(完整版)小学二年级上册数学奥数知识点讲解第1课《速算与巧算》试题附答案,推荐文档
【小学二年级奥数】二年级奥数如何学习

孩子升入二年级后。
不论是学习习惯还是学习方法,都需要全面的培养和正确的引导,这就需要家长对整个六年的小学学习有一个全面的规划。
低年级奥数如何学习一直是困扰家长的问题,二年级奥数应该如何学习呢?如何在低年级全面系统地为今后的学习打好基础呢?奥数相对比较深,超出学生在学校所学的成度。
一般来说从小学三年级开始学习奥数是比较适合的,太早了孩子的理解能力有限,并且数学基础也没有打好。
那么对于二年级的奥数,我们学些什么呢?其实对于二年级与其说是奥数,还不如说是对奥数的一个铺垫。
怎么激发孩子对于学习数学的兴趣,而不打击孩子在学习上的信心,并且开拓孩子看待事物和考虑问题的思维是二年级阶段学习的目的。
这就是在正式学习奥数之前,从其他方面入手潜移默化,培养孩子的数学兴趣和能力。
观察能力是数学学习的开始,重点培养孩子观察生活中的数学问题,加强孩子的数感训练,这对于孩子将来的数学学习很有帮助。
比如:在生活中,在带着孩子逛街的时候,可以告诉孩子说“我们要去××路××号,我们要怎么走啊?”一条街的门牌号是一边奇数,一边偶数,并按大小顺序排列的,那么这个时候就是在考孩子的观察力,对于奇偶数的判断,对数的大小的判断等。
像这种在日常生活中的思维拓展不会让孩子觉得有压力,还会在潜移默化中对孩子看待日常事物的思维方式造成影响,可以引发还在对生活中数学问题的发现能力。
二年级奥数主要是兴趣培养阶段,只有在低年级时培养起良好的学习兴趣,养成良好的思维习惯,才能够在以后的学习中取得更快的进步。
这个阶段孩子需要积累的是,简单的运算知识和规律,简单图形的认识和分析能力,找规律,让孩子学会一种尝试的方法,简单的逻辑推理能力。
1. 二年级奥数学习:接触奥数,兴趣第一有不少四、五年级希望开始学习奥数的学生,令人惊讶的是,这些学生中有相当一部分学生其实在低年级时曾经学过奥数的,但因为当时学习听课效果不好便放弃了,到了高年级,迫于小升初形势又不得不学。
小学二年级上册数学奥数知识点讲解第1课《速算与巧算》试题附答案

小学二年级上册数学奥数知识点讲解第1课《速算与巧算》试题附答案一、“凑整”先算1.计算:(1)24+44+56(2)53+36+472.计算:(1)96+15(2)52+693.计算:(1)63+18+19(2)28+28+28二、改变运算顺序:在只有“+”、“-”号的混合算式中,运算顺序可改变计算:(1)45-18+19(2)45+18-19三、计算等差连续数的和相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:1,2,3,4,5,6,7,8,91,3,5,7,92,4,6,8,103,6,9,12,154,8,12, 16,20等等都是等差连续数.1. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:和=中间数x个数(1)计算:1+2+3+4+5+6+7+8+9(2)计算:1+3+5+7+9(3)计算:2+4+6+8+10(4)计算:3+6+9+12+15(5)计算:4+8+12+16+202. 等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成:和=(首数+末数)X个数的一般(1)计算:1+2+3+4+5+6+7+8+9+10(2)计算:3+5+7+9+11+13+15+17(3)计算:2+4+6+8+10+12+14+16+18+20四、基准数法(1)计算:23+20+19+22+18+21(2)计算:102+100+99+101+98习题一 1.计算:(1)18+28+72(2)87+15+13(3)43+56+17+24(4)28+44+39+62+56+212.计算:(1)98+67(2)43+28(3)75+263.计算:(1)82-49+18(2)82-50+49(3)41-64+294.计算:(1)99+98+97+96+95(2)9+99+9995.计算:(1)5+6+7+8+9(2)5+10+15+20+25+30+35(3)9+18+27+36+45+54(4)12+14+16+18+20+22+24+266.计算:(1)53+49+51+48+52+50(2)87+74+85+83+75+77+80+78+81+847.计算:1+2+3+4+5+6+1+2+3+4+5+6+1+2+3+4+5+6+1+2+3+4+5答案一、“凑整”先算 1.计算:(1)24+44+56(2)53+36+47解:(1)24+44+56=24+(44+56)=24+100=124这样想:因为44+56=100是个整百的数,所以先把它们的和算出来.