[中英]建筑结构中英文单词对照

合集下载

建筑结构中英文翻译

建筑结构中英文翻译

Aacceptable quality:合格质量acceptance lot:验收批量aciera:钢材admixture:外加剂against slip coefficient between friction surface of high-strength bolted connection:高强度螺栓摩擦面抗滑移系数aggregate:骨料air content:含气量air-dried timber:气干材allowable ratio of height to sectional thickness of masonry wall or column:砌体墙、柱容许高厚比allowable slenderness ratio of steel member:钢构件容许长细比allowable slenderness ratio of timber compression member:受压木构件容许长细比allowable stress range of fatigue:疲劳容许应力幅allowable ultimate tensile strain of reinforcement:钢筋拉应变限值allowable value of crack width:裂缝宽度容许值allowable value of deflection of structural member:构件挠度容许值allowable value of deflection of timber bending member:受弯木构件挠度容许值allowable value of deformation of steel member:钢构件变形容许值allowable value of deformation of structural member:构件变形容许值 allowable value of drift angle of earthquake resistantstructure:抗震结构层间位移角限值amplified coefficient of eccentricity:偏心距增大系数anchorage:锚具anchorage length of steel bar:钢筋锚固长度approval analysis during construction stage:施工阶段验算arch:拱arch with tie rod:拉捍拱arch—shaped roof truss:拱形屋架area of shear plane:剪面面积area of transformed section:换算截面面积aseismic design:建筑抗震设计assembled monolithic concrete structure:装配整体式混凝土结构automatic welding:自动焊接auxiliary steel bar:架立钢筋Bbackfilling plate:垫板balanced depth of compression zone:界限受压区高度balanced eccentricity:界限偏心距bar splice:钢筋接头bark pocket:夹皮batten plate:缀板beam:次梁bearing plane of notch:齿承压面(67)bearing plate:支承板(52)bearing stiffener:支承加劲肋(52)bent-up steel bar:弯起钢筋(35)block:砌块(43)block masonry:砌块砌体(44)block masonry structure:砌块砌体结构(41)blow hole:气孔(62)board:板材(65)bolt:螺栓(54)bolted connection:(钢结构)螺栓连接(59)bolted joint:(木结构)螺栓连接(69)bolted steel structure:螺栓连接钢结构(50)bonded prestressed concrete structure:有粘结预应力混凝土结构(24)bow:顺弯(71)brake member:制动构件(7)breadth of wall between windows:窗间墙宽度(46)brick masonry:砖砌体(44)brick masonry column:砖砌体柱(42)brick masonry structure:砖砌体结构(41)brick masonry wall:砖砌体墙(42)broad—leaved wood:阔叶树材(65)building structural materials:建筑结构材料(17)building structural unit:建筑结构单元(building structure:建筑结构(2built—up steel column:格构式钢柱(51bundled tube structure:成束筒结构(3burn—through:烧穿(62butt connection:对接(59butt joint:对接(70)butt weld:对接焊缝(60)Ccalculating area of compression member:受压构件计算面积(67)calculating overturning point:计算倾覆点(46)calculation of load-carrying capacity of member:构件承载能力计算(10)camber of structural member:结构构件起拱(22)cantilever beam :挑梁(42)cap of reinforced concrete column:钢筋混凝土柱帽(27)carbonation of concrete:混凝土碳化(30)cast-in—situ concrete slab column structure :现浇板柱结构cast-in—situ concrete structure:现浇混凝土结构(25)cavitation:孔洞(39)cavity wall:空斗墙(42)cement:水泥(27)cement content:水泥含量(38)cement mortar:水泥砂浆(43)characteriseic value of live load on floor or roof:楼面、屋面活荷载标准值(14)characteristi cvalue o fwindload:风荷载标准值(16)characteristic value of concrete compressivestrength:混凝土轴心抗压强度标准值(30)characteristic value of concrete tensile strength:混凝土轴心抗拉标准值(30)characteristic value of cubic concrete compressivestrength:混凝土立方体抗压强度标准值(29)characteristic value of earthquake action:地震作用标准值(16)characteristic value of horizontal crane load:吊车水平荷载标准值(15) characteristic value of masonry strength:砌体强度标准值(44)characteristic value of permanent action·:永久作用标准值(14)characteristic value of snowload:雪荷载标准值(15)characteristic value of strength of steel:钢材强度标准值(55)characteristic value of strength of steel bar:钢筋强度标准值(31)characteristic value of uniformly distributed live load:均布活标载标准值(14)characteristic value of variable action:可变作用标准值(14)characteristic value of vertical crane load:吊车竖向荷载标准值(15) charaeteristic value of material strength:材料强度标准值(18)checking section of log structural member·,:原木构件计算截面(67)chimney:烟囱(3)circular double—layer suspended cable:圆形双层悬索(6)circular single—layer suspended cable:圆形单层悬索(6)circumferential weld:环形焊缝(60)classfication for earthquake—resistance of buildings·:建筑结构抗震设防类别(9)clear height:净高(21)clincher:扒钉(?0)coefficient of equivalent bending moment of eccentrically loadedsteel memher(beam-column) :钢压弯构件等效弯矩系数(58)cold bend inspection of steelbar:冷弯试验(39)cold drawn bar:冷拉钢筋(28)cold drawn wire:冷拉钢丝(29)cold—formed thin—walled sectionsteel:冷弯薄壁型钢(53)cold-formed thin-walled steel structure·‘:冷弯薄壁型钢结构(50)cold—rolled deformed bar:冷轧带肋钢筋(28)column bracing:柱间支撑(7)combination value of live load on floor or roof:楼面、屋面活荷载组合值(15)compaction:密实度(37)compliance control:合格控制(23)composite brick masonry member:组合砖砌体构件(42)composite floor system:组合楼盖(8)composite floor with profiled steel sheet:压型钢板楼板(8)composite mortar:混合砂浆(43)composite roof truss:组合屋架(8)compostle