地铁工程施工监测方案

合集下载

地铁施工变形监测专项施工方案

地铁施工变形监测专项施工方案

地铁施工变形监测专项施工方案一、背景简介随着城市交通的发展,地铁工程建设日益增多,然而地铁施工过程中可能会引起地面建筑物的变形,因此对地铁施工变形进行监测显得尤为重要。

二、监测对象地铁施工变形监测的对象主要包括地面建筑物以及地下管线等。

三、监测手段1.地表测量:通过对地表标志物进行定点测量,如测角、测距等方法,了解地表的变形情况。

2.遥感监测:利用航空摄影和遥感技术,对地铁工程周边的地形进行全方位监测。

3.地下管线探测:采用地下雷达等技术,对地下管线的情况进行探测,及时排除隐患。

四、监测频率1.实时监测:在地铁施工过程中,对地面建筑物变形进行实时监测,保证施工过程的安全。

2.定期监测:除实时监测外,还需定期对地铁施工周边区域进行监测,及时发现潜在问题。

五、监测报告1.监测数据分析:对监测数据进行系统分析,了解地面建筑物的变形情况。

2.问题排查:如发现地面变形异常,需及时进行问题排查,找出原因并提出解决方案。

3.监测报告撰写:根据监测数据和问题排查结果,编制监测报告,向相关部门汇报情况。

六、应急预案1.事故处理:如发生地面建筑物坍塌等紧急情况,需立即启动应急预案,保障施工现场人员的安全。

2.紧急通知:在出现紧急情况时,需第一时间向相关部门通报,并配合开展应急处理工作。

七、总结与展望地铁施工变形监测是保障地下工程施工安全的重要环节,只有加强监测工作,提高预警能力,才能确保地铁施工的顺利进行。

未来,随着监测技术的不断创新,地铁施工变形监测工作将更加精准、高效。

以上是关于地铁施工变形监测专项施工方案的介绍,希望通过不懈的努力,确保地铁施工的顺利进行,保障城市交通的高效便捷。

地铁工程监测方案

地铁工程监测方案

地铁工程监测方案1.引言地铁是城市交通运输系统中的重要组成部分,对于现代城市的交通运输和经济发展起着至关重要的作用。

作为一个大型的基础设施工程项目,地铁的建设需要进行全面的监测和评估,以确保其安全运行和可持续发展。

因此,地铁工程监测方案的设计和实施至关重要。

本文将就地铁工程监测方案的设计和实施进行详细介绍。

2.工程概述地铁工程是一项综合性的工程项目,主要包括地下隧道、车站、站台、车辆运行系统等。

地铁隧道的建设和运行受到地质条件、地下水位、地表沉降、围岩压力等多种因素的影响。

因此,对于地铁工程的监测必须全面、系统和科学地进行。

3.监测对象地铁工程监测对象主要包括地下隧道、车站、站台、地下水位、地表沉降、围岩压力等。

监测内容主要包括地铁结构的变形、地铁运行的振动、地下水位和地表沉降情况等。

4.监测方法地铁工程监测主要采用传统的监测方法和现代的监测技术。

传统的监测方法主要包括地下水位监测、地表沉降监测和围岩压力监测等。

现代的监测技术则包括全站仪、GPS、遥感技术、激光扫描技术等。

5.监测设备地铁工程监测设备主要包括地下水位监测仪、地表沉降监测仪、围岩压力监测仪,以及全站仪、GPS、激光扫描仪等现代监测设备。

这些设备将根据监测要求进行布设,并进行实时监测。

6.监测数据处理对于地铁工程的监测数据,需要进行及时、准确的处理和分析。

监测数据的处理应采用科学的方法,包括数据的采集、传输、存储以及数据的分析和评估,以便及时发现问题并采取相应措施。

7.监测方案实施地铁工程监测方案的实施需要进行详细的计划和安排。

监测方案应包括监测目标、监测内容、监测方法、监测设备、监测数据处理以及应急措施等。

监测方案的实施应根据监测计划进行,并由专业的监测团队进行实施。

8.监测结果评估对于地铁工程的监测结果,需要进行综合评估。

监测结果的评估应包括监测数据的准确性和可靠性,以及结合实际情况进行分析和判断,为地铁工程的安全运行提供依据。

城市轨道交通地铁项目施工监测方案

城市轨道交通地铁项目施工监测方案

城市轨道交通地铁项目施工监测方案1.1 测点布置1.1.1 测点布置原则1、按监测方案在现场布设测点,当实际地形不允许时,可在靠近设计测点位置设置测点,以能达到监测目地为原则。