(2)53+36+47=53+47+36=(53+47)+36=100+36=136这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来.2.计算:(1)96+15(2)52+69解:(1)96+15=96+(4+11)=(96+4)+11=100+11=111这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算.(2)52+69=(21+31)+69=21+(31+69)=21+100=121这样想:因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算.3.计算:(1)63+18+19(2)28+28+28解:(1)63+18+19=60+2+1+18+19=60+(2+18)+(1+19)=60+20+20=100这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算.(2)28+28+28=(28+2)+(28+2)+(28+2)-6=30+30+30-6=90-6=84这样想:因为28+2=30可凑整,但最后要把多加的三个2减去.二、改变运算顺序:在只有“+”、“-”号的混合算式中,运算顺序可改变计算:(1)45-18+19(2)45+18-19解:(1)45-18+19=45+19-18=45+(19-18)=45+1=46这样想:把+19带着符号搬家,搬到-18的前面.然后先算19-18=1.(2)45+18-19=45+(18-19)=45-1=44这样想:加18减19的结果就等于减1.三、计算等差连续数的和相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:1,2,3,4,5,6,7,8,91,3,5,7,92,4,6,8,103,6,9,12,154,8,12, 16,20等等都是等差连续数.1. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:和=中间数x个数(1)计算:1+2+3+4+5+6+7+8+9=5×9 中间数是5=45 共9个数(2)计算:1+3+5+7+9=5×5 中间数是5=25 共有5个数(3)计算:2+4+6+8+10=6×5 中间数是6=30 共有5个数(4)计算:3+6+9+12+15=9×5 中间数是9=45 共有5个数(5)计算:4+8+12+16+20=12×5 中间数是12=60 共有5个数2. 等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成:和=(首数+末数)X个数的一般(1)计算:1+2+3+4+5+6+7+8+9+10=(1+10)×5=11×5=55共10个数,个数的一半是5,首数是1,末数是10.(2)计算:3+5+7+9+11+13+15+17=(3+17)×4=20×4=80共8个数,个数的一半是4,首数是3,末数是17.(3)计算:2+4+6+8+10+12+14+16+18+20=(2+20)×5=110共10个数,个数的一半是5,首数是2,末数是20.四、基准数法(1)计算:23+20+19+22+18+21解:仔细观察,各个加数的大小都接近20,所以可以把每个加数先按20相加,然后再把少算的加上,把多算的减去.23+20+19+22+18+21=20×6+3+0-1+2-2+1=120+3=1236个加数都按20相加,其和=20×6=120.23按20计算就少加了“3”,所以再加上“3”;19按20计算多加了“1”,所以再减去“1”,以此类推.(2)计算:102+100+99+101+98解:方法1:仔细观察,可知各个加数都接近100,所以选100为基准数,采用基准数法进行巧算.102+100+99+101+98=100×5+2+0-1+1-2=500方法2:仔细观察,可将5个数重新排列如下:(实际上就是把有的加数带有符号搬家)102+100+99+101+98=98+99+100+101+102=100×5=500可发现这是一个等差连续数的求和问题,中间数是100,个数是5.习题一 1.计算:(1)18+28+72(2)87+15+13(3)43+56+17+24(4)28+44+39+62+56+212.计算:(1)98+67(2)43+28(3)75+263.计算:(1)82-49+18(2)82-50+49(3)41-64+294.计算:(1)99+98+97+96+95(2)9+99+9995.计算:(1)5+6+7+8+9(2)5+10+15+20+25+30+35(3)9+18+27+36+45+54(4)12+14+16+18+20+22+24+266.计算:(1)53+49+51+48+52+50(2)87+74+85+83+75+77+80+78+81+847.计算:1+2+3+4+5+6+1+2+3+4+5+6+1+2+3+4+5+6+1+2+3+4+5 二年级奥数上册:第一讲速算与巧算习题解答。
