拟南芥tDNA插入突变体鉴定开题报告

合集下载

一个拟南芥叶表皮细胞发育突变体的筛选及基因定位的开题报告

一个拟南芥叶表皮细胞发育突变体的筛选及基因定位的开题报告

一个拟南芥叶表皮细胞发育突变体的筛选及基因定位的开
题报告
题目:一个拟南芥叶表皮细胞发育突变体的筛选及基因定位
摘要:
拟南芥(Arabidopsis thaliana)是一种常用的模式植物,凭借其基因组完整和遗传转化容易等特点被广泛应用于植物遗传和分子生物学研究中。

本项目旨在筛选出一个拟南芥叶表皮细胞发育突变体,并利用基因定位技术确定其突变位点。

首先,将拟南芥野生型进行EMS(甲基磺酸乙酯)诱变,得到突变种群。

接着,从突变种群中筛选叶表皮细胞发育异常的个体采集其种子,并通过自交得到homozygote种子。

随后,将突变体进行苗期观察、表皮形态与构成分析,筛选出一个具有明显瑕疵的突变体。

通过对该突变体进行染色体手段的遗传分析,最终确定其为单一隐性突变。

最后,借助拟南芥基因组信息,以突变体的DNA为探针进行定位,利用PCR扩增和测序技术找出突变点所在的染色体和位置。

此外,还将对突变体的基因表达谱进行研究,从而确定其突变点的遗传机制和信号通路等等。

通过本项目的实验研究,将为拟南芥相关领域的研究提供一个新的突变体,同时还可以为植物基因定位和遗传分析提供新的方法。

T-DNA插入鉴定实验报告

T-DNA插入鉴定实验报告

T-DNA插入突变体的鉴定时明辉同组者:薛敏学号:201000220069摘要 Ti质粒是上有一段特殊的DNA区段,当农杆菌侵染植物细胞时,该DNA区段能自发转移进植物细胞,并插入植物染色体DNA中。

所以Ti质粒上的这一段能转移的DNA被叫做T-DNA。

将感兴趣的基因改造插入到T-DNA区段中,通过农杆菌侵染植物细胞,实现外源基因对植物的遗传转化,得到含有突变的植株。

通过本实验,我们将学习如何用PCR的方法检测所得植株是否为T-DNA的插入突变体。

1.引言T-DNA作为一种实验常用的遗传转化方法,在插入突变过程中,插入到植物染色体上的位置是随机的。

如果T-DNA插入进某个功能基因的内部,特别是插入到外显子区,将造成基因功能的丧失。

所以利用农杆菌Ti质粒转化植物细胞,是获得植物突变体的一种重要方法。

农杆菌Ti质粒转化植物细胞后,在获得的后代分离群体中,有T-DNA 插入的纯合突变体,杂合突变体,和野生型。

在突变体研究中,需要的材料是纯合突变体,所以必须从分离群体中将纯合突变体鉴定出来。

本次实验中,采用液CTAB(或者TSP法)提取拟南芥植株的DNA,然后PCR将所获DNA扩增,在之后采用琼脂糖凝胶电泳技术,分离处长度不一的DNA带,以确定样品是否为T-DNA插入突变纯和体。

PCR(Polymerase ChainReaction),即聚合酶链式反应是体外核算扩增技术,具有特异、敏感、产率高、快速、简便、重复性好、易自动化等突出优点;能在一个试管内将所要研究的目的基因或某一DNA片段于数小时内扩增至十万乃至百万倍,使肉眼能直接观察和判断。

(PCR基本原理如右图)DNA含有PO43-基团,在pH8.0 Buffer(本实验中为TAE)中带负电, 在电场中向正极移动。

自由电泳时,由于不同大小的DNA片段的电荷密度大致相同,各核酸分子难以分开;选用适当浓度的琼脂糖凝胶作为支持物,使之具备一定的孔径,即可发挥分子筛效应,使大小不同的核酸片段迁移率出现较大差异,达到分离的目的;同样条件对Marker电泳;起到鉴定的作用。