2、为验证设计参数而设的测点布置在设计最不利位置和断面,为指导施工而设的测点布置在相同状况下最先施工部位,其目的是为了及时反馈信息,以修改设计和指导施工。

3、地表变形测点的位置既要考虑反映对象的变形特征,又要便于采用仪器进行观测,还要有利于测点的保护。

4、深埋测点(结构变形测点等)不能影响和妨碍结构的正常受力,不能削弱结构的刚度和强度。

5、各类监测测点的布置在时间和空间上有机结合,力求同一监测部位能同时反映不同的物理变化量,以便找出其内在的联系和变化规律。

6、测点的埋设应提前一定的时间,并及早进行初始状态的量测。

7、测点在施工过程中一旦破坏,尽快在原来位置或尽量靠近原来位置补设测点,以保证该测点观测数据的连续性。

1.1.2车站测点布置车站测点布设情况如下表9-4所示表9-4 测点布设表1.1.3区间测点布置(1)地面沉降(隆起)监测点:—般地沿隧道中线方向每隔5m布设一个测点,每隔定距离布设一个监测横断面,见表9-5。

表9-5 地面沉降监测横断面间距表注:B代表隧道的外径横断面方向测点间隔,一般为5〜8m在一个监测断面内设9个测点,地表测点顶突出地面5mm以内。

地面沉降测量应在盾构机开挖面附近,每天进行及每周进行后期观测直到沉降稳定。

(2)地面建筑物及临近建筑物沉降、倾斜和水平位移:在每栋建筑物四角各设置一个观测点,以测量其位移、倾斜,沉降点的数量不少于4点,规模较大的建筑物根据需要增加测点数量。

地面和建筑物沉降监测断面沿隧道纵向每30m设一断面地面或建筑物沉醫标志地面或罐於物沉障标£不少穴个5t(J0 分泾沅降仪沉障孔测斜仪 测斜仪测黏扎K 斜孔时称中心纯图 9-20 主断面监测点布置图(单位:mm拱顶下沉测点匚-1收敛测线A'f ■*! j匚!!u 11L ;]图9-21 洞内常规监测点布置图11隧道中心找/ 'V图9-22 纵断面监测点布置图地面或建筑物沉降监测标志\1测斜孔[拱顶下沉监测点[ 1隧道结构 | || If 1 1 1收敛测线A| 1隧底隆起监测点 1 rri 1 隧道结构M 1II1 L 1 1f 20〜30m (特殊地段加密)f 20〜30m (特殊地段加密)丫图9-23 单线隧道掘进地面沉降监测点布置示意图 (3) 土体水平位移及分层沉降:在典型断面布置测斜 仪进行测量,见图9-24。

