城市地铁车站施工监测方案
地铁施工变形监测专项施工方案

地铁施工变形监测专项施工方案一、背景简介随着城市交通的发展,地铁工程建设日益增多,然而地铁施工过程中可能会引起地面建筑物的变形,因此对地铁施工变形进行监测显得尤为重要。
二、监测对象地铁施工变形监测的对象主要包括地面建筑物以及地下管线等。
三、监测手段1.地表测量:通过对地表标志物进行定点测量,如测角、测距等方法,了解地表的变形情况。
2.遥感监测:利用航空摄影和遥感技术,对地铁工程周边的地形进行全方位监测。
3.地下管线探测:采用地下雷达等技术,对地下管线的情况进行探测,及时排除隐患。
四、监测频率1.实时监测:在地铁施工过程中,对地面建筑物变形进行实时监测,保证施工过程的安全。
2.定期监测:除实时监测外,还需定期对地铁施工周边区域进行监测,及时发现潜在问题。
五、监测报告1.监测数据分析:对监测数据进行系统分析,了解地面建筑物的变形情况。
2.问题排查:如发现地面变形异常,需及时进行问题排查,找出原因并提出解决方案。
3.监测报告撰写:根据监测数据和问题排查结果,编制监测报告,向相关部门汇报情况。
六、应急预案1.事故处理:如发生地面建筑物坍塌等紧急情况,需立即启动应急预案,保障施工现场人员的安全。
2.紧急通知:在出现紧急情况时,需第一时间向相关部门通报,并配合开展应急处理工作。
七、总结与展望地铁施工变形监测是保障地下工程施工安全的重要环节,只有加强监测工作,提高预警能力,才能确保地铁施工的顺利进行。
未来,随着监测技术的不断创新,地铁施工变形监测工作将更加精准、高效。
以上是关于地铁施工变形监测专项施工方案的介绍,希望通过不懈的努力,确保地铁施工的顺利进行,保障城市交通的高效便捷。
轨道施工监测实施方案范本

轨道施工监测实施方案范本一、前言。
轨道施工监测是轨道交通建设中至关重要的环节,它直接关系到施工质量和工程安全。
因此,制定科学合理的施工监测实施方案对于保障轨道施工质量和工程安全具有重要意义。
本文档旨在提供一份轨道施工监测实施方案范本,以供相关单位参考和借鉴。
二、监测目标。
1. 监测轨道施工过程中的地质变化情况,及时发现地质灾害隐患,确保施工安全;2. 监测轨道施工中的地表沉降情况,及时采取补救措施,保证线路平稳;3. 监测轨道施工过程中的环境影响,保护周边生态环境;4. 监测轨道施工中的施工质量,确保施工符合规范要求。
三、监测内容。
1. 地质监测,包括地下水位、地下水压力、地下岩层情况等;2. 地表监测,包括地表沉降、地表裂缝、地表变形等;3. 环境监测,包括噪音、振动、扬尘等环境影响;4. 施工质量监测,包括轨道几何尺寸、轨道平整度、轨道弯曲度等。
四、监测方法。
1. 地质监测方法,采用地下水位监测仪、地下水压力监测仪、地质雷达等设备进行监测;2. 地表监测方法,采用全站仪、GPS测量仪等设备进行监测;3. 环境监测方法,采用噪音监测仪、振动监测仪、扬尘监测仪等设备进行监测;4. 施工质量监测方法,采用轨道几何测量仪、轨道平整度测量仪、轨道弯曲度测量仪等设备进行监测。
五、监测频次。
1. 地质监测,根据地质条件和施工进度,制定监测频次,一般不少于每周一次;2. 地表监测,根据地表沉降情况,制定监测频次,一般不少于每日一次;3. 环境监测,根据施工活动和周边环境情况,制定监测频次,一般不少于每日一次;4. 施工质量监测,根据轨道施工进度和质量要求,制定监测频次,一般不少于每日一次。
六、监测报告。
