肿瘤能量代谢重排与转移的关系

合集下载

肿瘤细胞的代谢途径及其调控研究

肿瘤细胞的代谢途径及其调控研究

肿瘤细胞的代谢途径及其调控研究随着人类对科学技术的深入探索,关于肿瘤细胞代谢途径和调控研究越来越受到学者们的重视。

在此过程中,我们不仅可以深入理解肿瘤的发病机理和生命活动规律,还能够为肿瘤治疗提供新的方向和复杂的药物靶点。

1. 肿瘤细胞代谢途径及其作用肿瘤细胞和正常细胞一样,需要将营养物质转化成能量和新的生物分子来维持细胞生长和增殖。

然而,与正常细胞相比,肿瘤细胞的代谢途径更加复杂和动态,常常发生多个代谢通路的重构和重配,从而实现新陈代谢的平衡与增量。

肿瘤细胞最为常见的代谢途径是糖代谢。

通常情况下,糖分解产物如乳酸和丙酮酸是生长缓慢的细胞产生的特征。

但是,在肿瘤细胞中,这些代谢产物会发生积累,这也是肿瘤细胞内酸碱度升高的原因之一。

此外,肿瘤细胞的糖代谢途径也会与细胞周期调控、信号转导和DNA修复等基本生命过程相互协调,从而促进细胞生长和转化。

除了糖代谢以外,肿瘤细胞的脂类代谢、蛋白质代谢和氨基酸代谢等也呈现出越来越重要的趋势。

有研究表明,肿瘤细胞的脂类代谢主要通过调节脂质合成酶在细胞内的表达和活性实现。

蛋白质代谢则与肿瘤细胞的增殖、细胞凋亡、免疫逃避等相关,包括从粗面质到丝裂原肽的多种转化。

氨基酸代谢涉及对精氨酸、谷氨酸、苏氨酸等代谢产物积累的调控,这与肿瘤细胞生长和耐受性紧密相关。

2. 肿瘤细胞代谢调控研究现状肿瘤细胞代谢调控是近年来众多肿瘤治疗研究者共同关注的重要前沿领域。

在肿瘤代谢调控方面,有一些具有靶向特异性的小分子化合物被广泛研究和开发,例如乙酰辅酶A羧化酶抑制剂、糖酵解抑制剂、氧化磷酸化抑制剂等。

除了小分子化合物外,局部肿瘤微环境改变和发育阶段变化也是调控肿瘤代谢的诱因之一。

越来越多的研究表明,有效的肿瘤代谢治疗必须注重这些因素的客观评估与调节。

例如,通过改变局部微环境pH值,局部光动力治疗可击杀肿瘤细胞,从而实现肿瘤代谢途径的逆转和转变。

此外,近年来也有一部分研究者试图通过人工改变肿瘤细胞代谢途径来实现肿瘤的治疗或转化。

肿瘤微环境对肿瘤代谢的影响及研究进展

肿瘤微环境对肿瘤代谢的影响及研究进展

肿瘤微环境对肿瘤代谢的影响及研究进展一、综述在肿瘤微环境中,肿瘤细胞与其周围组织之间的相互作用对于肿瘤的发展和代谢过程具有重要的影响。

越来越多的证据表明,肿瘤代谢重编程是肿瘤恶性表型的一个关键特征,并且与肿瘤生长速度、侵袭、转移和患者生存率密切相关。

本文将对肿瘤微环境对肿瘤代谢的影响进行综述,探讨肿瘤代谢的改变以及这些改变如何促进肿瘤的发展。

肿瘤微环境的缺氧状态是众所周知的一个特点。

肿瘤缺氧可以导致肿瘤细胞对葡萄糖的摄取和利用增加,同时减少乳酸的产生。

这种现象被称为“Warburg效应”,是指肿瘤细胞倾向于使用葡萄糖进行糖酵解以产生能量,即便在氧气供应充足的条件下也是如此。

尽管糖酵解是一种高效的产生能量的途径,但它并不总是高效的,可能会导致肿瘤细胞的代谢压力和生长抑制。

肿瘤微环境中的肿瘤相关成纤维细胞(CAF)也对肿瘤代谢产生了重要影响。

CAF是一种表型多样的间质细胞,它们可以通过促进肿瘤血管生成、胶原蛋白沉积和肿瘤干细胞维持等机制来促进肿瘤生长和侵袭。

一些研究表明,CAF可以通过代谢支持肿瘤细胞对葡萄糖的需求,从而促进肿瘤的代谢重编程。

肿瘤微环境中的巨噬细胞也对肿瘤代谢产生影响。

巨噬细胞可以根据其表型和微环境中的信号通路被极化为不同的炎性亚型,如M1和M2。

