单调性与最大小值第1课时.ppt

合集下载

3.2.1-单调性与最大(小)值课件-2025届高三数学一轮复习

3.2.1-单调性与最大(小)值课件-2025届高三数学一轮复习

f x1 − f x2 > 0,
f x1 − f x2 < 0,
f x1 > f x2 ,



x1 < x2
x1 − x2 < 0
x1 − x2 > 0,
f x1 < f x2 ,
∴ f x 在 a, b 上是减函数,C是真命题,同理可得D也是真命题.
x1 > x2 ,
例1-2 (2024·河北省石家庄市期末)下列四个函数中,在 0, +∞ 上单调递增的是

= − +


因为 , ∈ , +∞ 且 < ,可得 − < , > , <



> ,
所以 − = −



< ,即 < ,
所以函数 在 , +∞ 上单调递增.
3
, (−1, ],单调
2
3
2
递减区间为[ , 4), 4, +∞ .
所以由复合函数的单调性可知函数y =
D.∀x1 ,x2 ∈ a, b ,且x1 ≠ x2 ,当 x1 − x2 [f x1 − f x2 ] > 0时,f x 在 a, b 上单调递
【解析】A是假命题,“无穷多个”不能代表“所有”“任意”;
1
x
以f x = 为例,知B是假命题;

f x1 −f x2
x1 −x2
< 0 x1 ≠ x2 等价于[f x1 − f x2 ] ⋅ x1 − x2 < 0,而此式又等价于
[1, +∞),单调递减区间是(−∞, −3]和[−1,1].(函数的单调区间

函数的基本性质

函数的基本性质
f(x1) f(x1) f(x2) f(x2) x1 x2o x2 x1 x
例1. 如图是定义在区间[-5, 5]上的函数 y=f(x), 根据图象说出函数的单调区间, 以及在每一单调区间 上, 它是增函数还是减函数? y
解: 函数的单调区
间有 [-5, -2), [-2, 1). [1, 3), [3, 5].
例题(补充). 如图是函数 y=f(x) 的图象, 其定义域 为[-p, p], x0 为何值时, 有f(x)≥f(x0), 或 f(x)≤f(x0)? 函数的最大值是多少? 最小值是多少? 解: (1) 当 x0 = - p 时, f(x)≥f(x0),
2
-p y
-p 2
1
这时函数取得最小值
o
-1
[解析] 任取 x1、x2,使得-1<x1<x2<1, 则 Δx=x2-x1>0. ax1x2+1x1-x2 Δy=f(x2)-f(x1)= , 2 x2 - 1 x - 1 1 2
∵-1<x1<x2<1,
2 ∴x1x2+1>0,x2 1-1<0,x2-1<0,
Байду номын сангаас
x1x2+1x1-x2 ∴ 2 <0, x1-1x2 - 1 2 ∴当 a>0 时,f(x2)-f(x1)<0, 故此时函数 f(x)在(-1,1)上是减函数, 当 a<0 时,f(x2)-f(x1)>0, 故此时 f(x)在(-1,1)上是增函数. 综上所述,当 a>0 时,f(x)在(-1,1)上为减函数, 当 a<0 时,f(x)在(-1,1)上为增函数.
• 3.函数单调性在图象上的反映:若f(x)是区间A上的单调增 函数,则图象在A上的部分从左向右是逐渐________ 的,若 上升 f(x)是单调减函数,则图象在相应区间上从左向右是逐渐 下降 的. ________ 取值 作差 , • 4.用定义证明单调性的步骤:__________ ,________ 变形 ,________ 定号 ,________. 结论 ________