1. 地质监测报告,包括地下水位、地下水压力、地下岩层情况的监测结果及分析;2. 地表监测报告,包括地表沉降、地表裂缝、地表变形情况的监测结果及分析;3. 环境监测报告,包括噪音、振动、扬尘等环境影响的监测结果及分析;4. 施工质量监测报告,包括轨道几何尺寸、轨道平整度、轨道弯曲度等施工质量监测结果及分析。
地铁监测方案

地铁监测方案地铁交通系统的建设和运行对于现代城市来说具有重要的意义。
为了确保地铁运营的安全和有效性,地铁监测方案是必不可少的工具。
本文将介绍一个全面的地铁监测方案,以确保地铁系统的正常运行和乘客的安全。
一、方案背景地铁系统是城市交通的重要组成部分,为了保证乘客的出行安全和提高运行的可靠性,地铁监测方案是必要的。
通过监测地铁系统的各个方面,可以及时发现潜在的故障和问题,并及时采取措施修复。
二、监测设备1. 传感器地铁监测方案中的核心设备是传感器。
传感器可以安装在地铁线路、车辆和车站等位置来监测各个环节的运行情况。
传感器可以收集并传输各种数据,如振动、温度、湿度等,从而提供全面的监测信息。
2. 数据采集系统为了有效地收集和处理传感器传输的数据,需要建立一个数据采集系统。
数据采集系统负责接收传感器的数据,并将其存储和处理。
通过数据采集系统,监测人员可以实时监测地铁系统的状态,并及时作出应对。
三、监测内容1. 线路监测地铁线路作为地铁系统的基础设施,需要进行全面的监测。
通过安装传感器在线路上,可以实时监测线路的运行情况,如振动、温度变化等。
这些数据可以帮助监测人员及时发现线路的异常情况,如裂缝、变形等,并采取相应的维修措施。
2. 车辆监测地铁车辆是运营中最为关键的环节之一,其安全和正常运行至关重要。
通过在车辆上安装传感器,可以监测车辆的运行状态和性能。
例如,传感器可以监测车辆的振动和噪音水平,以及车辆的温度和湿度情况。
这些数据可以帮助监测人员判断车辆的健康状况,并提前预防潜在故障的发生。
3. 车站监测地铁车站是乘客出行的重要场所,因此需要进行全面的监测。
通过在车站安装传感器,可以监测人流量、空气质量、温度等参数。
这些数据可以帮助监测人员及时调整运营策略,确保乘客的安全和舒适。
四、数据分析与应用通过对传感器采集的数据进行分析,可以获取地铁系统的运行状态和趋势,并及时采取相应措施。
监测人员可以借助数据分析工具,对数据进行处理和分析,并生成相关的报告和预警信息。
地铁车站工程监测方案

地铁车站工程监测方案一、前言地铁是城市交通系统的重要组成部分,可以有效缓解城市交通拥堵问题,提高城市通行效率。
地铁车站工程作为地铁建设的重要环节,其质量和安全问题直接关系到乘客的出行安全和乘坐体验。
因此,对地铁车站工程进行有效的监测工作,是保障工程建设质量和安全的重要手段。
二、监测目标地铁车站工程监测的主要目标是监测工程施工过程中可能出现的变形、沉降、裂缝等问题,确保建筑结构的稳定性和安全性。
具体监测目标包括但不限于:1. 地铁车站地下结构的变形监测;2. 地下水位对工程稳定性的影响监测;3. 地铁车站建筑结构的沉降监测;4. 地铁车站周边地面建筑物的裂缝变化监测;5. 地铁车站施工噪音、振动的监测。
三、监测方法地铁车站工程监测方法多样,分别针对不同的监测目标制定不同的监测方案。
具体监测方法包括但不限于:1. 地下结构的变形监测:使用测斜仪、地下水位仪等设备,对地下结构的变形进行实时监测,并通过数字化技术进行数据处理和分析;2. 地下水位对工程稳定性的影响监测:使用水位计、渗流计等设备,对地下水位进行实时监测,并结合地下结构变形监测数据进行分析;3. 地铁车站建筑结构的沉降监测:使用卫星定位系统、测量仪器等设备,对工程建筑结构的沉降进行实时监测,并及时发现异常情况并处理;4. 地铁车站周边地面建筑物的裂缝变化监测:使用裂缝计、地质雷达等设备,对周边地面建筑物的裂缝进行实时监测,并分析其变化趋势;5. 地铁车站施工噪音、振动的监测:使用噪音计、振动传感器等设备,对施工现场的噪音和振动进行实时监测,并对限定范围内的噪音和振动进行控制。