研究者们发现肿瘤相关巨噬细胞(TAM)可能与肿瘤的生长、侵袭和代谢有密切关系。

一些研究表明,TAM可以通过促进肿瘤血管生成和代谢重编程来促进肿瘤生长。

肿瘤微环境通过影响肿瘤细胞的代谢重编程来促进肿瘤发展。

为了更深入地理解肿瘤代谢的特点和机制,未来的研究需要继续关注肿瘤微环境的组成和功能,以及肿瘤细胞、CAF、巨噬细胞等不同细胞类型与肿瘤代谢之间的关系。

1. 肿瘤微环境的定义和重要性肿瘤微环境(Tumor Microenvironment,简称TME)是肿瘤发生、发展及治疗过程中与其相互作用的外部环境。

它主要包括肿瘤细胞、内皮细胞、免疫细胞、成纤维细胞等实体以及它们之间的相互作用和分泌的物质。

肿瘤代谢重编程概念

肿瘤代谢重编程概念

肿瘤代谢重编程概念肿瘤代谢重编程是指在肿瘤细胞中发生的一系列代谢改变,这些改变使得肿瘤细胞能够适应恶劣的环境并获得足够的生存和生长能量。

肿瘤代谢重编程的发现为肿瘤治疗提供了新的思路和方法。

正常细胞的代谢过程通常是有序的,能够根据细胞所处的环境条件来调节代谢途径。

而在肿瘤细胞中,由于基因突变和异常信号通路的活化,导致代谢途径的紊乱和重组。

这种代谢重编程使得肿瘤细胞能够更好地适应低氧、低营养和酸性环境,从而获得生存和生长的优势。

肿瘤细胞的代谢重编程主要表现在以下几个方面:1. 糖酵解增强:糖酵解是一种不需要氧气参与的代谢途径,通过将葡萄糖分解为乳酸来产生能量。

正常细胞通常在有氧条件下通过线粒体呼吸产生大量能量,而肿瘤细胞则更倾向于选择糖酵解途径来产生能量。

这是因为肿瘤细胞中存在着一些突变基因,使得线粒体呼吸功能受损,无法正常进行能量产生。

2. 脂质代谢异常:正常细胞通常利用葡萄糖作为主要能源来源,而肿瘤细胞则更依赖脂质代谢来维持生长和增殖。

肿瘤细胞通过增加脂质合成和降低脂质氧化的方式来满足其对能量和生物合成物质的需求。

这种异常的脂质代谢使得肿瘤细胞能够更好地适应低氧环境,并具有更强的生长和侵袭能力。

3. 氨基酸代谢改变:肿瘤细胞对氨基酸的需求量较大,尤其是谷氨酸和精氨酸等非必需氨基酸。

肿瘤细胞通过增加氨基酸摄取和降低氨基酸分解的方式来满足其对氨基酸的需求。

这种改变不仅能够提供生物合成所需的原料,还能够通过调节信号通路来促进肿瘤细胞的生长和存活。

4. 乳酸产生增加:由于肿瘤细胞选择了糖酵解途径产生能量,导致大量乳酸积累在肿瘤组织中。

这种乳酸产生增加不仅改变了肿瘤组织的酸碱平衡,还可能通过调节免疫系统和血管生成等途径来促进肿瘤的发展和进展。

以上仅仅是肿瘤代谢重编程的一些主要特点,实际上肿瘤细胞的代谢重编程非常复杂,涉及到多个代谢途径和信号通路的调节。

对于肿瘤代谢重编程的深入研究不仅有助于揭示肿瘤发生和发展的机制,还可以为肿瘤治疗提供新的靶点和策略。

恶性肿瘤能量—营养素代谢治疗新思维

恶性肿瘤能量—营养素代谢治疗新思维

恶性肿瘤能量—营养素代谢治疗新思维恶性肿瘤是一种复杂的疾病,其发展和治疗都涉及到多个因素。

近年来,越来越多的人开始关注肿瘤能量-营养素代谢治疗,这是一种新的思路,旨在通过改变体内的能量代谢和营养素代谢,来阻止肿瘤的生长和转移。

肿瘤的能量代谢有所不同于正常细胞。

恶性肿瘤细胞以糖类代谢为主,而非常规的有氧呼吸。

这意味着氧气和营养物质的利用率都非常低。

因此,针对肿瘤能量代谢进行治疗可以阻止肿瘤细胞的生长。

这一治疗方法被称为代谢治疗。

代谢治疗可以通过多种方法实现。