member:组合构件(8)compound stirrup:复合箍筋(36)compression member with large eccentricity·:大偏心受压构件(32)compression member with small eccentricity·:小偏心受压构件(32)compressive strength at an angle with slope of grain:斜纹承压强度(66) compressive strength perpendicular to grain:横纹承压强度(66)concentration of plastic deformation:塑性变形集中(9)conceptual earthquake—resistant design:建筑抗震概念设计(9)concrete:混凝土(17)concrete column:混凝土柱(26)concrete consistence:混凝土稠度(37)concrete floded—plate structure:混凝土折板结构(26)concrete foundation:混凝土基础(27)concrete mix ratio:混凝土配合比(38)concrete wall:混凝土墙(27)concrete-filled steel tubular member:钢管混凝土构件(8)conifer:针叶树材(65)coniferous wood:针叶树材(65)connecting plate:连接板(52)connection:连接(21)connections of steel structure:钢结构连接(59)connections of timber structure:木结构连接(68)consistency of mortar:砂浆稠度(48)constant cross—section column:等截面柱(7)construction and examination concentrated load:施工和检修集中荷载(15) continuous weld:连续焊缝(60)core area of section:截面核芯面积(33)core tube supported structure:核心筒悬挂结构(3)corrosion of steel bar:钢筋锈蚀(39)coupled wall:连肢墙(12)coupler:连接器(37)coupling wall—beam :连梁(12)coupling wall—column...:墙肢(12)coursing degree of mortar:砂浆分层度(48)cover plate:盖板(52)covered electrode:焊条(54)crack:裂缝(?0)crack resistance:抗裂度(31)crack width:裂缝宽度(31)crane girder:吊车梁(?)crane load:吊车荷载(15)creep of concrete:混凝土徐变(30)crook:横弯(71)cross beam:井字梁(6)cup:翘弯curved support:弧形支座(51)cylindrical brick arch:砖筒拱(43)Ddecay:腐朽(71)decay prevention of timber structure:木结构防腐(70)defect in timber:木材缺陷(70)deformation analysis:变形验算(10)degree of gravity vertical for structure or structuralmember·:结构构件垂直度(40)degree of gravity vertical forwall surface:墙面垂直度(49)degree of plainness for structural memer:构件平整度(40)degree of plainness for wall surface:墙面平整度(49)depth of compression zone:受压区高度(32)depth of neutral axis:中和轴高度(32)depth of notch:齿深(67)design of building structures:建筑结构设计(8)design value of earthquake-resistant strength ofmaterials:材料抗震强度设计值(1design value of load—carrying capacity of members·:构件承载能力设计值(1designations 0f steel:钢材牌号(53designvalue of material strength:材料强度设计值(1destructive test:破损试验(40detailing reintorcement:构造配筋(35detailing requirements:构造要求(22diamonding:菱形变形(71)diaphragm:横隔板(52dimensional errors:尺寸偏差(39)distribution factor of snow pressure:屋面积雪分布系数dogspike:扒钉(70)double component concrete column:双肢柱(26)dowelled joint:销连接(69)down-stayed composite beam:下撑式组合粱(8)ductile frame:延性框架(2)dynamic design:动态设计(8)Eearthquake-resistant design:抗震设计(9:earthquake-resistant detailing requirements:抗震构造要求(22)effective area of fillet weld:角焊缝有效面积(57)effective depth of section:截面有效高度(33)effective diameter of bolt or high-strength bolt·:螺栓(或高强度螺栓)有效直径(57)effective height:计算高度(21)effective length:计算长度(21)effective length of fillet weld:角焊缝有效计算长度(48)effective length of nail:钉有效长度(56)effective span:计算跨度(21)effective supporting length at end of beam:梁端有效支承长度(46) effective thickness of fillet weld:角焊缝有效厚度(48)elastic analysis scheme:弹性方案(46)elastic foundation beam:弹性地基梁(11)elastic foundation plate:弹性地基板(12)elastically supported continuous girder·:弹性支座连续梁(u)elasticity modulus of materials:材料弹性模量(18)elongation rate:伸长率(15)embeded parts:预埋件(30)enhanced coefficient of local bearing strength ofmaterials·:局部抗压强度提高系数(14)entrapped air:含气量(38)equilibrium moisture content:平衡含水率(66)equivalent slenderness ratio:换算长细比(57)equivalent uniformly distributed live load·:等效均布活荷载(14)etlectlve cross—section area of high-strength bolt·:高强度螺栓的有效截面积(58)ettectlve cross—section area of bolt:螺栓有效截面面积(57)euler’s critical load:欧拉临界力(56)euler’s critical stress:欧拉临界应力(56)excessive penetration:塌陷(62)Ffiber concrete:纤维混凝仁(28)filler plate:填板门2)fillet weld:角焊缝(61)final setting time:终凝时间()finger joint:指接(69)fired common brick:烧结普通砖(43)fish eye:白点(62)fish—belly beam:角腹式梁(7)fissure:裂缝(?0)flexible connection:柔性连接(22)flexural rigidity of section:截面弯曲刚度(19)flexural stiffness of member:构件抗弯刚度(20)floor plate:楼板(6)floor system:楼盖(6)four sides(edges)supported plate:四边支承板(12)frame structure:框架结构(2)frame tube structure:单框筒结构(3)frame tube structure:框架—简体结构(2)frame with sidesway:有侧移框架(12)frame without sidesway:无侧移框架(12)frange plate:翼缘板(52)friction coefficient of masonry:砌体摩擦系数(44) full degree of mortar at bed joint:砂浆饱满度(48) function of acceptance:验收函数(23)Ggang nail plate joint:钉板连接()glue used for structural timberg:木结构用胶glued joint:胶合接头glued laminated timber:层板胶合木(¨)glued laminated timber structure:层板胶合结构‘61) grider:主梁((㈠grip:夹具grith weld:环形焊缝(6÷))groove:坡口gusset plate:节点板(52)Hhanger:吊环hanging steel bar:吊筋heartwood :心材heat tempering bar:热处理钢筋(28)height variation factor of wind