(完整版)小学二年级奥数题(基础)带答案

第一讲速算与巧算习题1.计算:18+28+72 28+44+62+562.计算:100-68= 100-87= 1000-369= 500-47=3、计算:67+98 261-1974.计算:72-39+28 382-60+595.计算:99+98+97+96+95 * 9+99+9996.计算:436-(36+57)579-83-177.计算:1+2+3+4+3+2+1= 1+2+3+4+5+1+2+3+4+5+6=8.计算:5+6+7+8+9 1+4+7+10+13+16提高班第一讲速算与巧算习题1.计算:18+28+72 28+44+62+56-202.计算:100-68= 1000-587= 1000-69= 500-47=3、计算:67+98 261-1974.计算:72-39+28 382-60+595.计算:99+98+97+96+95 9+99+9996.计算:436-(136+157)579-83-177.计算:1+2+3+4+3+2+1= 1+2+3+4+5+1+2+3+4+5+6=8.计算:5+6+7+8+9 1+4+7+10+13+16基础班第二讲图形计数习题1.数一数,图4-1中共有多少条线段?2.数一数,图中有多少个三角形?3.图中有多少个正方形?4.数一数,图形中有几个长方形?5.数一数,下图中有多少个三角形?多少个正方形?*6.数一数,下图中共有多少条线段?有多少个三角形?*7.数一数,下图中共有多少个小于180°角?*8.数一数,下图中共有多少个三角形?习题答案1. 10条线段2. 5个6个6个5个12个3. 5个17个4. 7个(4+3+2+1)×(3+2+1)=60(个)5. 6个三角形7个正方形6. 30条线段10个三角形7. 30个小于180°角10+3+6=19(个)9.提高班第二讲图形计数习题1.数一数,图4-1中共有多少条线段?*2.数一数,图4—2中共有多少条线段?3.数一数,图中有多少个三角形?*4.***5.图中有多少个正方形?6.数一数,图形中有几个长方形?7.数一数,图中共有几个三角形?几个正方形?8.数一数,下图中共有多少条线段?**有多少个三角形?9.数一数,下图各图中各有多少个三角形?*10.数一数,下图中有多少个小于180°角?习题答案1.10条线段2.14条线段3.5个6个6个5个4.12个12个5.5个17个6.7个(4+3+2+1)×(3+2+1)=60(个)7. 6个三角形7个正方形8. 30条线段10个三角形9. 19个三角形10. 30个小于180°角秋季班第三讲基础班1.把一根粗细均匀的木头锯成6段,每锯一次需要3分钟,一共需要多少分钟?2.把一根粗细均匀的木头锯成5段需要20分钟,每锯一次要用多少分钟?3.一根木料长10米,要把它锯成一些2米长的小段,每锯一次要用4分钟,共要用多少分钟?4.公园的一条林荫大道长300米,在它的一侧每隔30米放一个垃圾桶,需多少个垃圾桶?5.学校有一条长60米的走道,计划在道路两旁栽树。
小学数学《速算与巧算》练习题(含答案)

小学数学《速算与巧算》练习题(含答案)知识点:一、等差数列.二、定义新运算.三、速算与巧算的方法.等差数列我们仔细观察以下两个数列:可以发现它们有一个共同的特点,后一项减前一项的差都是一个定数,像上面这样一类数列,叫做等差数列,相邻两个数的差叫做公差,通常用字母d表示.如果有一个等差数列其公差是d,那么数列的每一项依次可表示为:例如:求15,25,35,45,55,65,75这一列数的和,利用公式计算就是:(1575)73152s+⨯==利用此求和公式以及通项an =a1+(n一1)d的表达式,将给计算带来很大的方便.【例1】按规律填数.(1)21,25,29,( 33 ),( 37 ),41,45,49,( 53 )(2)3,9,27,( 81 ),( 243 ),729【分析】(1)观察第一列数,这是一个等差数列,它的公差是4,所以括号里要添的数,都应该是前一个数加4.(2)观察第二列数,这是一个等比数列,它的公比是3,所以括号里面要添的数,都应该是前一个数乘3.【分析】根据定义x△y=62x yx y⋅⋅+于是有629829522920⨯⨯∆==+⨯【巩固】设a△b=a×a-2×b,那么,5△6=______,(5△2) △ 3=_____.【分析】(1)5△6=5×5-2×6=13(2)5△2=5×5-2×2=2121△3=21×21-6=435【例6】规定其中a、b表示自然数.