四、监测方案1. 监测设备的选择针对地铁车站工程的监测目标,选择适合的监测设备和仪器,包括但不限于测斜仪、水位计、卫星定位系统、测量仪器、裂缝计、地质雷达、噪音计、振动传感器等设备;2. 监测点的设置根据工程设计要求和实际情况,确定监测点的设置位置,保证监测数据的准确性和全面性;3. 监测频次和报警值设定确定监测数据的采集频次和监测数据的处理方式,同时设置报警值,确保异常情况能够及时发现和处理;4. 监测数据的处理和分析对监测数据进行及时归档和分析,发现异常情况立即进行处理,并持续监测,直到工程完工;5. 监测报告的编制定期编制监测报告,详细记录监测数据和分析结果,向相关部门和单位汇报监测工作的情况。
地铁车站施工测量及监测作业指导课件

地形地貌测量
在施工前,需要对地铁车站所在 地的地形地貌进行详细测量,包 括地表高程、地形起伏、地貌特 征等,为后续的施工设计提供准
确的基础数据。
地下管线探测
在施工前还需要对地下管线进行 详细的探测和测量,确保施工过 程中不会破坏现有管线,避免对 周边环境和居民生活造成影响。
地质勘察
对施工区域进行地质勘察,了解 地层结构、地质构造、水文地质 等条件,为施工方案的制定提供
THANKS
监测内容与方法
3. 水位计和孔隙水压力计法
采用水位计和孔隙水压力计监测地下水位和孔隙水压力。
4. 全站仪和水准仪法
使用全站仪和水准仪监测周边建筑物和管线的变形情况。
监测数据分析与预警
数据分析
01
02
1. 整理与归纳:定期收集、整理并归纳监测数据,形成可视化
图表,便于分析。
2. 趋势分析:分析监测数据的变化趋势,以判断施工过程的安
2. 实时性原则:实时监 测施工过程中的关键参 数,以及周边环境和建 筑物的变化情况。
3. 预警原则:设定合理 的预警阈值,及时发出 预警信息,指导施工单 位采取相应措施。
监测内容与方法
内容
1. 土体变形:监测地铁车站施工过程中的土体水平位移、垂直沉降等变 形情况。
2. 支护结构内力:监测支护结构(如连续墙、桩基础等)的内力分布情况。
如计算机、数据处理软件 等,用于对测量数据进行 处理、分析和存储。
测量人员资质与职责
资质要求 • 具备工程测量或相关专业的学历背景。
• 持有有效的测量员或相关职业资格证书。
测量人员资质与职责
• 具备一定的工作经验和技能,能够熟练操作测量 设备和处理测量数据。
地铁工程施工监测方案

地铁工程施工监测方案监测目的:一是通过对监测信息的分析指导后续工程的施工,二是确保周围建筑物的稳定及施工安全,三是为今后类似工程的建设提供经验.根据招标文件中有关施工监测部分的精神,结合本工程的地理位置及基坑的开挖深度和工程结构型式的特点来考虑,我们认为监测重点为监测围护结构的水平位移及沉降、地表变形、钢支撑受力、地下水位以及地下管线变形等方面监测。
1.监测组织与程序建立专业监测小组,根据业主要求委托有资质和有业绩的单位进行,并由具备独立资质有丰富施工经验、监测经验及有结构受力计算、分析能力的工程技术人员组成。
负责监测方案的制定、监测仪器的埋设和调试、监测数据的收集、整理和分析,并采用先进可靠的计算软件,快速、及时准确的反馈信息,指导施工。
同时与预测的数据进行对照,有利于及时发现异常,及早采取措施。