pressure:风压高度变化系数(16) heliral weld:螺旋形僻缝high—strength bolt:高强度螺栓high—strength bolt with large hexagon bea:大六角头高强度螺栓high—strength bolted bearing type join:承压型高强度螺栓连接, high—strength bolted connection:高强度螺栓连接high—strength bolted friction—type joint:摩擦型高强度螺栓连接 high—strength holted steel slsteel structure:高强螺栓连接钢结构 hinge support:铰轴支座(51)hinged connection:铰接(21)hlngeless arch:无铰拱(12)hollow brick:空心砖(43)hollow ratio of masonry unit:块体空心率(46)honeycomb:蜂窝(39)hook:弯钩(37)hoop:箍筋(36)hot—rolled deformed bar:热轧带肋钢筋(28)hot—rolled plain bar:热轧光圆钢筋(28)hot-rolled section steel:热轧型钢(53)hunched beam:加腋梁(?)Iimpact toughness:冲击韧性(18)impermeability:抗渗性(38)inclined section:斜截面(33)inclined stirrup:斜向箍筋(36)incomplete penetration:未焊透(61)incomplete tusion:未溶合(61)incompletely filled groove:未焊满(61)indented wire:刻痕钢丝(29)influence coefficient for load—bearing capacity of compression member:受压构件承载能力影响系数(46)influence coefficient for spacial action :空间性能影响系数(46) initial control:初步控制(22)insect prevention of timber structure:木结构防虫(?o)inspection for properties of glue used in structuralmember:结构用胶性能检验(71)inspection for properties of masnory units:块体性能检验(48)inspection for properties of mortar:砂浆性能检验(48)inspection for properties of steelbar:钢筋性能检验(39)integral prefabricated prestressed concrete slab—columnstructure:整体预应力板柱结构(25)intermediate stiffener:中间加劲肋(53)intermittent weld:断续焊缝(60)Jjoint of reinforcement:钢筋接头(35)Kkey joint:键连接(69)kinetic design:动态设计(8)knot:节子(木节)(70)Llaced of battened compression member:格构式钢柱(51)lacing and batten elements:缀材(缀件)(51)lacing bar:缀条(51)lamellar tearing:层状撕裂(62)lap connectlon:叠接(搭接)(59)lapped length of steel bar:钢筋搭接长度(36)large pannel concrete structure:混凝土大板结构(25)large-form cocrete structure:大模板结构(26)lateral bending:侧向弯曲(40)lateral displacement stiffness of storey:楼层侧移刚度(20)lateral displacement stiffness of structure·:结构侧移刚度(20)lateral force resistant wallstructure:抗侧力墙体结构(12)leg size of fillet weld:角焊缝焊脚尺寸(57)length of shear plane:剪面长度(67)lift—slab structure:升板结构(25)light weight aggregate concrete:轻骨料混凝土(28)limit of acceptance:验收界限(23)limitimg value for local dimension of masonrystructure·:砌体结构局部尺寸限值(47)limiting value for sectional dimension:截面尺寸限值(47)limiting value for supporting length:支承长度限值(47)limiting value for total height of masonry structure·:砌体结构总高度限值(47)linear expansion coeffcient:线膨胀系数(18)lintel:过梁(7)load bearing wall:承重墙(7)load-carrying capacity per bolt:单个普通螺栓承载能力(56)load—carrying capacity per high—strength holt:单个高强螺桂承载能力(56)load—carrying capacity per rivet:单个铆钉承载能力(55)log:原木(65)log timberstructure:原木结构(64)long term rigidity of member:构件长期刚度(32)longitude horizontal bracing:纵向水平支撑(5)longitudinal steel bar:纵向钢筋(35)longitudinal stiffener:纵向加劲肋(53)longitudinal weld:纵向焊缝(60)losses of prestress:‘预应力损失(33)lump material:块体(42)Mmain axis:强轴(56)main beam·:主梁(6)major axis:强轴(56)manual welding:手工焊接(59)manufacture control:生产控制(22)map cracking:龟裂(39)masonry:砌体(17)masonry lintel:砖过梁(43)masonry member:无筋砌体构件(41)masonry units:块体(43)masonry—concrete structure:砖混结构(¨)masonry—timber structure:砖木结构(11)mechanical properties of materials·:材料力学性能(17)melt—thru:烧穿(62)method of sampling:抽样方法(23)minimum strength class of masonry:砌体材料最低强度等级(47)minor axls·:弱轴(56)mix ratio of mortar:砂浆配合比(48)mixing water:拌合水(27)modified coefficient for allowable ratio of height tosectionalthickness of masonry wall :砌体墙容许高厚比修正系数(47) modified coefficient of flexural strength for timber curvedmem—:弧形木构件抗弯强度修正系数(68)modulus of elasticity of concrete:混凝土弹性模量(30)modulus of elasticity parellel to grain:顺纹弹性模量(66)moisture content:含水率(66)moment modified factor:弯矩调幅系数monitor frame:天窗架mortar:砂浆multi—defence system of earthquake—resistant building·:多道设防抗震建筑multi—tube supported suspended structure:多筒悬挂结构Nnailed joint:钉连接,net height:净高lnet water/cementratio:净水灰比non-destructive inspection of weld:焊缝无损检验non-destructive test:非破损检验non-load—bearingwall:非承重墙non—uniform cross—section beam:变截面粱non—uniformly distributed strain coefficient of longitudinal tensile reinforcement:纵向受拉钢筋应变不均匀系数normal concrete:普通混凝土normal section:正截面notch and tooth joint:齿连接number of sampling:抽样数量Oobligue section:斜截面oblique—angle fillet weld:斜角角焊缝one—way reinforced(or prestressed)concrete slab‘‘:单向板open web roof truss:空腹屋架,ordinary concrete:普通混凝土(28)ordinary steel bar:普通钢筋(29)orthogonal fillet weld:直角角焊缝(61)outstanding width of flange:翼缘板外伸宽度(57)outstanding width of stiffener:加劲肋外伸宽度(57)over-all stability reduction coefficient of steel beam·:钢梁整体稳定系数(58)overlap:焊瘤(62)overturning or slip resistance analysis :抗倾覆、滑移验算(10)Ppadding plate:垫板(52)partial