n a a a n n n ,证明:如果1a 为有理数,则从某项后{}n a 为周期数列。

14. 设+∈Z b b b a a a 321321,,;,,,证明:存在不全为零的数{}2,1,0,,321∈λλλ,使得332211a a a λλλ++和332211b b b λλλ++同时被3整除.15. 设{}n a a a ,,,21 =σ为{}n ,,2,1 的一个排列,记()∑=++==ni n i i a a a a F 1111,σ,求().m in σF答案:一、填空题1. -41282.23.[]2,04.)(22Z k k ∈+ππ 5.),2[]1,2(+∞-6.57.13102--8.⎥⎦⎤⎢⎣⎡714arctan ,0 9.),4()113136,(+∞--∞ 10.2317- 二、解答题11. 证明:利用数学归纳法.(1)x=2是x x f n 3)(=的解当n=1时,x=2是x x x f 332)(21=+=的解.当n=k 时,设6)2(=k f 则6)2(3164)2(1=+=+k k f f . 由此可得x=2是x x f n 3)(=的解(对于所有的n ).(2)当x>2时,2233)(x x x f n <<. 当n=1时,)2(23332)(221><<+=x x x x x f . 当n=k 时,设x x f k 3)(>,则x x x f x x f k k 31)(316)(221>+>+=+. 由此可得0<x<2都不是x x f n 3)(=的解(对于所有的n ).因此,对于每个n ,x x f n 3)(=的实数解为x=212. 解:(1)联立⎪⎩⎪⎨⎧-==+)2(12622x k y y x ,可得061212)13(2222=-+-+k x k x k . 设P 点的坐标为()p p y x ,,Q 的坐标为().,q q y x 则13612,13122222+-=+=+k k x x k k x x q p q p . 于是有()13442+-=-+=+k k k x x k y y q p q p . 因为PQ 的中点为N ,所以⎪⎪⎭⎫ ⎝⎛+-+132,136222k k k k N ,因此ON 的斜率为k k MF 1-=, 即得1-=PQ MF k k ,因此MF 与PQ 垂直,∠MFQ=2π. (2)()()[]q p q p q p q p q p x x x x k x x k k x x k x x MF PQ I 4)(11)(222222222-+=-=+-+-=⎪⎭⎫ ⎝⎛= ()222222222213124131224)13(144++=⎥⎦⎤⎢⎣⎡+--+=k k k k k k k k . 令132+=ku ,则()⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛--=---=+-=169411316)21211(3163)2(18222u u u u u u I ,13. 证明:(1)若1a 为有理数,则{}n a 为一个有理数数列(2)对于任意的n ,设1),(,==x y xy a n ,由已知条件,有且仅有下述一个等式成立:x x y a a n n 22221+=+=+或xx y a a n n 22221-=-=+.n a 与1+n a 有相同的分母(不约分). (3)设1),(,1==q p p q a ,则n n n b pb a ,=为整数,由于,,3,2,1,2 =≤n a n 因此p b p n 22≤≤-(4)若存在两个自然数l k <,使得i k a a =,则由(2)中得到的x x y a a n n 22221+=+=+或xx y a a n n 22221-=-=+递推公式以及2≤n a ,n=1,2,3,…,可得{}n a 从k 项开始是一个周期数列,周期为k l -(5)由(3)可知对于任意的n ,n b 的值只有4p+1(有限个),故总能找到l k <,使得l k b b =,从而由l k a a =.综上所述,如果l a 为有理数,则从某项后{}n a 为周期数列.14.证明:不妨设{}3,2,1,2,1,0,),3(m od ),3(m od =∈≡≡i l k l b k a i i i i k i .则要证明结论正确,只要证明存在不全为零的数{}2,1,0,,321∈λλλ,使得≡++332211k k k λλλ)3(m od 0)3(m od 332211≡++l l l λλλ.(*)记)3(m od 1221c I k I k =-,这里{}2,1,0∈c .情形(1)当时,则011==l k ,或者11,l k 不全为零.若011==l k ,则取0,1321===λλλ,有(*)式成立.若11,l k 不全为零,不妨设01≠k ,则取0,,31221=-==λλλk k ,且⎩⎨⎧≡-=++≡-=++)3(mod 0)3(mod 021123322112112332211l k l k l l l k k k k k k k λλλλλλ即(*)式. 情形(2)当c=1或2时,即)3(mod 12≡c .记)3(m od )(),3(m od )(2311312332c l k l k c c l k l k c ≡-≡-,这里{}2,1,0,21∈c c .令1,,32211===λλλc c ,则{}2,1,0,,321∈λλλ且不全为零,且=++332211k k k λλλ≡++332211k c k c k c )3(m od )()(32311312332k k l k l k c k l k l k c +-+- )3(mod 0)3(mod )1()3(mod )(32221123≡-≡+-≡k c k l k l k ck类似可以证明)3(m od 0332211≡++l l l λλλ.综上所述,可以取到不全为零的数{}2,1,0,,321∈λλλ,使得(*)式成立15.解:问题等价于圆周上放置i r 个数,使得相邻数的乘积之和为最小,最小值记为n T .不妨设n a =1,则数字1必与它相邻,否则设j a =1(2≠j ,i r ),则可将j a a a ,,,32 ,的数字改变为21,,,a a a j j -上的数字,则相邻数的乘积和的该变量为0))((211121121<--=--++++a a a a a a a a a a a a j j j j j j .于是可确定12=a .再说明数字2也必与数字i r 相邻,即2=n a .事实上,若j a =2(n j ≠),则交换j n n a a a ,,,1 -为n j j a a a ,,,1 +,此时的目标改变值为0))((111111<--=--+---n j j j j n j n j a a a a a a a a a a a a .因此目标取到最小值时,2,1,21===n a a n a .由此出发,依次可得2,113-=-=-n a n a n . 在已安排好的两端数字,若剩下的数比两端数字都小,则在剩下的数中找两个最小的数字,按小对大,大对小放置;若剩下的数比两端数字大,则在剩下的数字中找两个最大的数,按大对小,小对大放置.由此规律即得 ,4,3,4,33524-=-===--n a n a a a n n .下面用递推法计算n T .考虑n+2个数字,我们在n T 的数字排序中,将每个数字加1,再放置1,n+2这两个数字,在,n+1的中间插入n+2,1,即可得到2+n T .因此,)1(2)2(2)2()1(2+-++++++=+n n n n T T n n ,其中∑=+++=++=ni n i i n n n T a a T 11)2()1)(1(,。

相关文档
最新文档