其中之一是采用营养物质限制疗法。

这种治疗方法旨在限制肿瘤细胞获取营养的能力。

例如,限制葡萄糖和氨基酸摄入,可以有效减缓肿瘤的生长速度。

此外,还可以通过改变饮食习惯来达到这一目的。

例如,采用低碳水化合物和高脂肪的饮食,可以降低体内糖和胰岛素水平,从而减缓肿瘤生长。

此外,还可以通过药物治疗来阻止肿瘤细胞的能量代谢。

例如,一些药物可以抑制糖皮质激素受体,在糖代谢过程中抑制葡萄糖摄入和利用。

此外,一些药物也可以抑制乳酸脱氢酶的活性,从而减少肿瘤细胞产生的乳酸量。

与抑制肿瘤细胞的能量代谢相反,代谢治疗方法也可以刺激免疫系统的反应,从而增强身体的抵抗力和免疫力。

例如,通过一些饮食和药物,可以刺激肿瘤细胞死亡和减少炎症反应,从而增强身体的免疫系统反应。

总之,代谢治疗是目前肿瘤治疗领域的一种新思路。

它致力于通过改变体内的能量代谢和营养素代谢,来阻止肿瘤的生长和转移。

虽然该治疗方法已经被证明可以有效治疗肿瘤,但更多的研究还需要进行,以便更好地理解其治疗机制和作用方式。

肿瘤细胞的代谢和耐药性机制

肿瘤细胞的代谢和耐药性机制

肿瘤细胞的代谢和耐药性机制肿瘤细胞的代谢和耐药性是癌症治疗中的两大瓶颈。

随着对肿瘤细胞代谢和耐药性机制的深入研究,我们能够更好地了解肿瘤细胞的生存策略,也能够在未来开发新的治疗方法,提高治疗效果。

一、代谢机制肿瘤细胞的代谢与正常细胞有所不同。

正常细胞通过三大能量转移方式:氧化磷酸化、葡萄糖解和脂肪酸氧化;而大多数肿瘤细胞喜欢利用葡萄糖酵解生成乳酸来产生能量。

这种方式相较于正常的氧化磷酸化代谢可以更快地获取能量,但其效率却很低,同时还造成一定的酸性负荷,增加了细胞死亡的风险。

当肿瘤细胞因为某些原因无法以葡萄糖为代谢底物时会出现代谢转换。

肿瘤细胞可以通过硬化酮体、脂肪酸、氨基酸等多种途径来获得新的能量来源。

这样的能量转换机制就是肿瘤细胞的代谢适应性。

目前在临床上研究的大多数代谢适应性是针对葡萄糖的代谢适应性,而对于其他底物的代谢适应性研究尚显不足。

二、耐药机制为了能够生存下来,肿瘤细胞需要不断应对治疗的压力。

频繁地应对治疗压力可以导致肿瘤细胞发生耐药性。

对于不同的治疗方式,肿瘤细胞发展出的耐药机制千差万别。

1. 化疗耐药化疗药物在肿瘤治疗中占据了重要地位。

然而,化疗耐药性是其固有的副作用。

化疗药物对肿瘤细胞的毒性作用基于细胞分裂的快速和非特异性,以达到减少肿瘤细胞数量的目的。

然而,这种毒性作用可能会导致一个或多个细胞发生耐药现象。

2. 靶向治疗耐药靶向治疗使用药物可以特异性地与肿瘤细胞中的靶标相结合,从而干扰肿瘤细胞的生长。

然而,同样也存在着耐药性。

耐药性机制包括肿瘤细胞通过下调或失活靶标等方式来逃避药物的作用,同时还包括了多靶点、转移等机制。

3. 免疫治疗耐药免疫治疗针对的是检测到的抗原特异性T细胞,使其能够识别肿瘤细胞并消灭。

然而,在免疫治疗中也存在耐药性。

免疫治疗中抗原特异性T细胞的失活(自身过程或外界干扰)和T细胞识别抗原的有序分子组装问题可能导致耐药性。

结语通过对肿瘤细胞的代谢和耐药机制的研究,我们能够更好地了解肿瘤细胞的生存策略,并有望在未来开发新的治疗方法,提高治疗效果。

肿瘤细胞能量代谢重编程定义

肿瘤细胞能量代谢重编程定义

肿瘤细胞能量代谢重编程定义肿瘤细胞的能量代谢重编程是指在肿瘤发展过程中,肿瘤细胞通过改变能量代谢途径和调节相关因子,以适应其异常的生长和繁殖需求的一种重要生物学特征。