penetrated butt weld:不焊透对接焊缝(61)partition:非承重墙(7)penetrated butt weld:透焊对接焊缝(60)percentage of reinforcement:配筋率(34)perforated brick:多孔砖(43)pilastered wall:带壁柱墙(42)pit·:凹坑(62)pith:髓心(?o)plain concrete structure:素混凝土结构(24)plane hypothesis:平截面假定(32)plane structure:平面结构(11)plane trussed lattice grids:平面桁架系网架(5)plastic adaption coefficient of cross—section:截面塑性发展系数(58) plastic design of steel structure:钢结构塑性设计(56)plastic hinge·:塑性铰(13)plastlcity coefficient of reinforced concrete member in tensilezone:受拉区混凝土塑性影响系数(34)plate—like space frame:干板型网架(5)plate—like space truss:平板型网架(5)plug weld:塞焊缝(60)plywood:胶合板(65)plywood structure:胶合板结构(64)pockmark:麻面(39)polygonal top-chord roof truss:多边形屋架(4)post—tensioned prestressed concrete structure:后张法预应力混凝土结构(24)precast reinforced concrete member:预制混凝土构件(26)prefabricated concrete structure:装配式混凝土结构(25)presetting time:初凝时间(38)prestressed concrete structure:预应力混凝土结构(24)prestressed steel structure:预应力钢结构(50)prestressed tendon:预应力筋<29)pre—tensioned prestressed concrete structure·:先张法预应力混凝土结构(24)primary control:初步控制(22)production control:生产控制(22)properties of fresh concrete:可塑混凝土性能(37)properties of hardened concrete:硬化混凝土性能(38)property of building structural materials:建筑结构材料性能(17)purlin“—””—:檩条(4)Qqlue timber structurer:胶合木结构(㈠)quality grade of structural timber:木材质量等级(?0)quality grade of weld:焊缝质量级别(61)quality inspection of bolted connection:螺栓连接质量检验(63)quality inspection of masonry:砌体质量检验(48)quality inspection of riveted connection:铆钉连接质量检验(63)quasi—permanent value of live load on floor orroof,:楼面、屋面活荷载准永久值(15)Rradial check:辐裂(70)ratio of axial compressive force to axial compressive ultimatecapacity of section:轴压比(35)ratio of height to sectional thickness of wall orcolumn:砌体墙柱高、厚比(48)ratio of reinforcement:配筋率(34)ratio of shear span to effective depth of section:剪跨比(35)redistribution of internal force:内力重分布(13)reducing coefficient of compressive strength in sloping grain for bolted connection:螺栓连接斜纹承压强度降低系数(68)reducing coefficient of liveload:活荷载折减系数(14)reducing coefficient of shearing strength for notch and toothconnection:齿连接抗剪强度降低系数(68)regular earthquake—resistant building:规则抗震建筑(9)reinforced concrete deep beam:混凝土深梁(26)reinforced concrete slender beam:混凝土浅梁(26)reinforced concrete structure:钢筋混凝土结构(24)reinforced masonry structure:配筋砌体结构(41)reinforcement ratio:配筋率(34)reinforcement ratio per unit volume:体积配筋率(35)relaxation of prestressed tendon:预应筋松弛(31)representative value of gravity load:重力荷载代表值(17)resistance to abrasion:耐磨性(38)resistance to freezing and thawing:抗冻融性(39)resistance to water penetration·:抗渗性(38)reveal of reinforcement:露筋(39)right—angle filletweld:直角角焊缝(61)rigid analysis scheme:刚性方案(45)rigid connection:刚接(21)rigid transverse wall:刚性横墙(42)rigid zone:刚域(13)rigid-elastic analysis scheme:刚弹性方案(45)rigidity of section:截面刚度(19)rigidly supported continous girder:刚性支座连续梁(11)ring beam:圈梁(42)rivet:铆钉(55)riveted connecction:铆钉连接(60)riveted steel beam:铆接钢梁(52)riveted steel girder:铆接钢梁(52)riveted steel structure:铆接钢结构(50)rolle rsupport:滚轴支座(51)rolled steel beam:轧制型钢梁(51)roof board:屋面板(3)roof bracing system:屋架支撑系统(4)roof girder:屋面梁(4)roof plate:屋面板(3)roof slab:屋面板(3)roof system:屋盖(3)roof truss:屋架(4)rot:腐朽(71)round wire:光圆钢丝(29)Ssafety classes of building structures:建筑结构安全等级(9)safetybolt:保险螺栓(69)sapwood:边材(65)sawn lumber+A610:方木(65)sawn timber structure:方木结构(64)saw-tooth joint failure:齿缝破坏(45)scarf joint:斜搭接(70)seamless steel pipe:无缝钢管(54)seamless steel tube:无缝钢管(54)second moment of area of tranformed section:换算截面惯性矩(34) second order effect due to displacement:挠曲二阶效应(13)secondary axis:弱轴(56)secondary beam:次粱(6)section modulus of transformed section:换算截面模量(34)section steel:型钢(53)semi-automatic welding:半自动焊接(59)separated steel column:分离式钢柱(51)setting time:凝结时间(38)shake:环裂(70)shaped steel:型钢(53)shapefactorofwindload:风荷载体型系数(16)shear plane:剪面(67)shearing rigidity of section:截面剪变刚度(19)shearing stiffness of member:构件抗剪刚度(20)short stiffener:短加劲肋(53)short term rigidity of member:构件短期刚度(31)shrinkage:干缩(71)shrinkage of concrete:混凝干收缩(30)silos:贮仓(3)skylight truss:天窗架(4)slab:楼板(6)slab—column structure:板柱结构(2)slag inclusion:夹渣(61)sloping grain:‘斜纹(70)slump:坍落度(37)snow reference pressure:基本雪压(16)solid—web steel column:实腹式钢柱(space structure:空间结构(11)space suspended cable:悬索(5)spacing of bars:钢筋间距(33)spacing of rigid transverse wall:刚性横墙间距(46)spacing of stirrup legs:箍筋肢距(33)spacing of stirrups:箍筋间距(33)specified concrete:特种混凝上(28)spiral stirrup:螺旋箍筋(36)spiral weld:螺旋形焊缝(60)split ringjoint:裂环连接(69)square pyramid space grids:四角锥体网架(5)stability