2. 监测项目地下工程按信息化设计,现场监控量测是监视围岩稳定、判断支护衬砌设计是否合理安全、施工方法是否正确的重要手段,通过监控量测:将监测数据与预测值相比较,判断前一步施工工艺和支护参数是否符合预期要求,以确定和调整下一步施工,确保施工安全和地表建筑物、地下管线的安全。
将现场测量的数据、信息及时反馈,以修改和完善设计,使设计达到优质安全、经济合理。
将现场测量的数据与理论预测值比较,用反分析法进行分析计算,使设计更符合实际,以便指导今后的工程建设。
测点布置、监测手段与监测频率现场监控量测项目、测点布置、监测手段与监测频率详见明挖段监控量测表。
3.监测方案及相应措施1)地面沉降(1)监测方法:主要监测基坑开挖引起的地表变形情况。
监测方法是在地表埋设测点,用水准仪进行下沉的量测。
根据量测结果进行回归分析,判断基坑开挖对地表变形的影响。
(2)测点布置原则:测点布置在基坑周围地面上,间距10~20米。
(3)量测频率:见监测项目汇总表(4)量测精度:±1mm(5)相应对策: 当地表沉降速度过大,加快监测频率,必要时,停工检查原因,采用加强支撑和加固地层的措施保证施工安全。
地铁监测实施方案

地铁监测实施方案一、背景介绍。
地铁作为城市交通系统的重要组成部分,承载着大量的乘客出行需求。
为了确保地铁运营的安全和顺畅,需要对地铁线路、车辆等进行定期监测和检测。
地铁监测实施方案的制定和执行,对于保障地铁运营安全和提高运营效率具有重要意义。
二、监测目标。
1.地铁线路状态监测,对地铁线路进行动态监测,包括轨道变形、轨道几何、轨道表面状态等,以确保线路的安全性和平稳性。
2.车辆状态监测,对地铁列车进行运行状态监测,包括车体振动、轮轨接触状态、车辆牵引系统状态等,以确保车辆的安全运行。
3.设备状态监测,对地铁运营设备进行状态监测,包括信号系统、通信系统、供电系统等,以确保设备的正常运行和故障预警。
三、监测方法。
1.地铁线路状态监测,采用激光测距仪、高精度测量仪等设备,对地铁线路进行定期测量和检测,获取线路的几何参数和表面状态数据。
2.车辆状态监测,采用加速度传感器、应变传感器等设备,对地铁列车进行振动监测和轮轨接触状态检测,获取车辆运行状态数据。
3.设备状态监测,采用远程监测系统、故障预警系统等设备,对地铁运营设备进行状态监测和故障预警,及时发现并处理设备异常情况。
四、监测周期。
1.地铁线路状态监测,对地铁线路进行定期监测,一般每季度进行一次全面检测,每月进行一次简要检测。
2.车辆状态监测,对地铁列车进行定期监测,一般每月进行一次全面检测,每周进行一次简要检测。
3.设备状态监测,对地铁运营设备进行定期监测,一般每周进行一次全面检测,每日进行一次简要检测。
五、监测结果处理。
1.地铁线路状态监测结果,根据监测数据,进行线路状态评估,及时发现并处理线路异常情况,确保线路的安全和平稳运行。
2.车辆状态监测结果,根据监测数据,进行车辆状态评估,及时发现并处理车辆异常情况,确保车辆的安全运行。
3.设备状态监测结果,根据监测数据,进行设备状态评估,及时发现并处理设备异常情况,确保设备的正常运行和故障预警。
六、监测实施方案的意义。
地铁监测实施方案模板

地铁监测实施方案模板一、背景介绍。
地铁作为城市交通的重要组成部分,其安全运行对城市的发展至关重要。
为了保障地铁线路的安全运行,需要对地铁进行定期监测和检测,及时发现和解决潜在问题。
因此,制定地铁监测实施方案至关重要。
二、监测目的。
1. 确保地铁线路的安全运行;2. 及时发现和解决地铁线路存在的问题;3. 为地铁线路的维护和保养提供数据支持。
三、监测内容。