拟南芥TDNA插入突变体的鉴定

拟南芥TDNA插入突变体的鉴定

遗传学实验报告拟南芥T-DNA插入突变体的鉴定一、实验目的:1、学习和掌握基本的植物DNA的CTAB提取法,掌握PCR、琼脂糖凝胶电泳等基本实验操作技能2、了解T-DNA插入突变体的鉴定原理,掌握其方法。

二、实验原理1、拟南芥(Arabidopsis thaliana)十字花科,植物遗传学、发育生物学和分子生物学的模式植物。

植株形态个体小,高度只有30cm左右;生长周期快,从播种到收获种子一般只需8周左右;种子多,每株可产生数千粒种子;形态特征简单,生命力强,用普通培养基就可作人工培养;遗传转化简单,转化效率高;基因组小,只有5对染色体,125MB;在2000年,拟南芥成为第一个基因组被完整测序的植物。

2、突变体突变体是遗传学研究的最重要材料。

突变体可以通过自然突变和人工诱变的方法获得。

拟南芥诱变常用方法有EMS诱变、T-DNA插入突变、激活标签。

由于T-DNA插入突变体便于对突变基因进行追踪,目前拟南芥、水稻中已经有大量的T-DNA插入突变体;SALK中心提供的拟南芥T-DNA插入突变体超过十万种。

3、T-DNA插入突变原理T-DNA,转移DNA(transferred DNA ),是根瘤农杆菌Ti质粒中的一段DNA序列,可以从农杆菌中转移并稳定整合到植物基因组。

人们将目的基因插入到经过改造的T-DNA区,借助农杆菌的感染实现外源基因向植物细胞的转移与整合,获得转基因植株。

除用于转基因以外,T-DNA插入到植物的基因中可引起基因的失活,从而产生基因敲除突变体,T-DNA大多为单拷贝插入,使其利于进行遗传分析。

4、T-DNA插入突变体PCR鉴定图 1 结果鉴定图 2 PCR引物设计三、实验材料1、材料:T-DNA插入的突变拟南芥植株;2、仪器:离心管,离心机,水浴锅,移液枪,PCR仪,电泳槽等;3、试剂:液氮,CTAB提取液,氯仿/异戊醇(24:1),无水乙醇,70%乙醇,10xTaq buffer,MgCl2,引物,琼脂糖,溴化乙锭(EB)。

拟南芥T-DNA插入突变体的鉴定

拟南芥T-DNA插入突变体的鉴定

拟南芥T-DNA插入突变体的鉴定09生工吴超 200900140129一、实验原理T-DNA插入法是反向遗传学研究的重要手段。

T-DNA是农杆菌的一个大质粒,长度在25kb左右。

野生型农杆菌的T-DNA上带有激素合成基因,感染植物后会导致植物细胞快速增殖形成愈伤组织,失去分化能力。

所以一般实验使用改造后的农杆菌——T-DNA中导入了卡那霉素抗性基因和抗除草剂基因。

因此在农杆菌感染植物后可用除草剂来筛选转化子。

在转化子培养到F2代出现分离后,就需要对其基因型进行鉴定。

T-DNA插入突变体鉴定方法主要有两种:三引物法和双引物法。

在本实验中使用三引物法。

三引物法的原理如图1所示,即采用三引物(LP、RP、BP)进行PCR扩增。

野生型植株目的基因的两条染色体上均未发生T-DNA插入,所以其PCR产物仅有1种,分子量约900bp(即从LP到RP);纯合突变体植株目的基因的两条染色体上均发生T-DNA插入,T-DNA本身的长度约为25kb,过长的模板会阻止目的基因特异性扩增产物的形成,所以也只能得到1种以BP与LP或RP为引物进行扩增的产物,分子量约为400-700bp;杂合突变体植株只在目的基因的一条染色体上发发生了T-DNA插入,所以PCR扩增后可同时得到两种产物。