calculation:稳定计算(10)stability reduction coefficient of axially loadedcompression:轴心受压构件稳定系数<13)stair:楼梯(8)static analysis scheme of building:房屋静力汁算方案(45)static design:房屋静力汁算方案(45)statically determinate structure:静定结构(11)statically indeterminate structure:超静定结构(11)sted:钢材(17)steel bar:钢筋(28)steel column component:钢柱分肢(51)steel columnbase:钢柱脚(51)steel fiber reinforced concrete structure·:钢纤维混凝土结构(26)steel hanger:吊筋(37)steel mesh reinforced brick masonry member:方格网配筋砖砌体构件(41) steel pipe:钢管(54)steel plate:钢板(53)steel plateelement:钢板件(52)steel strip:钢带(53)steel support:钢支座(51)steel tie:拉结钢筋(36)steel tie bar for masonry:砌体拉结钢筋(47)steel tube:钢管(54)steel tubular structure:钢管结构(50)steel wire:钢丝(28)stepped column:阶形柱(7)stiffener:加劲肋(52)stiffness of structural member:构件刚度(19)stiffness of transverse wall:横墙刚度(45)stirrup:箍筋(36)stone:石材(44)stone masonry:石砌体(44)stone masonry structure:石砌体结构(41)storev height:层高(21)straight—line joint failure:通缝破坏(45)straightness of structural member:构件乎直度(71)strand:钢绞线(2,)strength classes of masonry units:块体强度等级(44)strength classes of mortar:砂浆强度等级(44)strength classes of structural steel:钢材强度等级(55)strength classes of structural timber:木材强度等级(66)strength classes(grades) of concrete:混凝土强度等级(29)strength classes(grades) of prestressed tendon:预应力筋强度等级(30) strength classes(grades) of steel bar :普通钢筋强度等级(30)strength of structural timber parallel to grain:木材顺纹强度(66)strongaxis:强轴(56)structural system composed of bar:”杆系结构(11)structural system composed of plate:板系结构(12)structural wall:结构墙(7)superposed reinforced concrete flexural member:叠合式混凝土受弯构件(26)suspended crossed cable net:双向正交索网结构(6)suspended structure:悬挂结构(3)swirl grain:涡纹(?1)Ttensile(compressive) rigidity of section:截面拉伸(压缩)刚度(19)tensile(compressive) stiffness of member:构件抗拉(抗压)刚度(20)tensile(ultimate) strength of steel:钢材(钢筋)抗拉(极限)强度(18)test for properties of concrete structural members:构件性能检验(40): thickness of concrete cover:混凝土保护层厚度(33)thickness of mortarat bed joint:水平灰缝厚度(49)thin shell:薄壳(6)three hinged arch:三铰拱(n)tie bar:拉结钢筋(36)tie beam,‘:系梁(22)tie tod:系杆(5)tied framework:绑扎骨架(35)timber:木材(17)timber roof truss:木屋架(64)tor-shear type high-strength bolt:扭剪型高强度螺栓(54)torsional rigidity of section:截面扭转刚度(19)torsional stiffness of member:构件抗扭刚度(20)total breadth of structure:结构总宽度(21)total height of structure:结构总高度(21)total length of structure:结构总长度(21)transmission length of prestress:预应力传递长度(36)transverse horizontal bracing:横向水平支撑(4)transverse stiffener·:横向加劲肋(53)transverse weld:横向焊缝(60)transversely distributed steelbar:横向分布钢筋(36)trapezoid roof truss:梯形屋架(4)triangular pyramid space grids:三角锥体网架(5)triangular roof truss:三角形屋架(4)trussed arch:椽架(64)trussed rafter:桁架拱(5)tube in tube structure:筒中筒结构(3)tube structure:简体结构(2)twist:扭弯(71)two hinged arch:双铰拱(11)two sides(edges) supported plate:两边支承板(12)two—way reinforced (or prestressed) concrete slab:混凝土双向板(27)Uultimate compressive strain of concrete’”:混凝土极限压应变(31)unbonded prestressed concrete structure:无粘结预应力混凝土结构(25) undercut:咬边(62)uniform cross—section beam:等截面粱(6)unseasoned timber:湿材(65)upper flexible and lower rigid complex multistoreybuilding·:上柔下刚多层房屋(45)upper rigid lower flexible complex multistoreybuilding·:上刚下柔多层房屋(45)Vvalue of decompression prestress :预应力筋消压预应力值(33)value of effective prestress:预应筋有效预应力值(33)verification of serviceability limit states·”:正常使用极限状态验证(10)verification of ultimate limit states :承载能极限状态验证(10)vertical bracing:竖向支撑(5)vierendal roof truss:空腹屋架(4)visual examination of structural member:构件外观检查(39)visual examination of structural steel member:钢构件外观检查(63)visual examination of weld:焊缝外观检查(62)Wwall beam:墙梁(42)wall frame:壁式框架(门)wall—slab structure:墙板结构(2)warping:翘曲(40),(71)warping rigidity of section:截面翘曲刚度(19)water retentivity of mortar:砂浆保水性(48)water tower:水塔(3)water/cement ratio·:水灰比(3g)weak axis·:弱轴(56)weak region of earthquake—resistant building:抗震建筑薄弱部位(9) web plate:腹板(52)weld:焊缝(6[))weld crack:焊接裂纹(62)weld defects:焊接缺陷(61)weld roof:焊根(61)weld toe:焊趾(61)weldability of steel bar:钢筋可焊性(39)welded framework:焊接骨架()welded steel beam:焊接钢梁(welded steel girder:焊接钢梁(52)welded steel pipe:焊接钢管(54)welded steel strueture:焊接钢结构(50)welding connection·:焊缝连接(59)welding flux:焊剂(54)welding rod:焊条(54)welding wire:焊丝(54)wind fluttering factor:风振系数(16)wind reference pressure:基本风压(16)wind—resistant column:抗风柱(?)wood roof decking:屋面木基层(64)Yyield strength (yield point) of steel:钢材(钢筋)屈服强度(屈服点)。

建筑结构设计中英文对照外文翻译文献

建筑结构设计中英文对照外文翻译文献