高中数学第三章函数的概念与性质3.2.1单调性与最大小值第1课时函数的单调性新人教A版必修1

高中数学第三章函数的概念与性质3.2.1单调性与最大小值第1课时函数的单调性新人教A版必修1
函数f(x)=x的图象由左到右是上升的;函数f(x)=x2的图象在y轴左 侧是下降的,在y轴右侧是上升的;函数y=-x2的图象在y轴左侧是上 升的,在y轴右侧是下降的.
课前篇 自主预习
一二
(2)如何利用函数解析式f(x)=x2来描述随着自变量x值的变化,函 数值f(x)的变化情况?
提示:在(-∞,0]上,随着自变量x值的增大,函数值f(x)逐渐减小;在 (0,+∞)上,随着自变量x值的增大,函数值f(x)逐渐增大.
提示:可以.增函数的定义:由于当x1<x2时,都有f(x1)<f(x2),即都是 相同的不等号“<”,步调一致;“当x1>x2时,都有f(x1)>f(x2)”也是相同 的不等号“>”,步调也一致.因此我们可以简称为:步调一致增函数.
课前篇 自主预习
一二
2.填表 增函数
减函数
定义
一般地,设函数 f(x)的定义域为 I,区间 D⊆I:如果∀x1,x2∈D,
探究一
探究二
探究三 思维辨析 随堂演练
课堂篇 探究学习
函数单调性的应用 例3 已知函数f(x)在区间(0,+∞)上是减函数,试比较f(a2-a+1)
3
与f 4 的大小.
分析:要比较两个函数值的大小,需先比较自变量的大小.
解:∵a2-a+1=
������-
1 2
2
+
3 4

34,
∴3与
4
a2-a+1
(3)用x与f(x)的变化来描述当x在给定区间从小到大取值时,函数 值依次增大?如果是函数值依次减小呢?
提示:在给定区间上,∀x1,x2,且x1<x2,则f(x1)<f(x2).在给定区间 上,∀x1,x2且x1<x2,则f(x1)>f(x2).

函数的单调性与最大(小)值课件-2022-2023学年高一上学期数学人教A版(2019)必修第一册

函数的单调性与最大(小)值课件-2022-2023学年高一上学期数学人教A版(2019)必修第一册
量值x1,x2,设x1<x2,
f(x1)-f(x2)=(2x1+1)-(2x2+1)=2x1-2x2
=2(x1-x2)
∵x1<x2 ∴x1 -x2<0 ∴2(x1-x2)<0
∴f(x1)-f(x2)<0
即f(x1) < f(x2)
∴函数f(x)=2x+1在其定义域上是增函数.
取值
作差变形
定号
下结论
探究三
那么,我们称M为函数y = f ( x)的最大值
图1
1
2
3
x
f ( x) = x 2
y
通过观察图2,可以发现二次函数 f ( x) =
的图像上有一个最低点(0,0)即
x2
x R, 都有f ( x) f (0)
5
当一个函数f(x)的图像有最低点时,我们就
说函数f(x)有最小值。
4
3
2
1
-3
A.f(x)=x
2
C.f(x)=|x|
答案:B
(
1
B.f(x)=
x
D.f(x)=2x+1
)
2
5.函数 f(x)= ,x∈[2,4],则 f(x)的最大值为______;最小值为
x
________.
答案:1
1
2
题型一 利用图象确定函数的单调区间
例1 求下列函数的单调区间,并指出其在单调区间上是
增函数还是减函数:
∴x1x2>0,x1x2-1<0,x1-x2<0,
∴f(x1)-f(x2)>0,即f(x1)>f(x2).
1
故函数f(x)=x+ 在区间(0,1)内为减函数.