正常细胞依赖于氧化磷酸化产生能量,而肿瘤细胞则通过糖酵解途径产生大量的乳酸,即所谓的“战斗性糖酵解”。

这种能量代谢的改变能够为肿瘤细胞提供足够的能量和生存优势。

肿瘤细胞能量代谢重编程的主要特点是糖酵解的增强和线粒体功能的下调。

糖酵解是一种无氧代谢途径,通过将葡萄糖转化为乳酸来产生能量。

相比之下,氧化磷酸化是一种有氧代谢途径,能够更高效地产生能量。

然而,在肿瘤细胞中,即使有足够的氧气供应,它们仍然选择通过糖酵解来产生能量。

这种现象被称为“战斗性糖酵解”。

通过糖酵解产生的乳酸会导致肿瘤细胞周围的酸化环境,这有助于肿瘤细胞的侵袭和扩散。

除了糖酵解的增强外,肿瘤细胞还表现出线粒体功能下调的特点。

线粒体是细胞内的能量中心,参与氧化磷酸化过程,产生大部分细胞能量。

然而,在肿瘤细胞中,线粒体的功能往往受到抑制,从而降低了氧化磷酸化的能力。

这一现象与肿瘤细胞对氧化磷酸化所需的高氧需求有关。

肿瘤组织通常存在缺氧的情况,而线粒体功能下调可以减少对氧气的依赖,从而增加肿瘤细胞的适应能力。

肿瘤细胞能量代谢重编程的机制是多方面的。

研究发现,一些关键因子和信号通路在肿瘤细胞能量代谢重编程中起着重要作用。

例如,MYC是一个重要的转录因子,能够促进肿瘤细胞的糖酵解。

研究人员发现,MYC能够上调糖酵解途径的关键酶的表达,从而增加乳酸的产生。

此外,一些信号通路如PI3K/AKT/mTOR、HIF-1和AMPK等也参与了肿瘤细胞能量代谢的调控。

肿瘤细胞能量代谢重编程不仅仅是为了满足肿瘤细胞的能量需求,还与肿瘤的生长、侵袭和转移等过程密切相关。

糖酵解产生的乳酸不仅可以提供能量,还可以作为肿瘤细胞的信号分子,参与调控肿瘤相关基因的表达。

此外,乳酸的酸化环境也可以促进肿瘤细胞的侵袭和转移。

代谢调节与肿瘤发生的关系研究

代谢调节与肿瘤发生的关系研究

代谢调节与肿瘤发生的关系研究肿瘤发生是一个多因素、多阶段的过程,其发生机制并不完全清楚。

近年来,越来越多的研究表明,代谢调节与肿瘤发生密切相关。

本文将探讨代谢调节与肿瘤发生的关系。

1. 代谢调节与肿瘤代谢代谢调节是机体平衡能量需求和供应的过程,包括糖、脂肪、蛋白质等多种代谢途径。

肿瘤细胞具有不同于正常细胞的能量代谢模式,称为“缺氧糖酵解”。

该过程将葡萄糖分解为乳酸,产生大量乳酸和ATP,从而为肿瘤细胞的生长提供能量。

此外,肿瘤细胞还有较高的无氧代谢需求、大量合成脂肪酸的需求以及蛋白质代谢失衡等特征。

2. 代谢调节与肿瘤形成代谢调节与肿瘤形成的关系非常复杂。

多数情况下,代谢紊乱被认为是产生癌症的根本原因,例如高糖、高脂饮食、缺乏运动等不健康生活方式会导致肥胖,而肥胖则是许多癌症的风险因素。

此外,一些遗传缺陷也与代谢调节失衡有关。

例如视网膜母细胞瘤(Rb)患者常常伴随着代谢紊乱,而这种生物学現象极有可能是导致Rb发生的原因之一。

3. 代谢调节调控肿瘤免疫代谢调节不仅影响肿瘤细胞,还会影响免疫系统功能。