中英文对照外文翻译(文档含英文原文和中文翻译)Create and comprehensive technology in the structure globaldesign of the buildingThe 21st century will be the era that many kinds of disciplines technology coexists , it will form the enormous motive force of promoting the development of building , the building is more and more important too in global design, the architect must seize the opportunity , give full play to the architect's leading role, preside over every building engineering design well. Building there is the global design concept not new of architectural design,characteristic of it for in an all-round way each element not correlated with building- there aren't external environment condition, building , technical equipment,etc. work in coordination with, and create the premium building with the comprehensive new technology to combine together.The premium building is created, must consider sustainable development , namely future requirement , in other words, how save natural resources as much as possible, how about protect the environment that the mankind depends on for existence, how construct through high-quality between architectural design and building, in order to reduce building equipment use quantity andreduce whole expenses of project.The comprehensive new technology is to give full play to the technological specialty of every discipline , create and use the new technology, and with outside space , dimension of the building , working in coordination with in an all-round way the building component, thus reduce equipment investment and operate the expenses.Each success , building of engineering construction condense collective intelligence and strength; It is intelligence and expectation that an architect pays that the building is created; The engineering design of the building is that architecture , structure , equipment speciality compose hardships and strength happenning; It is the diligent and sweat paid in design and operation , installation , management that the construction work is built up .The initial stage of the 1990s, our understanding that the concept of global design is a bit elementary , conscientious to with making some jobs in engineering design unconsciously , make some harvest. This text Hangzhou city industrial and commercial bank financial comprehensive building and Hangzhou city Bank of Communications financial building two building , group of " scientific and technological progress second prize " speak of from person who obtain emphatically, expound the fact global design - comprehensive technology that building create its , for reach global design outstanding architect in two engineering design, have served as the creator and persons who cooperate while every stage design and even building are built completely.Two projects come into operation for more than 4 years formally , run and coordinate , good wholly , reach the anticipated result, accepted and appreciated by the masses, obtain various kinds of honor .outstanding to design award , progress prize in science and technology , project quality bonus , local top ten view , best model image award ,etc., the ones that do not give to the architect and engineers without one are gratified and proud. The building is created Emphasizing the era for global design of the building, the architects' creation idea and design method should be broken through to some extent, creation inspirations is it set up in analysis , building of global design , synthesize more to burst out and at the foundation that appraise, learn and improve the integration capability exactly designed in building , possess the new knowledge system and thinking method , merge multi-disciplinary technology. We have used the new design idea in above-mentioned projects, have emphasized the globality created in building .Is it is it act as so as to explain to conceive to create two design overview and building of construction work these now.1) The financial comprehensive building of industrial and commercial bank of HangZhou,belong to the comprehensive building, with the whole construction area of 39,000 square meters, main building total height 84, 22, skirt 4 of room, some 6 storeys, 2 storeys of basements.Design overall thinking break through of our country bank building traditional design mode - seal , deep and serious , stern , form first-class function, create of multi-functional type , the style of opening , architecture integrated with the mode of the international commercial bank.The model of the building is free and easy, opened, physique was made up by the hyperboloid, the main building presented " the curved surface surrounded southwards ", skirt room presents " the