新教材高中数学3.2函数的基本性质3.2.1单调性与最大(小)值第1课时函数的单调性课件新人教A版必修第一册

新教材高中数学3.2函数的基本性质3.2.1单调性与最大(小)值第1课时函数的单调性课件新人教A版必修第一册
证明 ∀x1,x2∈R,且 x2>x1, 则 x2-x1>0, ∵当 x>0 时,f(x)<0,∴f(x2-x1)<0, ∴f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1)=f(x2-x1)+f(x1)-f(x1)=f(x2-x1)<0, ∴f(x)为减函数.
答案
题型四 复合函数的单调性 例 4 求函数 f(x)=8-21x-x2的单调区间.
[证明] (1)根据题意,令 m=0,可得 f(0+n)=f(0)·f(n). ∵f(n)≠0,∴f(0)=1. (2)由题意知 x>0 时,0<f(x)<1, 当 x=0 时,f(0)=1>0, 当 x<0 时,-x>0,∴0<f(-x)<1. ∵f[x+(-x)]=f(x)·f(-x), ∴f(x)·f(-x)=1, ∴f(x)=f-1 x>0. ∴∀x∈R,恒有 f(x)>0.
数(decreasing function).
知识点三
单调区间
如果函数 y=f(x)在区间 D 上__□0_1_单__调__递__增___或_□_0_2_单__调__递__减___,那么就说
函数 y=f(x)在这一区间具有(严格的)__□0_3__单__调_性_____,__□0_4__区__间__D____叫做 y
7.图象变换对单调性的影响 (1)上下平移不影响单调区间,即 y=f(x)和 y=f(x)+b 的单调区间相同. (2)左右平移影响单调区间.如 y=x2 的单调递减区间为(-∞,0];y=(x +1)2 的单调递减区间为(-∞,-1]. (3)y=k·f(x),当 k>0 时单调区间与 f(x)相同,当 k<0 时单调区间与 f(x)相 反.

高一数学复习知识讲解课件25 单调性与最大(小)值(第1课时) 函数单调性

高一数学复习知识讲解课件25 单调性与最大(小)值(第1课时)  函数单调性

3.2函数的基高一数学复习知3.2.1单调性与最大函数单调数的基本性质复习知识讲解课件最大(小)值(第1课时)数单调性在区间D上单调递增在区间D上单调递减要点2 函数的单调区间如果函数y =f (x )在区间D 上__________这一区间具有_________________,区间注意:(1)函数单调性关注的是整个区间单调递增或(严格的)单调性问题,所以单调区间的端点若属于定义域点不属于定义域则只能开.(2)单调区间D ⊆定义域I .(3)遵循最简原则,单调区间应尽可能大_______________,那么就说函数y =f (x )在区间D 叫做y =f (x )的单调区间.个区间上的性质,单独一点不存在单调性递增或单调递减义域,则该点处区间可开可闭,若区间端可能大.3.通过上面两道题,你对函数的单调 答:函数单调性定义中的,必须是x 1x 2时,要注意保持其任意性.的单调性定义有什么新的理解? 必须是任意的,应用单调性定义解决问题课时学案探究1 (1)证明函数的单调性的常用方是:①取值,在给定区间上任取两个自变量进行代数恒等变形,一般要出现乘积形式根据条件判断f (x 1)-f (x 2)变形后的正负;(2)讨论函数的单调性常见有两种:一种数在定义域的子区间上具有不同的单调性常用方法是利用函数单调性的定义,其步骤自变量x 1,x 2;②作差变形,将f (x 1)-f (x 2)形式,且含有x 1-x 2的因式;③判断符号,;④得出结论.一种是参数对单调性的影响,一种是函调性.思考题2 (1)如图所示为函数f (x )的图________________________,单调递减区间[-1,0],[1,2],[3,4] 的图象,其单调递增区间是_________减区间是________________________.[0,1],[2,3](2)【多选题】设f (x ),g (x )都是单调函数A .若f (x )单调递增,g (x )单调递增,B .若f (x )单调递增,g (x )单调递减,C .若f (x )单调递减,g (x )单调递增,D .若f (x )单调递减,g (x )单调递减,调函数,则下列命题中正确的是(),则f (x )-g (x )单调递增,则f (x )-g (x )单调递增BC ,则f (x )-g (x )单调递减,则f (x )-g (x )单调递减探究3求函数的单调区间常用方法方法:①图象法;②利用已知函数的单调性;③定义法.课 后 巩 固1.函数y=x2-6x+10在区间(2,A.减函数C.先减后增函数4)上是()B.增函数CD.先增后减函数2.设(a ,b ),(c ,d )都是函数f (x )的单调d ),x 1<x 2,则f (x 1)与f (x 2)的大小关系是(A .f (x 1)=f (x 2) C .f (x 1)>f (x 2) 的单调递增区间,且x 1∈(a ,b ),x 2∈(c ,)D B .f (x 1)<f (x 2) D .不能确定3.函数y =|x |-1的单调递减区间为A .(0,+∞) C .(-∞,-1)解析解析 y =|x |-1=x -1,x ≥0,-x -1,x <0,易知( )B .(-∞,0)B D .(-1,+∞)易知其单调递减区间为(-∞,0).故选B.4.【多选题】已知四个函数的图象如的函数是()BC图象如图所示,其中在定义域内具有单调性自助 餐一、证明单调性的探究1 单调性的证明证明某个函数在给定区间上的单调性明.它的步骤如下:第一步:取值.设x 1,x 2是给定区间上第二步:作差变形.写出差式f (x 1)方等手段,向有利于判断差的符号的方向变形式.第三步:判断符号.根据已知条件,第四步:下结论.根据定义,作出结论调性的方法与技巧调性,最常用的方法就是用定义去证区间上的任意两个自变量的值,且x 1<x 2. -f (x 2),并且通过提取公因式、通分、配方向变形,一般写成几个最简因式相乘的,确定f (x 1)-f (x 2)的符号. 出结论.(5)图象变换对单调性的影响.①上下平移不影响单调区间,即y ②左右平移影响单调区间.如=2的减y x 间为(-∞,-1].③y =kf (x ),当k >0时单调区间与f (x=f (x )和y =f (x )+b 的单调区间相同. 的减区间为-∞,,=+2的减区(0]y (x 1))相同,当k <0时与f (x )相反.例2 已知f (x )>0在R 上恒成立,并且满f (x )>1,求证:f (x )在R 上是增函数.【证明证明】】 设x 1,x 2∈R 且x 1<x 2,则∵x >0时,f (x )>1,∴f (x 2-x 1)>1,又f (x )>0在R 上恒成立∴f (x 2)=f ((x 2-x 1)+x 1)=f (x 2-x 1)·f (∴f (x )在R 上是增函数. 并且满足f (x +y )=f (x )·f (y ),当x >0时,则x 2-x 1>0,成立,x 1)>f (x 1).。