上述3种情况的电泳结果差异明显,能有效区分不同基因型的植株。

此法优点是可同时鉴定出纯和突变体并确证T-DNA的插入情况。

图1 T-DNA插入示意图CATB,即十六烷基三甲基溴化铵,是一种离子型表面活性剂。

能溶解细胞膜和核膜蛋白,使核蛋白解聚,从而使DNA得以游离出来。

并且CATB可在高离子强度的溶液里与蛋白质和大多数多聚糖形成复合物进而形成沉淀,但不沉淀核酸。

本实验使用CATB抽提DNA。

聚合酶链式反应(Polymerase Chain Reaction,PCR)是体外核酸扩增技术。

它具有特异性高、敏感、产率高、快速、简便、重复性好、易自动化等突出优点;能在一个试管内将所要研究的目的基因或某一DNA片段于数小时内扩增至十万乃至几万倍,使肉眼能直接观察和判断。

拟南芥atcwinv1基因T_DNA插入纯合突变体PCR鉴定及表型观察

拟南芥atcwinv1基因T_DNA插入纯合突变体PCR鉴定及表型观察

河南农业科学,2011,40(5):62 66Jour nal of H enan Ag ricultural Sciences拟南芥atcwinv1基因T DNA插入纯合突变体PCR鉴定及表型观察阮燕晔*,张 莹,王 波(沈阳农业大学生物科学技术学院,辽宁沈阳110866)摘要:以拟南芥atcw inv1基因T DNA插入纯合突变体和野生型植株为材料,比较研究了2种基因型植株在营养期和生殖期的形态差异。

结果表明:拟南芥atcw inv1基因T DNA插入纯合突变体(简称突变体)较野生型萌发率平均下降5 88个百分点;突变体在44d抽薹,较野生型延后4d;分支数平均4支,较野生型下降20 84%;果荚开裂时间6d左右,较野生型延长2d;单株果荚数平均62 27个,较野生型降低11 00%;单株果荚种粒数平均45 87粒,较野生型降低21 46%;突变体的单果荚长度平均14 52cm,较野生型降低10 24%;单株果质量平均50 83mg,较野生型降低23 70%。

拟南芥突变体在营养生长时期的株高平均10 44cm,较野生型下降21 03%;主根长平均7 62cm,较野生型下降14 96%;单株莲座叶面积平均3 16cm2,较野生型下降13 90%;单株地上部分鲜质量平均81 81m g,较野生型下降11 11%;单株根鲜质量平均6 21m g,较野生型下降17 64%;单株地上部分干质量平均6 17m g,较野生型下降15 60%;单株根干质量平均0 55mg,较野生型下降6 78%。

拟南芥突变体在生殖生长时期的株高平均18 78cm,较野生型增加4 22%;主根长平均16 48cm,较野生型下降5 88%;单株莲座叶面积平均6 80cm2,较野生型下降6 21%;单株地上部分鲜质量平均129 85mg,较野生型下降9 69%;单株根鲜质量平均9 97mg,较野生型下降13 23%;单株地上部分干质量平均9 22mg,较野生型下降4 16%;单株根干质量平均0 70mg,较野生型下降6 67%。

实验十、模式植物拟南芥T-DNA插入突变体的鉴定-23页精选文档

实验十、模式植物拟南芥T-DNA插入突变体的鉴定-23页精选文档
基础上,通过对靶基因进行特定的加工和修饰,如定 点突变、插入、缺失、置换等,再研究这些修饰对生 物体的表型、性状可能有何种影响,从而了解基因和 其编码蛋白质在生物体内的功能。
模式植物拟南芥
拟南芥(Arabidopsis thaliana )又称为阿拉伯芥,是一种十字花 科植物,广泛用于遗传、发育和分子生物学的研究,已成为一种典 型的模式植物。该植物具有以下特点:
植株形态个体小,高度只有30cm左右,1个茶杯可种植好几棵; 生长周期快,每代时间短,从播种到收获种子一般只需8周左右; 种子多,每株可产生数千粒种子; 形态特征简单,生命力强,用普通培
养基就可作人工培养; 基因组小,只有5对染色体。 拟南芥是严格的闭花自花受粉植物,
基因高度纯合。易获通过理化处理 获得各种功能的突变体。
外成像仪
实验步骤-拟南芥的栽培
一.在播种前将种子进行消毒,然后置于4℃冰箱中,使 种子在湿润条件下春化2至3天。
二.将春化好的种子播种于有麦氏培养基(MS培养基)的 培养皿中,置于培养室内培养。
三.待幼苗长出后,再选择茁壮的幼苗移栽到土壤中,置 于培养室内培养。
实验步骤-拟南芥T-DNA插入突变体PCR鉴定法
1. CATB法提取DNA:液氮、2×CTAB抽提缓冲溶液、氯仿:异戊醇 =24:1、无水乙醇、70%乙醇、TE
2. PCR:ddH2O、Buffer、MgCl2、dNTP、引物(LP、RP、BP) 、DNA模版、Taq DNA聚合酶
3. 电泳:琼脂糖、Maker、Buffer、EB、TAE
❖ 仪器:离心机,水浴锅,移液器,PCR仪,电泳槽,紫
每小组按10倍准备混合体系; 每个同学需做一颗植株的鉴定(两管PCR)。
LP: JDM17-1NR2 RP: JDM17-1F2 BP: LBb1.3