1. 轨道及道岔的检测,包括轨道的平整度、轨道的几何参数、道岔的运行情况等;2. 车辆设备的检测,包括列车的车体、车轮、车门等设备的运行情况;3. 信号系统的检测,包括信号设备的运行情况、信号系统的联锁检测等;4. 供电系统的检测,包括牵引供电系统、辅助供电系统的运行情况;5. 站场设施的检测,包括站台、站房、站台屏蔽门等设施的运行情况。
四、监测方法。
1. 采用现场检测和在线监测相结合的方式,对地铁线路进行全面监测;2. 利用先进的监测设备,对地铁线路进行高精度、高效率的监测;3. 结合数据分析和专业评估,对监测数据进行综合分析和评估。
五、监测周期。
1. 对于地铁新建线路,需在开通前进行全面监测;2. 对于已运营的地铁线路,需按照规定周期进行定期监测;3. 对于地铁线路出现异常情况时,需进行临时监测。
六、监测报告。
1. 对监测数据进行分析和评估,形成监测报告;2. 监测报告应包括监测数据、问题分析、解决方案等内容;3. 监测报告需及时提交相关部门,以供决策参考。
七、监测责任。
1. 地铁运营单位需建立健全监测责任制度,明确监测工作的责任人;2. 监测人员需具备专业的监测技术和丰富的实践经验;3. 监测单位需定期对监测人员进行培训和考核,确保监测工作的质量和效果。
八、监测保障。
1. 地铁监测工作需充分利用先进的监测设备和技术;2. 监测单位需建立健全的监测管理体系,确保监测工作的顺利进行;3. 监测单位需配备专业的监测人员和技术支持,确保监测工作的准确性和及时性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第i量测段的相对倾角
增量值。
n
0 Li sin i (2) i 1
图2 测斜仪量测原理图
2)测点布置
桩墙测斜监测点一般布置在维护结构的各边跨跨中,对 于较短的边线也可不布设,而对于较大的边线可增至 2~3个。据此,在森林公园南站各长边选定3个护坡桩作 为监测对象,各短边选定1个护坡桩作为监测对象,共8 个测点(见图3),以了解基坑不同侧壁的侧向变形情 况。
岩土概况
本工程场地位于永定河冲洪积扇的北部边缘 地带,由于人类活动原始地貌形态已人为改观, 地势较平坦。开挖层主要由:人工堆积层和第 四纪冲洪积层构成。人工堆积土层主要为近期 人工粉土填土和房渣土。第四纪冲洪积层主要 由粉土、粉质粘土、粘土、粉细砂、卵石、中 粗砂等土层构成,为中高压缩性土层。基坑持 力层位于:粉土、粉质粘土、粉细砂土层上。
平位移 形
力
力降
监控极 限值
1000mm
<500mm/ 天
4 . 5%H
(H:基 坑开挖 深度)
80mm
钢筋抗拉强度/实
测应力
>0.8
设计轴力/实
测轴力
>0.8
60mm
预警值
报警值: 80%的监控极限值
3.3监测实施
具体监测项目的实施过程包括: 1)仪器选择 2)测点布置 3)测试方法 4)数据处理
5)数据处理
每次测量数据得到钢筋应力值,并汇总 成护坡桩钢筋应力变化曲线。
3.3.3边坡土体顶部水平位移及桩顶位移
1)监测仪器
选用高精度经纬仪。在进行测点布置时, 首先应该选择一个基准点,基准点的选 择可通过国家或地区控制坐标进行放样。 一般通过选择两个控制点,通过三角放 样方法确定三个监测基准点(以防止监 测过程中基准点失效)。基准点一般应 选在距离基坑大约3∼5倍的基坑深度。
2工程概况
2.1 工程概况 工程建设概况 工程围护概况
2.2 工程地质条件 岩土概况 水文概况
2.1 工程概况
工程建设概况
场区地下布置有电缆、光缆、 热力管线及各种管道和管沟, 其它部位较平坦,无障碍物。 车站为地下二层三跨岛式站 台,主体结构呈南北走向。