(1)求的值;(2)已知,求.【分析】观察新定义的运算,可知表示首项是a,末项是的连续自然数之和,项数是b.所以,(1)(2)即:速算与巧算的方法1、利用凑整法计算.凑整法就是根据题中数据特点、借助数的组合、分解以及有关运算性质,把其凑成整十整百……的数,从而达到计算简便、迅速的一种方法.使用凑整法一般有以下几种情形:一、分组凑数 .二、拆数凑整 . 三、分解凑整.四、借数凑整 .五、性质凑整.凑整法常用到的定律和公式有:①加法交换律:a+b=b+a②加法结合律:(a+b)+c=a+(b+c)③乘法交换律:a×b=b×a④乘法结合律:(a×b)×c=a×(b×c)⑤乘法分配律:(a+b) ×c=a×c+b×c⑥减法的性质:a-b-c=a-(b+c)⑦商不变的性质:a÷b=(a×c)÷(b×c);a÷b=(a÷c)÷(b÷c)⑧除法的性质:a÷(b×c)=a÷b÷c(a+b) ÷c=a÷c+b÷c(a-b) ÷c=a÷c-b÷c⑨和不变的规律:如果一个加数增加另一个加数减少同一个数,它们的和不变.【例12】 (第七届华杯赛复赛试题)计算:19+199+1999+…+.______9919991999=43421Λ个【分析】原式=20+200+2000+…+1999200019991-⨯L 14243个0=11999202221999⨯-43421Λ个 =43421Λ2199********个【例13】 (北京市第六届“迎春杯”决赛试题)1000+999-998-997+996+995-994-993+…+108+107-106-105+104+103-102-101= _____【分析】原式=(1000+999-998-997)+…+(104+103-102-101) =4×900÷4 =900.【例14】 2002年“我爱数学”夏令营计算竞赛试题计算:222222221234979899100-+-++-+-Λ【分析】这个题要利用平方差公式()()b a b a b a -+=-22进行计算比较简单.()()()()()()()()()()()()12123434979897989910099100123497989910012349798991002222222222222222-⨯++-⨯++-⨯++-⨯+=-+-++-+-=-+-++-+-K K K()5050210011001234979899100=÷⨯+=+++++++=K【附1】有一堆粗细均匀的圆木,堆成梯形,最上面的一层有5根圆木,每向下一层增加一根,一共堆了28层.问最下面一层有多少根?【分析】将每层圆木根数写出来,依次是:可以看出,这是一个等差数列,它的首项是5,公差是1,项数是28.求的是第28项.我们可以用通项公式直接计算.故最下面的一层有32根.【附2】计算下列每组数的和:【分析】根据等差数列求和公式,必须知道首项、末项和项数,这里首项是105,末项是200,但项数不知道.若利用a n =a 1+据此可先求出项数,再求数列的和.解:数列的项数故数列的和是:【附3】规定:③=2×3×4,④=3×4×5 ⑤=4×5×6,…, ⑩=9×10×11,…如果⨯=-)8(1)8(1)7(1□,那么框内应填的数是_____·【分析】□=11111(8)7891()()(8)11.(7)(8)(8)(7)(8)(7)6782⨯⨯-=-⨯=-=-=⨯⨯ 故框内应填的数是21【附4】(04全国小学奥林匹克)计算:55 555 × 666 667 + 44 445 × 666 666 – 155 555【分析】原式=55 555 × 666 666 + 55 555 +44 445 × 666 666 -155 555=(55 555+44 445)× 666 666-100 000 = 66 666 500 000【附5】求{20073333333...33...3++++个的末三位数字.【分析】原式的末三位和每个数字的末三位有关系,有2007个3,2006个30,2005个300 ,则2007×3+2006×30+2005×300=6021+60180+601500=667701 ,原式末三位数字为701。
二年级奥数:《速算与巧算》

二年级奥数:《速算与巧算》(预热)前铺知识复习一、凑整法(计算的核心)好朋友:两个数相加(相减)和为整十、整百、整千的两个数,我们称之为好朋友。
1)加法凑整:好朋友:个位相加和为十。
口诀:看个位,手拉手,凑完整,再计算。
例:13+27=402)减法凑整:好朋友:个位相同。
例:132-32=100二、递等式按照运算顺序把计算过程依次用等式表示出来,这样的等式叫做递等式。
写法:在算式下面、第一个数的左边写等号“=”;等号后面写计算过程,第一个数要与算式的第一个数上下对齐;每一步的等号对整齐,等号的两条线要平行。