3.2.1单调性与最大(小)值

3.2.1单调性与最大(小)值

概念学习
PART 2
知识点一 增函数与减函数的定义
前提条件
设函数f(x)的定义域为I,区间D⊆I
条件
∀x1,x2∈D,x1<x2
都有f(x1) < f(x2)
都有f(x1) > f(x2)
图示
结论
f(x)在区间D上单调递增
f(x)在区间D上单调递减
当函数f(x)在它的定义域上单调递 当函数f(x)在它的定义域上单调递
高一数学
第1课时 函数的单调性
y=f(x)
MATHEMATICS
MATHEMATICS
知识引入
概念学习
例题讲解
课堂练习
课后作业
本课任务
知识引入
PART 1
知识引入
y
y = x2
(2) y 随 x 的增大而增大
y y = x3
o
x
o
x
(1)(-3;∞)上 随 x 的增大而增大
输入例子(注释)
输入例子辅助理解该概念。输入例子辅助理
解该概念。输入例子辅助理解该概念。
输入例子(注释)
输入例子辅助理解该概念。输入例子辅助理
解该概念。输入例子辅助理解该概念。
分组讨论
此处输入简短的分组说明
PART 4
分组讨论
概念讨论
概念深入学习与理解。
请在此输入内容 请在此输入内容 请在此输入内容 请在此输入内容 请在此输入内容 请在此输入内容 请在此输入内容 请在此输入内容
2.若本例(2)的函数f(x)是定义在(0,+∞)上的减函数,求x的取值范围.
2x-3>0,

由题意可知,5x-6>0, 2x-3<5x-6,

《函数的基本性质》函数的概念与性质PPT(第1课时函数的单调性)