地铁施工周边建筑监测方案

地铁施工周边建筑监测方案

地铁施工周边建筑监测方案地铁施工周边建筑监测是确保施工期间周边建筑安全和防止施工对周边建筑造成不良影响的重要措施。

下面是一份地铁施工周边建筑监测方案,详细介绍了监测的目的、内容、方法和频率等。

1. 监测目的:确保施工对周边建筑的安全无影响,及时发现并处理潜在的安全隐患,保护周边建筑的稳定和周边居民的生命财产安全。

2. 监测内容:(1)地表沉降监测:监测施工期间地表沉降情况,确保地铁施工对周边地表的影响在可接受范围内。

(2)建筑物倾斜监测:监测周边建筑物的倾斜情况,及时发现建筑物倾斜严重程度,防止因施工引起的建筑物不稳定。

(3)振动监测:监测施工引起的地面振动情况,确保振动不超过规定的安全限值,避免对周边建筑物造成损害。

(4)裂缝监测:监测周边建筑物出现的裂缝情况,及时发现并评估裂缝的发展趋势,防止严重裂缝对建筑物稳定性的影响。

3. 监测方法:(1)地表沉降监测:采用水准测量和高斯仪等方法,通过测量固定的控制点,监测地表沉降情况。

(2)建筑物倾斜监测:采用倾斜仪或全站仪等设备,监测建筑物的倾斜情况,并定期进行测量和记录。

(3)振动监测:采用地震仪或振动传感器等设备,监测施工引起的地面振动情况,并记录振动参数。

(4)裂缝监测:采用激光扫描仪或倾角仪等设备,对建筑物裂缝进行定期监测和测量。

4. 监测频率:(1)地表沉降监测:施工前后进行一次测量,然后每月进行一次测量,持续至施工结束。

(2)建筑物倾斜监测:施工前后进行一次测量,然后每周进行一次测量,持续至施工结束。

(3)振动监测:施工期间每日进行振动监测,限值超标则立即通知相关部门采取控制措施。

(4)裂缝监测:施工前后进行一次测量,然后每季度进行一次测量,持续至施工结束。

以上就是一份地铁施工周边建筑监测方案,以确保施工期间周边建筑安全和防止施工对周边建筑造成不良影响。

这个方案中包括监测目的、内容、方法和频率等关键要素,同时也应根据具体情况进行灵活调整和完善。

地铁施工变形监测专项施工方案

地铁施工变形监测专项施工方案

地铁施工变形监测专项施工方案一、方案背景与目的地铁工程建设一般都会伴随着地表地下土体的变形与沉降,这些变形和沉降对地铁工程的安全运营和城市建设都有很大影响。

因此,进行地铁施工变形监测是必不可少的工作。

该方案旨在制定详细的地铁施工变形监测方案,以确保地铁工程的安全运营和城市建设的顺利进行。

二、监测目标与内容1.监测目标:(1)地铁隧道施工引起的地表沉降;(2)地铁施工对周围房屋、道路等的影响;(3)地铁施工对邻近地铁线路以及地下设施的影响。

2.监测内容:(1)地表沉降监测;(2)结构物位移监测;(3)环境振动监测;(4)隧道内部和周边地下水位监测;(5)地下管线移动监测。

三、监测方法与技术1.地表沉降监测方法:(1)使用测量仪器和测量数据处理软件,进行地表沉降点的定位与测量;(2)定期测量地表沉降变化;(3)将测量数据与设计要求进行比对,判断是否超过了允许的变形限值。

2.结构物位移监测方法:(1)使用位移传感器,在施工前后对结构物进行定位与测量;(2)定期测量结构物位移变化;(3)将测量数据与设计要求进行比对,判断是否超过了允许的变形限值。

3.环境振动监测方法:(1)在施工现场周边设置振动传感器,监测施工引起的振动情况;(2)定期测量振动变化;(3)将测量数据与环境振动标准进行比对,判断是否超过了允许的振动限值。

4.隧道内部和周边地下水位监测方法:(1)在施工现场设置水位监测井或压力计,监测地下水位;(2)定期测量地下水位变化;(3)将测量数据与设计要求进行比对,判断是否超过了允许的水位限值。

5.地下管线移动监测方法:(1)通过地下管线的管内摄像机或声纳仪器进行监测;(2)定期检查管线的移动情况;(3)将监测数据与设计要求进行比对,判断是否超过了允许的限值。

四、监测方案的实施1.在施工前进行基准测量,记录基准数据。

2.在施工期间定期进行监测,记录监测数据。

3.对监测数据进行分析、比对和整理,及时发现异常情况。

地铁隧道工程监测方案

地铁隧道工程监测方案

地铁隧道工程监测方案一、前言地铁隧道工程是城市轨道交通系统的重要组成部分,具有大规模、复杂性高等特点。

为保障地铁隧道工程的施工质量和运营安全,必须进行科学合理的监测工作。

本方案将针对地铁隧道工程的监测需求和特点,制定相应的监测方案,以确保施工和运营过程中的安全可控。

二、监测目标地铁隧道工程监测的目标主要包括以下几个方面:1. 地质环境监测:监测地下隧道施工区域的地质情况,包括地下水位、地层稳定性、地下裂缝等;2. 隧道结构监测:监测隧道结构的变形情况,包括隧道径向变形、轴向变形、纵横向位移等;3. 施工监测:监测地铁隧道施工过程中的施工质量和安全情况,包括土压平衡盾构机的掘进参数、锚杆的张力等;4. 运营监测:监测地铁隧道运营过程中的地下水位、地铁车辆振动等。

三、监测方法1. 地质环境监测方法:(1)地下水位监测:采用定点井水位监测法,通过埋设水位计和传感器监测地下水位的变化情况;(2)地层稳定性监测:采用地下虚拟仪器成像技术,通过地质雷达和地震波勘测技术监测地层的稳定性;(3)地下裂缝监测:采用微震监测技术,通过监测地下微震事件的发生情况来判断地下裂缝的分布和变化。