例:52+36-23=88-23=65三、抱符号搬家抱符号搬家可以改变运算顺序,抱着前面的符号搬家。
每个数前面都有符号,第一个数前面的加号被省略了;数搬家时不要忘记带上它前面的符号。
例:=100-45=55四、变加为乘相同的数相加变乘法。
例:5+5+5+5+5+6=5x5+6=25+6=31五、认识小括号“()”小括号能改变运算顺序,小括号里面的要先算。
例:53+(36-16)【先算小括号里面的“36-16”】=53+20=73新授一、添(去)括号(1)括号前面是减号,括号里面要变号;例:9=19(2)括号前面是加号,括号里面不变号。
例:=9+()=9+10=19二、拆补凑整任意数可以写成一个整数(整十,整百,整千)加(减)一个数的形式。
例:9+999最接近的整十数:1099最接近的整百数:100则原式=10-1+100-1=110-2=108三、基准数法特点:算式中的数都接近同一个整十(百)数基准数只有一个例:-1 +2 +319+22+23 【算式中的数都最接近20】20 +20 +20=3×20-1+2+3=64如何预习?为了保护孩子课前的好奇心和学习兴趣,以及保证课堂效果,家长在给孩子预习的时候,一定要把握好度。
预习,切忌给孩子讲解书本上的例题和知识点,因为孩子容易先入为主,如果家长选取的方式方法不当,那么孩子很难转换思路了;另外,家长给孩子讲过例题后,孩子可能会觉得自己已经学会了,上课的时候就不愿意认真听了。
二年级奥数-速算与巧算

二年级奥数-速算与巧算(总9页) --本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--速算与巧算一、寓言小故事:朝三暮四从前,宋国有一个老人,他在家中养了许多猴子。
老人每天都会给每只猴子八颗栗子,早晚各四颗。
后来,猴子越来越多,老人也越来越穷,所以他想每天只给猴子七颗栗子,于是他就和猴子们商量:“从今天开始,我每天早上给你们四颗粟子,晚上给你们三颗栗子,行不行”猴子们想了一想,晚上怎么少了一颗呢?于是大叫起来,非常不愿意。
老人一看,连忙说:“那么我早上给你们三颗,晚上再给你们四颗,可以了吧”猴子们听了,以为晚上的栗子已经由三个变成四个,跟以前一样,就高兴地同意了。
老人也偷着乐了!计算:3+4= 4+3=操场上28 个男生在跳绳,17 个女生在跳绳,问:操场上一共有多少人在跳绳?计算:28+17= 17+28=加法交换律:两个数相加,交换加数的位置,他们的和不变,这叫加法交换律。
用字母表示:a+b=b+a;推广:多个数相加,任意改变加数的顺序,它们的和不变。
例如:1+2+3+4=1+3+2+4=……身边的数学问题:操场上28 个男生在跳绳,17 个女生在跳绳,23 个女生在踢毽子。
问:(1)参加跳绳的有多少人?(2)参加活动的有多少人?(3)参加活动的女生有多少人?(4)参加跳绳和踢毽子的一共有多少人?从以上的计算结果我们可以得到一个等式:先计算,再比较大小:1、(13+28)+12 13+(28+12)2、(16+17)+13 16+(17+13)根据以上的例子,你能发现在加法运算中,有什么规律吗?加法结合律:三个数相加,先把前面两个数相加,再加上第三个数,或者先把后两个数相加,再和第一个数相加,他们的和不变,这叫做加法结合律。
用字母表示:(a+b)+c=a+(b+c)说明:一般地,多个数相加(三个数以上),可以先对其中几个数相加,再与其它几个数相加。
把加法交换律与加法结合律综合起来应用,就能得到加法的一些巧算方法。
二年级《速算与巧算》奥数教案

(二年级)备课教员:第十五讲速算与巧算一、教学目标:知识目标1. 通过研究算式中的数字特点找到巧算方法。
2. 知道计算中基本的巧算方法,能熟练运用巧算的方法计算。
3.知道加括号和去括号与运算符号之间的变化关系。
能力目标1. 从解决问题的过程中获得成功的体验,树立起学习数学的信心。
2. 一个数可以进行拆分后凑整计算,锻炼学生的数学分组拆分的数学思维。
情感目标1. 培养学生学习数学的兴趣和自信心,增强同学之间相互合作、相互交流的意识。
2. 培养学生用数学的眼光看待周围事物。
二、教学重点:灵活运用巧算方法进行计算。
三、教学难点:1. 在进行凑整时,要带上运算符号进行计算。
2. 括号前面是减号,去括号后,括号里原来的符号要进行变号。
四、教学准备:PPT五、教学过程:第一课时(50分钟)一、导入(5分)【设计意图:通过故事,引起学生学习的兴趣,进而引出今天要学习的内容。
】师:上课前,老师想跟你们分享一个小故事,你们想听吗?生:想。
师:在分享故事之前,大家先来看一张图片,这个人大家认识吗?生:不认识。
师:老师来告诉你们,他就是数学家高斯,而今天老师要分享的故事就和他有关系,同学们要仔细听了。