拟南芥转基因实验报告(3篇)

拟南芥转基因实验报告(3篇)

第1篇一、实验目的1. 掌握拟南芥转基因技术的基本原理和方法。

2. 熟悉转基因操作流程,包括目的基因的克隆、转化、筛选和鉴定等步骤。

3. 了解转基因技术在植物基因功能研究中的应用。

二、实验原理拟南芥(Arabidopsis thaliana)是一种广泛应用的植物模式生物,具有生长周期短、繁殖速度快、基因组序列已完全解析等特点,使其成为研究植物生长发育、基因调控和生物技术的理想材料。

转基因技术是将外源基因导入植物基因组中,使其在植物细胞中表达,从而改变植物性状或赋予其新的功能。

本实验采用农杆菌介导的转基因方法,将目的基因导入拟南芥基因组中。

实验流程包括以下步骤:1. 目的基因的克隆:从基因库或基因组DNA中提取目的基因,通过PCR技术扩增目的基因片段。

2. 载体构建:将目的基因克隆到载体上,如T载体或pBI121载体。

3. 农杆菌转化:将重组载体与农杆菌共培养,使农杆菌感染拟南芥细胞。

4. 植物再生:将感染了重组载体的拟南芥叶片接种到含有抗生素的培养基上,筛选出含有目的基因的转基因植株。

5. 鉴定:通过PCR、Southern blotting等方法对转基因植株进行鉴定。

三、实验材料1. 拟南芥野生型植株(Col-0)2. 农杆菌(Agrobacterium tumefaciens)菌株E. coli JM1093. 目的基因片段4. T载体或pBI121载体5. PCR试剂、限制性内切酶、DNA连接酶等6. 培养基、抗生素、琼脂糖等四、实验步骤1. 目的基因的克隆:根据目的基因的序列设计引物,进行PCR扩增。

将扩增产物与T载体连接,转化E. coli JM109感受态细胞,筛选阳性克隆。

2. 载体构建:将目的基因克隆到pBI121载体上,进行酶切和连接反应。

将连接产物转化E. coli JM109感受态细胞,筛选阳性克隆。

3. 农杆菌转化:将重组载体与农杆菌共培养,使农杆菌感染拟南芥叶片。

将感染后的叶片接种到含有抗生素的培养基上,筛选出含有目的基因的转基因植株。

T-DNA插入鉴定实验报告

T-DNA插入鉴定实验报告

T-DNA插⼊鉴定实验报告T-DNA插⼊突变体的鉴定时明辉同组者:薛敏学号:201000220069摘要 Ti质粒是上有⼀段特殊的DNA区段,当农杆菌侵染植物细胞时,该DNA区段能⾃发转移进植物细胞,并插⼊植物染⾊体DNA中。