2. 隧道结构监测方法:(1)隧道径向变形监测:采用激光测距仪和全站仪结合的方法,通过测量隧道内壁的变形情况来判断隧道的径向变形;(2)轴向变形监测:采用应变片和应变计监测技术,通过对隧道结构的应变情况进行监测来判断隧道的轴向变形;(3)纵横向位移监测:采用全站仪和GPS监测技术,通过监测隧道内各个位置的坐标来判断隧道的纵横向位移。

3. 施工监测方法:(1)土压平衡盾构机的掘进参数监测:采用激光测距仪和倾斜仪监测技术,通过监测盾构机的掘进速度、推力、转速等参数来判断盾构机的施工状态;(2)锚杆的张力监测:采用拉力计和应变计监测技术,通过监测锚杆的张力情况来判断锚杆的施工质量和状态。

4. 运营监测方法:(1)地下水位监测:采用定点井水位监测法,通过监测地下水位的变化情况来判断地下水对地铁隧道的影响;(2)地铁车辆振动监测:采用振动传感器和加速度计监测技术,通过监测地铁车辆在运行过程中的振动情况来判断地铁隧道的安全性。

地铁施工监测方案

地铁施工监测方案

地铁施工监测方案1. 简介地铁施工监测方案是指在地铁建设过程中,为了确保地铁施工过程的安全和顺利进行,对施工现场进行监测和控制的方案。

该方案旨在通过应用先进的地铁施工监测技术,对地铁施工现场的各项参数进行实时监测,提前发现潜在的问题,及时采取相应的措施,以减少施工风险,确保施工质量,保障地铁运营的安全。

2. 监测内容和方法地铁施工监测包括以下内容:2.1 基坑监测基坑监测是对地铁施工过程中的基坑进行实时监测,主要包括以下方面的内容:•地下水位监测:通过设置水位监测设备,实时监测基坑周围地下水位的变化情况,预防水位过高导致基坑坍塌等问题。

•土壤位移监测:通过设置位移监测仪器,实时监测基坑周围土壤的位移情况,及时发现土壤松动、下沉等问题。

•施工权重监测:通过设置权重监测仪器,监测地铁施工对基坑周围建筑物的力学影响,保证施工过程对周围环境的安全。

2.2 隧道监测隧道监测是对地铁隧道施工过程中的各项参数进行实时监测,主要包括以下方面的内容:•隧道位移监测:通过设置位移监测仪器,实时监测隧道的位移情况,及时发现隧道变形、沉降等问题。

•隧道应力监测:通过设置应力监测仪器,监测隧道结构的应力分布情况,及时发现应力集中和超出设计范围的情况。

•隧道温度监测:通过设置温度监测仪器,监测隧道内外温度的变化情况,及时发现温度异常,预防温度变化导致的隧道结构问题。

2.3 工程振动监测工程振动监测是对地铁施工过程中的振动参数进行实时监测,主要包括以下方面的内容:•施工振动监测:通过设置振动监测仪器,实时监测地铁施工对周围建筑物的振动情况,预防施工振动造成的建筑物损坏。

•列车振动监测:通过设置振动监测仪器,监测地铁列车在运营过程中产生的振动情况,及时发现并解决列车振动过大的问题,确保列车运营的安全和乘客的舒适度。

3. 监测数据处理和分析为了有效利用监测数据,提前发现和解决问题,监测数据将进行处理和分析。

具体步骤如下:1.数据采集:监测设备定期采集监测数据,包括基坑监测数据、隧道监测数据和工程振动监测数据。

地铁工程施工监测方案

地铁工程施工监测方案

地铁工程施工监测方案监测目的:一是通过对监测信息的分析指导后续工程的施工,二是确保周围建筑物的稳定及施工安全,三是为今后类似工程的建设提供经验.根据招标文件中有关施工监测部分的精神,结合本工程的地理位置及基坑的开挖深度和工程结构型式的特点来考虑,我们认为监测重点为监测围护结构的水平位移及沉降、地表变形、钢支撑受力、地下水位以及地下管线变形等方面监测。

1.监测组织与程序建立专业监测小组,根据业主要求委托有资质和有业绩的单位进行,并由具备独立资质有丰富施工经验、监测经验及有结构受力计算、分析能力的工程技术人员组成。