免疫细胞有着高度的能量代谢需求,且在肿瘤微环境中的代谢状态与肿瘤微环境中的细胞相似。

因此,代谢调节紊乱可促进肿瘤细胞对宿主的逃避,抑制免疫细胞的活性。

然而,根据研究,与体现代谢适应性的某些酶有关的代谢途径可能提供肿瘤疫苗的技术支持,进而为肿瘤免疫治疗赋能。

4. 代谢调节与肿瘤治疗目前,很多针对代谢调节的治疗方案正在开发和研究中。

例如利用代谢抑制剂通过抑制肿瘤细胞的代谢活性来达到治疗目的。

此外,也有一些天然化合物被发现可以靶向肿瘤细胞的代谢,并有效防止肿瘤发生。

虽然目前还处于研究阶段,但是代谢调节已成为肿瘤治疗的一个热点方向。

总体而言,代谢调节与肿瘤发生的关系非常复杂而多面。

了解代谢调节与肿瘤的关系,可以更好地防止肿瘤的发生、提高肿瘤治疗的效果,为人类健康事业做出一定贡献。

国自然肿瘤能量代谢重排与转移的关系

国自然肿瘤能量代谢重排与转移的关系

肿瘤能量代谢重排(reprograming)与转移的关系不同于正常细胞的能量代谢方式,肿瘤细胞能量代谢不但要为肿瘤细胞提供能量,也为它们提供生物合成的原料以维持其快速增殖1,肿瘤的能量代谢直接决定着肿瘤细胞的命运。

细胞的能量主要来自糖代谢,葡萄糖在体内分解的途径包括糖酵解和氧化磷酸化。

细胞活性与其能量状态紧密相关,恶性肿瘤生长迅速,常有胞内葡萄糖摄入量增高、糖酵解活性提高和乳酸堆积的现象2。

肿瘤细胞即使在供氧充足的情况下,葡萄糖依旧向乳酸转换,这种代谢称为有氧酵解 (aerobic glycolysis) 或“Warburg 效应(Warburg effect)”。

随着研究的深入,人们发现肿瘤细胞不但可以发生有氧糖酵解,而且可以发生氧化磷酸化,两者互相协调,产生代谢共生 (metabolism of symbiosis)。

肿瘤组织存在着异常复杂的微环境和异质性,近年来越来越多的研究表明,肿瘤微环境能改变肿瘤细胞的能量代谢方式,缺氧、乳酸的含量以及营养物质的缺乏等都会影响肿瘤能量代谢途径。

肿瘤细胞有较强的适应逆境而快速生长的特征,而这种适应性是通过改变肿瘤细胞的能量代谢方式来实现的,称为代谢重编程 (metabolic reprogramming)。

肿瘤的能量代谢重编程是指肿瘤细胞中 ATP 的主要生成方式由葡萄糖的有氧氧化偶联线粒体氧化磷酸化转变为有氧糖酵解, 使肿瘤细胞表现出糖酵解速率加快, 葡萄糖摄取量、乳酸产量增加的现象.目前, 临床上已采用18F-脱氧葡萄糖-PET/CT的方法检测肿瘤中葡萄糖的摄取和转化, 以判断肿瘤的恶性程度3。

能量代谢是有机体在物质代谢过程中能量的产生、释放、转换及利用的过程。

正常细胞主要以葡萄糖的有氧氧化磷酸化供能,在缺氧环境下则以糖酵解为主。

而肿瘤细胞能量代谢特点则明显不同,即便在氧供充足的情况下,肿瘤细胞仍表现为活跃地摄取葡萄糖并进行糖酵解,同时产生大量乳酸,这就是肿瘤能量代谢的先锋理论--Warburg效应4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