《函数的基本性质》函数的概念与性质PPT(第1课时函数的单调性)
栏目 导引
第三章 函数的概念与性质
由函数单调性求参数范围的类型及处理方法 (1)由函数解析式求参数
栏目 导引
第三章 函数的概念与性质
(2)利用抽象函数单调性求范围 ①依据:定义在[m,n]上的单调递增(减)函数中函数值与自变 量的关系 f(a)<f(b)⇔am<≤b(a≤a>nb,),
m≤b≤n. ②方法:依据函数单调性去掉符号“f”,转化为不等式问题求解. [提醒] 单调区间是 D≠在区间 D 上单调. (1)单调区间是 D:指单调区间的最大范围是 D. (2)在区间 D 上单调:指区间 D 是单调区间的子集.
栏目 导引
第三章 函数的概念与性质
=(x1-x2)x1(x2x1x2-4). 因为 0<x1<x2<2, 所以 x1-x2<0,0<x1x2<4,x1x2-4<0, 所以 f(x1)-f(x2)>0,即 f(x1)>f(x2). 所以函数 f(x)=x+4x在(0,2)上单调递减.
栏目 导引
第三章 函数的概念与性质
栏目 导引
第三章 函数的概念与性质
(2)如果∀x1,x2∈D,当 x1<x2 时,都有__f_(x_1_)_>__f(_x_2_) ___,那么 就称函数 f(x)在区间 D 上单调递减(如图②) 特别地,当函数 f(x)在它的定义域上_单__调__递__减__时,我们就称它 是减函数.
栏目 导引
栏目 导引
第三章 函数的概念与性质
2.已知函数 f(x)=2x-+x1,证明:函数 f(x)在(-1,+∞)上为减 函数. 证明:∀x1,x2∈(-1,+∞), 且 x1<x2, 则 f(x1)-f(x2)=x21-+x11-x22-+x12
栏目 导引
第三章 函数的概念与性质
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
若函数在此区间上是增函数,则区间为单调递增区间 若函数在此区间上是减函数,则区间为单调递减区间
例: 证明:函数 f ( x ) = 3x+2 在 R上
是单调增函数。
取值
证明:设 x 1 ,x 2是R上的任意两个值,且x 1 < x 2,
作差
则 f ( x 1 ) -f ( x 2 ) = (3x 1 +2)-(3 x 2 +2)
解:函数y=f(x)的单调区间有[-4,-2),[-2,-1), [-1,1),[1,3),[3,5],其中y=f (x)在区间 [-4,-2), [-1,1), [3,5]上是增函数,在区间 [-2,-1), [1,3)上是减函数.
y 例2:
Y=2x+1
y
Y=(x-1)2-1
写 出
o
x

数 的
图2
注 意
1、函数的单调性是在定义域内的某个区间上的 性质,是函数的局部性质.
2 、必须是对于区间D内的任意两个自变量x1, x2;当x1<x2时,总有f(x1)<f(x2) 或f(x1)>f(x2) ,则函 数f(x)分别是增函数或减函数.
在某区间上,
增函数 图象上升
y
o
x
减函数 图象下降。
y x2
f (x1)
O
x1
x
(3)
(4) y随x的增大而增大
y y = x2
y y = x3
o
x
o
x
(-∞,0]上 y随x的增大而减小
[0,+∞)上y随x的增大而增大
y
y f (x)
y y f (x)
om
nx
在[m,n]上,函数
y随x的增大而增大



义 om
nx
[m,n]上,函数
y随x的增大而减小
y
o
x
函数的单调性定义
如果函数y=f(x)在某个区间上是增函数或是减函 数,那么就说函数y=f(x)在这一区间具有(严格的) 单调性,区间D叫做y=f(x)的单调区间.
例1、下图为函数 y = f x, x [4,7] 的图像,
指出它的单调区间。
y 3 2 1
-1.5
-4 -3 -2 -1 o 1 2 3 4 5 6 7x
-5 o
5
-5
y
f (x1)x1 Oy Nhomakorabea2x
y
y x2
f (x1)
x1 O
x
y
y x2
f (x1)
x1 O
x
y
y x2
f (x1)
x
O
1
x
y
y x2
f (x1)
Ox1
x
y
y x2
f (x1)
O x1
x
y
y x2
f (x1)
O x1
x
y
y x2
f (x1)
O
x1
x
y
-1 -2
解:单调增区间为 [-1.5,3],[5,6] 单调减区间为 [-4,-1.5],[3,5],[6,7]
例1 下图是定义在区间[-4,5]上的函数y=f (x),根 据图像说出函数的单调区间,以及在每一单调区 间上,它是增函数还是减函数?
3 2
o
-4 -3 -2 -1 1 2 3 4 5 -2 -3
增区间为
(, )