curved surface surrounded northwards ", the two surround but become intension of " gathering the treasure ".Building flourishing upwards, elevation is it adopt large area solid granite wall to design, the belt aluminium alloy curtain wall of the large area and some glass curtain walls, and interweave the three into powerful and vigorous whole , chase through model and entity wall layer bring together , form concise , tall and straight , upward tendency of working up successively, have distinct and unique distinctions.Building level and indoor space are designed into a multi-functional type and style of opening, opening, negotiate , the official working , meeting , receiving , be healthy and blissful , visit combining together. Spacious and bright two storeys open in the hall unifiedly in the Italian marble pale yellow tone , in addition, the escalator , fountain , light set off, make the space seem very magnificent , graceful and sincere. Intelligent computer network center, getting open and intelligent to handle official business space and all related house distribute in all floor reasonably. Top floor round visit layer, lift all of Room visit layer , can have a panoramic view of the scenery of the West Lake , fully enjoy the warmth of the nature. 2) The financial building of Bank of Communications of Hangzhou, belong to the purely financial office block, with the whole construction area of 19,000 square meters, the total height of the building is 39.9 meters, 13 storeys on the ground, the 2nd Floor. Live in building degree high than it around location , designer have unique architectural appearance of style architectural design this specially, its elevation is designed into a new classical form , the building base adopts the rough granite, show rich capability , top is it burn granite and verticality bar and some form aluminum windows make up as the veneer to adopt, represent the building noble and refined , serious personality of the bank.While creating in above-mentioned two items, besides portraying the shape of the building and indoor space and outside environment minister and blending meticulously, in order to achieve the outstanding purpose of global design of the building , the architect , still according to the region and project characteristic, put forward the following requirement to every speciality:(1) Control the total height of the building strictly;(2) It favorable to the intelligent comfortable height of clearances to create; (3) Meet thefloor area of owner's demand;(4)Protect the environment , save the energy , reduce and make the investment;(5) Design meticulously, use and popularize the new technology; (6)Cooperate closely in every speciality, optimization design.Comprehensive technologyThe building should have strong vitality, there must be sustainable development space, there should be abundant intension and comprehensive new technology. Among above-mentioned construction work , have popularized and used the intelligent technology of the building , has not glued and formed the flat roof beam of prestressing force - dull and stereotyped structure technology and flat roof beam structure technology, baseplate temperature mix hole , technology of muscle and base of basement enclose new technology of protecting, computer control STL ice hold cold air conditioner technology, compounding type keeps warm and insulates against heat the technology of the wall , such new technologies as the sectional electricity distribution room ,etc., give architecture global design to add the new vitality of note undoubtedly.1, the intelligent technology of the buildingIn initial stage of the 1990s, the intelligent building was introduced from foreign countries to China only as a kind of concept , computer network standard is it soon , make information communication skeleton of intelligent building to pursue in the world- comprehensive wiring system becomes a kind of trend because of 10BASE-T. In order to make the bank building adapt to the development of the times, the designer does one's utmost to recommend and design the comprehensive wiring system with the leading eyes , this may well be termed the first modernized building which adopted this technical design at that time.