主体结构南北长179.40m,其中南段长约 57.60m,宽33.00m(即本文提到的森林公 园南站);中间段长为57.40m,宽为 23.10m;北段长约65.40m,宽42.70m。
3 监测方案设计
3.1监测任务 3.2监测项目及控制标准 3.3监测方法 3.4 监测信息反馈程序
3.1监测任务
深基坑工程中,为达到施工安全、稳步推进的目 的,除了采用更为安全、详尽的设计、预估及更 先进的施工方法之外,另一个必不可少的工作就 是要进行严密的现场监测。通过对测量得到的监 测数据进行分析,将信息反馈到施工中,与工程 安全标准及允许变形对比得出分析结果,为验证、 修改施工方案提供可靠依据,最终达到使工程安 全、稳步推进的目的。这就是监测工作的根本任 务。
3.3.5钢支撑轴力
1)仪器设备
采用钢弦式轴力计 (如图)
钢弦式轴力计
2)测点布置
在森林公园站基坑的两道钢支撑上布置监测点,测点布置如图
第一层钢支撑监测点布置
第二层钢支撑监测点布置
3)传感器安装
在钢支撑的一端安装钢弦式轴力计监测支撑轴力,在监 测断面处每道支撑各安装一个,轴力计安装在钢支撑管 与围护墙间(轴力计安装见下图)。轴力计的量程需要 满足设计轴力的要求。在需要埋设轴力计的钢支撑架设 前,将轴力计焊接在支撑的非 加力端的中心,在轴 力计与钢围檩、钢支 撑之间要垫设钢板, 以免轴力过大使围檩 变形,导致支撑失去 作用。
3.3.2 护坡桩桩身内力监测
1)仪器设备
采用JXG-1型钢弦式钢筋应力传感器,SS- II型频 率计数器。
钢弦式钢筋应力传感器
SS-II型频率计数器
2)测点布置
一般布置在维护结构的各边跨跨中,对于较短的边线 也可不布设,而对于较大的边线可增至2~3个。森林 公园站布置8个监测点,一个监测点6个钢筋计,共48 个钢筋计(测点布置见下图)。
森林公园站基坑平面示意图
工程围护概况
森林公园南站基坑开挖采用二级放坡,土钉墙 和喷射混凝土支护,第三级为垂直开挖,采用 钻孔灌注桩和钢支撑的防护形式,桩间土的支 护形式采用土工格栅和喷射混凝土。在冠梁上 架设第一道钢支撑,开挖基坑至第二道钢支撑 中心标高下0.5m处,架设钢围檩及第二道钢支 撑。
2.2工程地质条件
水文概况
场地地下水埋深3.50m-36.90m,场地含 水层大致可划分为四层:第一层,粉土 层及粉细砂层的上层滞水;第二层,粉 质粘土层、粉土及粉细砂层的潜水层; 第三层,粉土层、细中砂层、卵石层、 中粗砂层和粉细砂层的承压水层;第四 层,细中砂层和粉细砂层承压水层。在 开挖基坑时,主要受第一、第二层含水 层影响。
城市地铁车站深基坑施工 监测方案设计研究
西安科技大学
城市地铁车站深基坑施工 监测方案设计研究
1 概述
2 工程概况
3 监测方案设计
4 结语
1 概述
国内地铁车站基坑工程现状与前景 地铁车站基坑工程建设面临的问题 地铁车站基坑工程中监测的重要性
国内地铁基坑工程现状与前景
20世纪80年代以来,我国城市地铁建设发展迅速, 已建成地铁的城市有北京、天津、上海、广州 、南京 等,同时,重庆、武汉、长春、沈阳、大连、杭州、 成都、西安等城市都在积极申报或者已经开始建设地 铁。
4)测试方法
支撑加力后,即可进行监测。监测频率 为:从设置钢支撑到拆除,每天观测一 次。
3.4 监测信息反馈程序
完整的信息反馈系统对于保证监测数据 的合理有效利用,为施工方案的调整提 供可靠依据具有重要意义。具体监测信 息反馈流程如下图所示:
施工 施工监测 反馈分析
预测变形量
采取技术措施
与基准值比较 调整施工参数
情况
5
钢支撑轴力
支撑轴力计
掌握开挖过程中随着深度的变化,钢 支撑的受力情况