负责监测方案的制定、监测仪器的埋设和调试、监测数据的收集、整理和分析,并采用先进可靠的计算软件,快速、及时准确的反馈信息,指导施工。

同时与预测的数据进行对照,有利于及时发现异常,及早采取措施。

2. 监测项目地下工程按信息化设计,现场监控量测是监视围岩稳定、判断支护衬砌设计是否合理安全、施工方法是否正确的重要手段,通过监控量测:将监测数据与预测值相比较,判断前一步施工工艺和支护参数是否符合预期要求,以确定和调整下一步施工,确保施工安全和地表建筑物、地下管线的安全。

将现场测量的数据、信息及时反馈,以修改和完善设计,使设计达到优质安全、经济合理。

将现场测量的数据与理论预测值比较,用反分析法进行分析计算,使设计更符合实际,以便指导今后的工程建设。

测点布置、监测手段与监测频率现场监控量测项目、测点布置、监测手段与监测频率详见明挖段监控量测表。

3.监测方案及相应措施1)地面沉降(1)监测方法:主要监测基坑开挖引起的地表变形情况。

监测方法是在地表埋设测点,用水准仪进行下沉的量测。

根据量测结果进行回归分析,判断基坑开挖对地表变形的影响。

(2)测点布置原则:测点布置在基坑周围地面上,间距10~20米。

(3)量测频率:见监测项目汇总表(4)量测精度:±1mm(5)相应对策: 当地表沉降速度过大,加快监测频率,必要时,停工检查原因,采用加强支撑和加固地层的措施保证施工安全。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

地铁工程施工监测方案
监测目的:一是通过对监测信息的分析指导后续工程的施工,二是确保周围建筑物的稳定及施工安全,三是为今后类似工程的建设提供经验.
根据招标文件中有关施工监测部分的精神,结合本工程的地理位置及基坑的开挖深度和工程结构型式的特点来考虑,我们认为监测重点为监测围护结构的水平位移及沉降、地表变形、钢支撑受力、地下水位以及地下管线变形等方面监测。

1.监测组织与程序
建立专业监测小组,根据业主要求委托有资质和有业绩的单位进行,并由具备独立资质有丰富施工经验、监测经验及有结构受力计算、分析能力的工程技术人员组成。

负责监测方案的制定、监测仪器的埋设和调试、监测数据的收集、整理和分析,并采用先进可靠的计算软件,快速、及时准确的反馈信息,指导施工。

同时与预测的数据进行对照,有利于及时发现异常,及早采取措施。

2. 监测项目
地下工程按信息化设计,现场监控量测是监视围岩稳定、判断支护衬砌设计是否合理安全、施工方法是否正确的重要手段,通过监控量测:将监测数据与预测值相比较,判断前一步施工工艺和支护参数是否符合预期要求,以确定和调整下一步施工,确保施工安全和地表建筑物、地下管线的安全。

将现场测量的数据、信息及时反馈,以修改和完善设计,使设计达到优质安全、经济合理。

将现场测量的数据与理论预测值比较,用反分析法进行分析计算,使设计更符合实际,以便指导今后的工程建设。

测点布置、监测手段与监测频率
现场监控量测项目、测点布置、监测手段与监测频率详见明挖段监控量测表。

3.监测方案及相应措施
1)地面沉降
(1)监测方法:主要监测基坑开挖引起的地表变形情况。

监测方法是在地表埋设测点,用水准仪进行下沉的量测。

根据量测结果进行回归分析,判断基坑开挖对地表变形的影响。

(2)测点布置原则:测点布置在基坑周围地面上,间距10~20米。

(3)量测频率:见监测项目汇总表
(4)量测精度:±1mm
(5)相应对策:当地表沉降速度过大,加快监测频率,必要时,停工检查原因,采用加强支撑和加固地层的措施保证施工安全。