肿瘤能量代谢重排(reprograming)与转移的关系
新陈代谢是集体生命活动的基本特征,包括物质代谢和与之相伴的能量代谢,是细胞获得能量的最重要方式。

在肿瘤发生发展过程中,能量代谢常出现紊乱,造成肿瘤微环境的变化,帮助肿瘤细胞得以生存、转移及免疫逃逸。

因此,能量代谢重排被认为是肿瘤的一个新的基本特征。

起初能量代谢重排被认为是肿瘤细胞快速增值的结果,但是更多的新数据表明该过程可以驱动肿瘤发生并且和肿瘤干细胞的干性相关1。

普遍认为,细胞代谢,特别是肿瘤细胞的能量代谢,都依赖于有氧糖酵解的过程。

通过有氧糖酵解产生的能量被认为足够以供应肿瘤细胞快速分裂,并同时允许代谢反应所需生物合成前体的积累2, 3。

在一个生长的肿瘤中,适应性的代谢重编程(metabolic reprogramming),一方面是由于致癌性转化导致的,使得癌细胞获得生长优势4, 5,另一方面,快速增生癌细胞会自发性代谢重排,促进自我维持的信号转导机制,从而激发肿瘤的生长和生存5。

Venkatanarayan等人发现,敲除p63 或者p73的ΔN亚型,将上调编码与胰岛素共分泌的37个氨基酸多肽基因:IAPP的表达,导致p53缺失的肿瘤的代谢重排和退化6。

他们还发现临床上用于治疗I/II型糖尿病的药物普兰林肽,可以导致p53缺失的胸腺淋巴瘤的快速退化,这为日后靶向p53缺失的肿瘤的治疗提供了参考。

Jiang L等人发现, TGFβ1诱导的EMT过程,伴随着将葡萄糖转化为脂肪酸的酶类的抑制,同时细胞呼吸增强。

过表达Snail1,一个调节TGFβ1诱导EMT过程中的转录因子,可以抑制ChREBP和脂肪酸合酶(FASN),这种代谢过度,抑制脂肪生成、有利于能量产生,对于TGFβ1诱导的EMT过程和肿瘤转移起到了关键的作用7。

有研究发现,浸润性癌细胞通过转录共激活剂过氧
物酶体(PGC-1α)提高氧化磷酸化、线粒体生物合成和氧气消耗水平,为细胞转移提供能量。

进一步对人类侵入性乳腺癌的临床分析发现,PGC-1α的表达与肿瘤的远端转移紧密相关;抑制PGC-1α可以在不影响细胞增殖的情况下,抑制细胞的侵袭和转移8。

此外,被认为来源于间充质干细胞的肿瘤相关成纤维细胞(CAFs)在肿瘤代谢过程中也起到了重要作用,包括了乳腺癌、前列腺癌和头颈癌9-11。

参考文献
1. Sebastian C. Tracking down the origin of cancer: metabolic reprogramming as a driver of stemness and tumorigenesis. Critical reviews in oncogenesis 2014; 19(5): 363-8
2.
2. Villalba M, Rathore MG, Lopez-Royuela N, Krzywinska E, Garaude J, Allende-Vega N. From tumor cell metabolism to tumor immune escape. The international journal of biochemistry & cell biology 2013; 45(1): 106-1
3.
3. Warburg O. On the origin of cancer cells. Science 1956; 123(3191): 309-1
4.
4. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell metabolism 2008; 7(1): 11-20.
5. Locasale JW, Cantley LC. Metabolic flux and the regulation of mammalian cell growth. Cell metabolism 2011; 14(4): 443-51.
6. Venkatanarayan A, Raulji P, Norton W, et al. IAPP-driven metabolic reprogramming induces regression of p53-deficient tumours in vivo. Nature 2014.
7. Jiang L, Xiao L, Sugiura H, et al. Metabolic reprogramming during TGFbeta1-induced epithelial-to-mesenchymal transition. Oncogene 2014; 0.
8. LeBleu VS, O'Connell JT, Gonzalez Herrera KN, et al. PGC-1alpha mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nature cell biology 2014; 16(10): 992-1003, 1-15.
9. Veyrat M, Durand S, Classe M, et al. Stimulation of the toll-like receptor 3 promotes metabolic reprogramming in head and neck carcinoma cells. Oncotarget 2016.
10. Penkert J, Ripperger T, Schieck M, Schlegelberger B, Steinemann D, Illig T. On metabolic reprogramming and tumor biology: A comprehensive survey of metabolism in breast cancer. Oncotarget 2016.
11. Curry JM, Tuluc M, Whitaker-Menezes D, et al. Cancer metabolism, stemness and tumor recurrence: MCT1 and MCT4 are functional biomarkers of metabolic symbiosis in head and neck cancer. Cell cycle 2013; 12(9): 1371-84.。

相关文档
最新文档