高斯上小学的时候,有一天,他的数学老师在算数课上出了一道难题:“把 1到 100的整数写下来,然后把它们加起来!”每当有考试时他们有如下的习惯:第一个做完的就把石板面朝下地放在老师的桌子上,第二个做完的就把石板摆在第一张石板上,就这样一个一个落起来。
这个难题当然难不倒学过算数级数的人,但这些孩子才刚开始学算数呢!老师心想他可以休息一下了。
但他错了,因为还不到几秒钟,高斯已经把石板放在讲桌上了,同时说道:“答案在这儿!”其他的学生把数字一个个加起来,额头都出了汗水,但高斯却静静坐着,对老师投来的轻蔑的、怀疑的眼光毫不在意。
考完后,老师一张张地检查着石板。
大部分都做错了,学生就吃了一顿鞭打。
最后,高斯的石板被翻了过来,只见上面只有一个数字:5050。
小学三年级上册数学奥数知识点:第1课《速算与巧算(1)》试题(含答案)-19精品

小学三年级上册数学奥数知识点讲解第1课《速算与巧算1》试题附答案一、加法中的巧算1.什么叫“补数”?两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。
如:1+9=10,3+7=10,2+8=10,4+6=10,5+5=10。
又如:11+89=100,33+67=100,22+78=100,44+56=100,55+45=100,在上面算式中,1叫9的“补数”;89叫11的“补数”,11也叫89的“补数”.也就是说两个数互为“补数”。
对于一个较大的数,如何能很快地算出它的“补数”呢?一般说,可以这样“凑”数:从最高位凑起,使各位数字相加得9,到最后个位数字相加得10。
如:87655→12345,46802→53198,87362→12638,…下面讲利用“补数”巧算加法,通常称为“凑整法”。
2.互补数先加。
例1 巧算下面各题:①36+87+64②99+136+101③1361+972+639+283.拆出补数先加。
例2 ①188+873 ②548+996 ③9898+2034.竖式运算中互补数先加。
如:二、减法中的巧算1.把几个互为“补数”的减数先加起,再从被减数中减去。
例3①300-73-27②1000-90-80-20-102.先减去那些与被减数有相同尾数的减数。
例4①4723-(723+189)②2356-159-2563.利用“补数”把接近整十、整百、整千…的数先变整,再运算(注意把多加的数再减去,把多减的数再加上)。
例5 ①506-397②323-189③467+997④987-178-222-390三、加减混合式的巧算1.去括号和添括号的法则在只有加减运算的算式里,如果括号前面是“+”号,则不论去掉括号或添上括号,括号里面的运算符号都不变;如果括号前面是“-”号,则不论去掉括号或添上括号,括号里面的运算符号都要改变,“+”变“-”,“-”变“+”,即:a+(b+c+d)=a+b+c+da-(b+a+d)=a-b-c-da-(b-c)=a-b+c例6 ①100+(10+20+30)②100-(10+20+3O)③100-(30-10)例7 计算下面各题:①100+10+20+30②100-10-20-30③100-30+102.带符号“搬家”例8 计算325+46-125+543.两个数相同而符号相反的数可以直接“抵消”掉例9 计算9+2-9+34.找“基准数”法几个比较接近于某一整数的数相加时,选这个整数为“基准数”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)计算:102+100+99+101+98
习题一 1.计算:(1)18+28+72 (2)87+15+13 (3)43+56+17+24 (4)28+44+39+62+56+21 2.计算:(1)98+67 (2)43+28 (3)75+26 3.计算:(1)82-49+18 (2)82-50+49 (3)41-64+29 4.计算:(1)99+98+97+96+95 (2)9+99+999 5.计算:(1)5+6+7+8+9 (2)5+10+5+20+25+30+35 (3)9+18+27+36+45+54 (4)12+14+16+18+20+22+24+26 6.计算:(1)53+49+51+48+52+50 (2)87+74+85+83+75+77+80+78+81+84 7.计算:1+2+3+4+5+6+1+2+3+4+5+6+1+2+3+4+5+6+1+2+3+4+5
x 个数 (1)计算:1+2+3+4+5+6+7+8+9
(2)计算:1+3+5+7+9
(3)计算:2+4+6+8+10
(4)计算:3+6+9+12+15
(5)计算:4+8+12+16+20 2. 等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记 成:和=(首数+末数)X 个数的一般