调 区
y
y 1 x

O
x
减区间为
(,0),(0, )
o1
-1
2x
增区间为 [1, )
减区间为 (,1]
y
y =x3
o
x
增区间为
(, )
(1)函数的单调性也叫函数的增减性;
(2)函数的单调性是对某个区间而言的,它是个 局部概念。这个区间是定义域的子集。
(3)单调区间:针对自变量 x 而言的。
5
f(x)=x
-5 o
5
-5
问题2
画出 f(x) = x2 的图像,并观察图像.
1、在区间 __(_-∞__,0_]__ 上,f(x)的值随着x的增大而
_减__小___.
f(x) = x2 2、 在区间 ____(_0_,+_∞_ )上,
f(x) 的 值 随 着 x 的 增 大 而
5
___增__大.
1)
Q x1, x2 1, ,且 x1 x2 x1 x2 0, x1x2 1 0
f (x1) f (x2 ) 0, f (x1) f (x2 )
所以函数 y x 1 在区间上 1, 是增函数. x
结论
定号
返回
判断函数单调性的一般步骤 :
1. 任取x1,x2∈D,且x1<x2; 2. 作差f(x1)-f(x2); 3. 变形(通常是因式分解和配方); 4. 定号(即判断差f(x1)-f(x2)的正负); 5. 下结论
证明函数 y x在定1义域 x
上的1,单调性 .
证明:在区间 1, 上任取两个值 x1, x2 且 x1 x2 取值

f
( x1 )
f
(x2 )
( x1
1) x1
( x2
1 x2
)
作差
( x1
x2
)
(
1 x1
1 x2
)
( x1
x2
)
(
x2 x1
x1 x2
)
变 形
(
x1
x2
)(
x1 x2 x1 x2
= 3 (x 1 -x 2 )
∵x 1 < x 2 , ∴x 1 - x 2< 0
∴f ( x 1 ) -f ( x 2 ) < 0
定号
即f ( x 1 ) < f ( x 2 )
结论
所以,函数 f ( x ) = 3x+2 在 R上是单调增函数。
判断函数单调性的一般步骤 :
1. 任取x1,x2∈D,且x1<x2; 2. 作差f(x1)-f(x2); 3. 变形(通常是因式分解和配方); 4. 定号(即判断差f(x1)-f(x2)的正负); 5. 下结论
一般地,设函数y=f(x)的定义域为I,如果对于
定义域I内的某个区间D内的任意两个自变量x1,x2 , 当x1<x2时,都有f(x1)>f(x2) ,那么就说f(x)在区间D 上是减函数 ,如图2.
y
y=f(x)
f(x1)
f(x2) x
0
x1
x2
图1
y y=f(x)
f(x1) f(x2)
0
x1
x2 x
——单调递增性 ——单调递减性
y 随 x 的增大而增大
即是:
y y f (x)
f(x2)
f(x1)
m o
x1
nx2
x
当x1< x2时,有f(x1) < f(x2)
知识要 点
函数单调性的概念:
1.增函数
一般地,设函数y=f(x)的定义域为I,如果对 于定义域I内的某个区间D内的任意两个自变量x1, x2 , 当 x1<x2 时 , 都 有 f(x1)<f(x2) , 那 么 就 说 f(x) 在 区间D上是增函数,如图1 .
上升
y y x 1
o
x
下降
y
y x 1
o
x
局部上升或下降 y
y x2
o
x
函数图象的上升下降反映了函数的一个基本性质——
单调性
问题1
画出f(x)=x的图像,并观察其图像。
1、从左至右图象上升还是下降 ? _上_升__
2、在区间 (_-___,____)上,随着x的增大,f(x)的值
随着 __增__大__.
相关文档
最新文档