2)基坑开挖引起的地下管线变形监测。

(1)监测方法:本车站施工范围内及周围地下管线较多,根据招标文件,针对每一根管线,提出初步的保护措施,管线分布及保护方案详见管线布置示意图。

本次监测主要针对基坑周边的管线及受保护的管线,监测管线的水平的和沉降。

施工监测项目表
(2)测点布置原则:地下管线所在处覆土正上方挖孔布置测点。

(3)量测频率:见监测项目汇总表
(4)量测精度:±1mm
(5)相应措施:当地下管线的位移超过警戒值时,立即会同有关部门对管线采取加固措施。

3)连续墙水平位移及沉降监测
(1)监测方法:在连续墙上端部做点,采用经纬仪和水准仪进行观测。

(2)测点布置原则:水平位移在围护结构顶部沿车站轴向每20m左右设置测点;沉降测点在围护结构上每隔15m选一点。

(3)量测频率:见监测项目汇总表
(4)量测精度:±1mm
(5)相应措施:当围护结构的水平位移及沉降超过预警值时,调整支撑参数,或同时采用地层加固措施。

确保围护结构稳定。

4)周边建筑物变形监测
(1)监测方法:主要监测建筑物的不均匀沉降、水平位移。

用精密水准仪和经纬仪进行量测。

根据量测结果判断建筑物的变形和沉降情况。

(2)测点布置原则:建筑物墙角、柱子、门边、地面等处每隔15米左右布设。

(3)量测频率:见监测项目汇总表
(4)量测精度。

±1mm
(5)相应措施:当建筑物的变形超过允许值时,加快监测频率,及时采取加强开挖部的支撑,加固地层措施,必要时,对即有建筑物的基础采取加固措施。

5)钢支撑轴力监测
(1)监测方法:采用应变仪和应变计进行量测。

(2)测点布置原则:测点布置在钢支撑的中部。

(3)量测频率:见监测项目汇总表
(4)量测精度:0.01
(5)相应对策;根据量测结果分析钢支撑的受力情况,确定是否调整钢支撑的参数。

6)地下水位变化监测
(1)监测方法:水位标高采用水位仪观测:水量采用水表进行监测;同时进行水质和水温监测;孔隙水压力采用孔隙水压计观测。

(2)测点布置原则:见表
(3)量测频率:见监测项目汇总表
(4)量测精度:±5mm
(5)相应措施:根据地下水位,水压变化情况,确定基坑开挖是否采取
排水或送水措施。

保证周围建筑物不因地下水位变化过大而引起下沉、倾斜。

7)围护结构两侧土压力及底板土压力监测
(1)监测方法:采用埋设土压力盒的办法进行评定,安置土压力盒时将其镶嵌在挡水构筑物内,使其应力膜与构筑表面齐平,并保证压力盒有良好的刚性支撑,以保证测量的可靠性。

(2)测点布置原则:选择有代表性的典性断面和部位。

(3)量测频率:见监测项目汇总表
(4)量测精度:±1kpa
(5)相应措施:根据观测数据,发现土压力数据异常,或变化速率增快时,及时找出原因,同时缩短观测的周期,采取相应的措施。

4.施工监测的要求
1)建立专业监测小组,以项目总工程师为直接领导,由具备丰富施工经验、监测经验及有结构受力计算、分析能力的工程技术人员组成。

负责及时收集、整理各项监测资料,并对资料进行计算分析对比。

2)制定详细的监测计划,并报监理工程师和业主。

这份报告内容包括施测程序、方法、使用仪器、监测精度、监测点布置、监测的频率和周期、监测人员的情况和安排,监测质量保证措施等。

3)采购元器件及有关监测元件和仪器的标定
根据监测计划,在施工前,备齐所有的监测元件和仪器。

并根据规范进行有关标定工作。

4)确定预警值
根据施工具体情况,会同设计院、监理及有关专家设定变形值、内力值及变化速率警戒值,当发现异常情况时,及时报告主管工程师和监理工程师。

并将情况通报给业主和有关部门,共同研究控制措施。

5)处理好施工和监测的关系
妥善协调好施工和监测的关系,将观测设备的埋设计划列入工程施工进度
控制计划中。

及时提供工作面,创造条件保证监测埋设工作的正常进行。

在施工工程中教育全体施工人员采取切实有效措施,防止一切观测设备、观测测点和电缆受到机械和人为的破坏,如有损坏,按监理工程师的要求及时采取补救措施,并详细作出记录备查。

6)三角网点和测点的保护
保护和保存好本合同范围内全部三角网点、水准网点和自己布设的网点,使之容易进入和通视,防止移动和破坏。

监测结果的分析、处理对监测数据及时进行处理和反馈,预测基坑及结构的稳定性,提出施工工序的调整意见。

确保工程的顺利施工。

相关文档
最新文档