小学二年级上册数学奥数知识点讲解第 1 课《速算与巧算》试题附答案 一、“凑整”先算 1.计算:(1)24+44+56
(2)53+36+47
2.计算:(1)96+15 (2)52+69
3.计算:(1)63+18+19 (2)28+28+28
二、改变运算顺序:在只有“+”、“-”号的混合算式中,运算顺序可改变 计算:(1)45-18+19 (2)45+18-19
答案
一、“凑整”先算 1.计算:(1)24+44+56 (2)53+36+47 解:(1)24+44+56=24+(44+56) =24+100=124 这样想:因为 44+56=100 是个整百的数,所以先把它们的和算出来. (2)53+36+47=53+47+36 =(53+47)+36=100+36=136 这样想:因为 53+47=100 是个整百的数,所以先把+47 带着符号搬家,搬到+36 前面;
=12×5 中间数是 12 =60 共有 5 个数 2. 等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记 成:和=(首数+末数)X 个数的一般
1 计算: 1+2+3+4+5+6+7+8+9+10 =(1+10)×5=11×5=55 共 10 个数,个数的一半是 5,首数是 1,末数是 10. 2 计算: 3+5+7+9+11+13+15+17 =(3+17)×4=20×4=80 共 8 个数,个数的一半是 4,首数是 3,末数是 17. 3 计算: 2+4+6+8+10+12+14+16+18+20 =(2+20)×5=110 共 10 个数,个数的一半是 5,首数是 2,末数是 20. 四、基准数法 (1)计算:23+20+19+22+18+21 解:仔细观察,各个加数的大小都接近 20,所以可以把每个加数先按 20 相加,然后 再把少算的加上,把多算的减去.
(2)45+18-19 解:(1)45-18+19=45+19-18 =45+(19-18)=45+1=46 这样想:把+19 带着符号搬家,搬到-18 的前面.然后先算 19-18=1. (2)45+18-19=45+(18-19)
=45-1=44 这样想:加 18 减 19 的结果就等于减 1. 三、计算等差连续数的和 相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如: 1,2,3,4,5,6,7,8,9 1,3,5,7,9 2,4,6,8,10 3,6,9,12,15 4,8,12, 16,20 等等都是等差连续数. 1. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:和=中间数 x 个数 (1)计算:1+2+3+4+5+6+7+8+9
=5×9 中间数是 5 =45 共 9 个数 (2)计算:1+3+5+7+9
=5×5 中间数是 5 =25 共有 5 个数 (3)计算:2+4+6+8+10
=6×5 中间数是 6 =30 共有 5 个数 (4)计算:3+6+9+12+15
=9×5 中间数是 9 =45 共有 5 个数 (5)计算:4+8+12+16+20
解:(1)63+18+19
=60+2+1+18+19 =60+(2+18)+(1+19)
=60+20+20=100 这样想:将 63 分拆成 63=60+2+1 就是因为 2+18 和 1+19 可以凑整先算. (2)28+28+28 =(28+2)+(28+2)+(28+2)-6
=30+30+30-6=90-6=84 这样想:因为 28+2=30 可凑整,但最后要把多加的三个 2 减去. 二、改变运算顺序:在只有“+”、“-”号的混合算式中,运算顺序可改变 计算:(1)45-18+19
三、计算等差连续数的和 相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如: 1,2,3,4,5,6,7,8,9 1,3,5,7,9 2,4,6,8,10 3,6,9,12,15 4,8,12, 16,20 等等都是等差连续数. 1. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:和=中间数
然后再把 53+47 的和算出来. 2.计算:(1)96+15 (2)52+69 解:(1)96+15=96+(4+11) =(96+4)+11=100+11=111 这样想:把 15 分拆成 15=4+11,这是因为 96+4=100,可凑整先算. (2)52+69=(21+31)+69 =21+(31+69)=21+100=121 这样想:因为 69+31=100,所以把 52 分拆成 21 与 31 之和,再把 31+69=100 凑整先算. 3.计算:(1)63+18+19 (2)28+28+28