6 边坡土体顶部水 高精度经纬仪 掌握结构施工过程中,外侧土体移动
平位移
情况
7
基坑内外观察
现场人工观测 掌握开挖过程中土体顶部及桩体顶部
的水平位移及其影响
表2监测项目控制表
项目 基坑水位 桩顶水 桩体变 桩内钢筋应 钢支撑轴 地表沉
3)传感器安装
在每根桩的桩顶、桩中、柱底布置三对钢筋应 力计,分两排,一排在基坑临空面一侧,另一 排在桩后土体一侧。钢筋计连接杆与钢筋笼钢 筋应进行绑焊,绑条钢筋直径为φ16或φ18, 长20cm,采用双面焊,要求焊缝必须饱满, 焊条强度应接近连接杆与钢筋笼主筋强度,焊 接完成后,连接杆再与传感器螺栓连接,要求
车站深基坑工程面临的问题
地铁车站基坑规模通常宏大
地铁车站周边环境异常复杂
北京地铁十号线基坑坍塌现场
地铁车站基坑工程中监测的重要性
监测已经成为地铁车站基坑施工中重要环节之一,基坑工程 现场监测的重要性主要体现在:(1)为施筑开展提供及时的反馈信息; (2)作为设计与施工的重要补充手段 ;(3)作为施工开挖方 案修改的依据;(4)积累经验以提高基坑工程的设计和施工水 平。随着现代工程施工环境的不断复杂化,地铁车站必须采用 信息化施工。要实现信息化施工,首要的任务就是做好监测工 作,它可为信息化施工提供重要依据。可见,开展复杂环境下 地铁车站深基坑施工现场监测设计与实践研究对指导施工意义 重大,合理的监测方案设计是至关重要的一环。本文结合北京 地铁奥运支线森林公园车站南站深基坑具体情况完成了其监测 方案的设计研究。
图3 桩墙测斜监测点布置示意图
3)导管埋设
在测管位置所对应护坡桩钢筋笼吊装前, 将导管固定在该钢筋笼上,导管底部与 钢筋底部齐平,顶部高出地面40cm。导 管和钢筋笼一起吊装就位,然后浇注混 凝土,待混凝土凝固后导管与护坡桩桩 体共同变形。
测斜管绑扎
测斜管位置图
4)测试方法
在护坡桩帽梁施工完成后,土方开挖前,将测斜探头 放入导管,每1.0m作为一个采样点,采集导管各点的 初始数据,并根据施工进度,对各点的数值进行采集。 测量时,将滚轮卡在导槽上,缓慢下至孔底,测量自 孔底开始,自下而上沿导槽全长每隔1.0m测读一次, 每次测量时,应将测头稳定在某一位置上。测量完毕 后,将测头旋转插入同一对导槽,按以上方法重复测 量。两次测量的各测点应在同一位置上,此时各测点 的两个读数应是数值接近、符号相反。如果测量数据 有较大差异,应及时复测。监测从基坑开挖到主体结 构施工到±0.0标高的全过程;监测频率:每天一次。
西安地铁
开工典礼
施工现场
成都地铁
成都地铁规划
成都某地铁车站施工现场
杭州地铁
杭州地铁规划
开工典礼
车站深基坑工程面临的问题
由于地铁车站一般位于城市的繁华路段,车站附近建筑物密 集,地铁车站深基坑平面尺寸和开挖深度(一般为17米左右)的 增大带来一系列复杂的问题,如:基坑围护结构的变形和稳定、 施工中对相邻环境、地下管线、地面交通所带来的影响等问题得 到地铁建设及设计单位的广泛关注。而这些问题甚至有可能引发 安全事故。
2)测点布置
在边坡土体顶部(或桩顶部)每隔15m选 定一个测点,埋设坐标点,待混凝土凝 固后可与土坡(或桩顶)共同变形。
3)测定方法
采用平面导线测量,以基点1为坐标原点,通过测量距 离与方位角,求出各点位的坐标,平差后推算得到桩 顶水平位移值(如图所示)。在开挖前采集坐标点初 始值,开挖全过程监测,每两天观测一次 。
变位后的测点1 变位后的测点 2
变位后的测点3
基点1
测点1
测点2
测点3
基点2
Hale Waihona Puke 基点3图4 围护桩顶水平位移测试 点布置方法与量测示意图