所以Ti质粒上的这⼀段能转移的DNA被叫做T-DNA。

将感兴趣的基因改造插⼊到T-DNA区段中,通过农杆菌侵染植物细胞,实现外源基因对植物的遗传转化,得到含有突变的植株。

通过本实验,我们将学习如何⽤PCR的⽅法检测所得植株是否为T-DNA的插⼊突变体。

1.引⾔T-DNA作为⼀种实验常⽤的遗传转化⽅法,在插⼊突变过程中,插⼊到植物染⾊体上的位置是随机的。

如果T-DNA插⼊进某个功能基因的内部,特别是插⼊到外显⼦区,将造成基因功能的丧失。

所以利⽤农杆菌Ti质粒转化植物细胞,是获得植物突变体的⼀种重要⽅法。

农杆菌Ti质粒转化植物细胞后,在获得的后代分离群体中,有T-DNA 插⼊的纯合突变体,杂合突变体,和野⽣型。

在突变体研究中,需要的材料是纯合突变体,所以必须从分离群体中将纯合突变体鉴定出来。

本次实验中,采⽤液CTAB(或者TSP法)提取拟南芥植株的DNA,然后PCR将所获DNA扩增,在之后采⽤琼脂糖凝胶电泳技术,分离处长度不⼀的DNA带,以确定样品是否为T-DNA插⼊突变纯和体。

PCR(Polymerase ChainReaction),即聚合酶链式反应是体外核算扩增技术,具有特异、敏感、产率⾼、快速、简便、重复性好、易⾃动化等突出优点;能在⼀个试管内将所要研究的⽬的基因或某⼀DNA⽚段于数⼩时内扩增⾄⼗万乃⾄百万倍,使⾁眼能直接观察和判断。

(PCR基本原理如右图)DNA含有PO43-基团,在pH8.0 Buffer(本实验中为TAE)中带负电, 在电场中向正极移动。

⾃由电泳时,由于不同⼤⼩的DNA⽚段的电荷密度⼤致相同,各核酸分⼦难以分开;选⽤适当浓度的琼脂糖凝胶作为⽀持物,使之具备⼀定的孔径,即可发挥分⼦筛效应,使⼤⼩不同的核酸⽚段迁移率出现较⼤差异,达到分离的⽬的;同样条件对Marker电泳;起到鉴定的作⽤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

拟南芥T-DNA插入突变体的鉴定
姓名:余振洋;班级:09级生技1班;学号:200900140156 时间:2011/11/5 一.选题背景及意义
水资源短缺是目前公认的全球性环境焦点问题之一,我国人均占有水资源量(2300m )仅为世界人均量的1/4,是世界上13个最贫水国家之一,且大部分地区属亚洲季风区,干旱灾害具有普遍性、区域性、季节性和持续性的特点,旱灾十分严重。

据1950~1999年统计,全国平均每年受旱面积达2173.33万hm2,成灾面积893.33万hm2,直接减收粮食100亿kg以上,约占各种自然灾害造成粮食损失的60%。

干旱不仅造成农业的重大损失,还加剧了生态环境的恶化及土地沙漠化和水土流失,因此,干旱缺水已成为制约我国国民经济可持续发展及西部大开发的重要因素,且在一些地区已威胁到人类生存和发展。

随着分子生物学的迅速发展和应用,农业已成为生物技术应用的第二重大领域,基因工程技术将引发一场新的农业技术革命,使作物在干旱和贫瘠的土地上生长出高新品种,使人类在提高作物抗逆能力的基础上改善其品质和提高产量。

因此,作物抗旱分子机制的研究具有重大的理论和实践意义,只有对植物抗旱分子机制彻底地了解后,才有可能为提高作物对干旱的抵抗能力提供理论依据。

近年来该领域的研究已引起国内外学者广泛的兴趣和重视,在拟南芥、水稻、小麦等许多植物克隆了干旱胁迫应答基因,并对其表达调控和编码蛋白的功能进行了研究。

本文简介了近年来该方面研究进展,为加快抗逆基固工程的研究,培育高品质的抗逆作物提供理论依据。

二.研究方案
1.相关文献:
海藻糖是细胞渗透调节时产生的重要相溶性物质之一,海藻糖一6一磷酸合成酶基因家族(Tre—halose-6一phosphatesynthase,TPS)是从拟南芥、复苏植物Selaginell lipidophylla等真核生物中分离得到的海藻糖合成酶基因。

——<A Review on Plant Drought and Salt Tolerance Gene>,ZENG Hua—zong,LUO Li-jun,Shanghai Agrobiological Gene Center,Shanghai 201 1 06
2.实验材料:
1)海藻糖合成酶基因编号:A T1G16980
2)野生型拟南芥;
3)具抗旱性质基因的T-DNA插入突变种子:SALK_010881.55.00.x
LP(左引物):TTTGGCTTCTTGACAAGCAAC Len 21 TM 60.41 GC 42.86 SELF_ANY_COMPL 0.52 3'_COMPL 0.00
RP(右引物):CTTGCAGCTGATTTACTTGGG Len 21 TM 59.89 GC 47.62 SELF_ANY_COMPL 0.52 3'_COMPL 0.00
4)器材:离心机,离心管,PCR仪,点泳池,电泳现象仪
3.获得种子步骤:
进入如下网站:/index.jsp,输入种子基因型号
图一点击基因编号进入网页
图二点击进入基因序列信息网页
图三点击进入基因序列网页
图四基因序列网页
图五点击突变体编号后进入的网页
图六查看含有相关基因的种子信息
图七种子信息
三.实验设计
1.实验原理:
T-DNA方向
3’引物基因方向5’引物
三引物法PCR鉴定:
“三引物法”即采用三个引物(LP、RP、LB)进行PCR扩增。

野生型植株(wild type,WT)目的基因的两条染色体上均未发生T-DNA插入,所以其PCR产物仅有1种,分子量约900 bp(即从LP到RP);纯合突变体植株(homozygous lines,HM)目的基因的两条染色体上均发生T-DNA插入,而T-DNA本身的长度约为17 kb,过长的模板会阻抑目的基因特异扩增产物的形成,所以也只能得到1种以LB与RP(或LP,根据T-DNA在基因上插入的方向选择)为引物进行扩增的产物,分子量约410+N bp(即从LP或RP到T-DNA插入位点的片段,长度为300+N bp,再加上从LB到T-DNA载体左边界的片段,长度为110bp);杂合突变体植株(heterozygous lines,HZ)只在目的基因的一条染色体上发生了T-DNA插入,所以PCR扩增后可同时得到410+N bp和900 bp两种产物。

电泳结果差异明显(如上图所示),能有效区分不同基因型的植株。

2.实验方法:
2.1 前期准备
1)取获得的种子进行种植培养;
2)取一片长成后的拟南芥叶片,置于1.5ml离心管中,加入400 ml提取缓冲液;
3)用研磨棒研磨植物材料,直至缓冲液变为绿色;
4)在台式离心机上13000 rpm离心5分钟;
5)离心后将上清300 ml转移至一个新的1.5 ml离心管中;
6)在上清中加入300 ml异丙醇,混匀后于室温下13000 rpm条件下,离心5分钟;
7)弃上清后,用70%乙醇润洗沉淀,并在室温下干燥沉淀;
8)100 ml TE溶解沉淀,将制备好的样品在4℃保存备用。

2.2 T-DNA插入突变纯合检测(PCR鉴定)
分别配制野生型和突变型的PCR反应体系(30ml反应体系),配方如下:2ml 植物基因组DNA样品
3ml 10×扩增缓冲液
0.5ml Taqase (5U/ml)
0.5 ml dNTP(10 mmol/L)
1ml 引物1(10 mmol/L)
1ml 引物2(10 mmol/L)
用无菌水补足体积。

反应条件:94℃(3min);30循环(94℃/1min,55℃/1min,72℃/1min);72℃延伸10min。

注:反应条件需根据所要扩增产物的大小和引物的性质进行合适的调整
2.3 电泳并观察结果
配制琼脂糖凝胶,将扩增后的样品加入凝胶孔电泳,电泳后观察结果。

3.结果分析
使用三引物法PCR检测,若电泳图上出现一大一小两条带,则为突变杂合体;出现一条小带,则为突变纯和体;出现一条大带,则为野生型。

相关文档
最新文档