(1) Comprehensive wiring system one communication transmission network, it make between speech and data communication apparatus , exchange equipment and other administrative systems link to each other, make the equipment and outside communication network link to each other too. It include external telecommunication connection piece and inside information speech all cable and relevant wiring position of data terminal of workspace of network. The comprehensive wiring system adopts the products of American AT&T Corp.. Connected up the subsystem among the subsystem , management subsystem , arterial subsystem and equipment to make up by workspace subsystem , level.(2) Automated systems of security personnel The monitoring systems of security personnel of the building divide into the public place and control and control two pieces of systemequipment with the national treasury special-purposly synthetically.The special-purpose monitoring systems of security personnel of national treasury are in the national treasury , manage the storehouse on behalf of another , transporting the paper money garage to control strictly, the track record that personnel come in and go out, have and shake the warning sensor to every wall of national treasury , the camera, infrared microwave detector in every relevant rooms, set up the automation of controlling to control.In order to realize building intellectuality, the architect has finished complete indoor environment design, has created the comfortable , high-efficient working environment , having opened up the room internal and external recreation space not of uniform size, namely the green one hits the front yard and roofing, have offered the world had a rest and regulated to people working before automation is equipped all day , hang a design adopt the special building to construct the node in concrete ground , wall at the same time.2, has not glued and formed the flat roof beam of prestressing force- dull and stereotyped structure technology and flat roof beam structure technologyIn order to meet the requirement with high assurance that the architect puts forward , try to reduce the height of structure component in structure speciality, did not glue and form the flat roof beam of prestressing force concrete - dull and stereotyped structure technology and flat roof beam structure technology after adopting.(1) Adopt prestressing force concrete roof beam board structure save than ordinary roof beam board concrete consumption 15%, steel consumption saves 27%, the roof beam reduces 300mm high.(2) Adopt flat roof beam structure save concrete about 10% consumption than ordinary roof beam board, steel consumption saves 6.6%, the roof beam reduces 200mm high.Under building total situation that height does not change , adopt above-mentioned structure can make the whole building increase floor area of a layer , have good economic benefits and social benefit.3, the temperature of the baseplate matches muscle technologyIn basement design , is it is it is it after calculating , take the perimeter to keep the construction technology measure warm to split to resist to go on to baseplate, arrange temperature stress reinforcing bar the middle cancelling , dispose 2 row receives the strength reinforcing bar up and down only, this has not only save the fabrication cost of the project but also met the basement baseplate impervious and resisting the requirement that splits.4, the foundation of the basement encloses and protects the new technology of design and operationAdopt two technological measures in enclosing and protecting a design:(1) Cantilever is it is it hole strength is it adopt form strengthen and mix muscle technology to design to protect to enclose, save the steel and invite 60t, it invests about 280,000 to save.(2) Is it is it protect of of elevation and keep roof beam technology to enclose , is it protect long to reduce 1.5m to enclose all to reduce, keep roof beam mark level on natural ground 1.5m , is it is it protect of lateral pressure receive strength some height to enclose to change, saving 137.9 cubic meters of concrete, steel 16.08t, reduces and invests 304,000 yuan directly through calculating.5, ice hold cold air conditioner technologyIce hold cold air conditioner technology belong to new technology still in our country , it heavy advantage that the electricity moves the peak and operates the expenses sparingly most. In design, is it ice mode adopt some (weight ) hold mode of icing , is it ice refrigeration to be plane utilization ratio high to hold partly to hold, hold cold capacity little , refrigeration plane capacity 30%-45% little than routine air conditioner equipment, one economic effective operational mode.Hold the implementation of the technology of the cold air conditioner in order to cooperate with the ice , has used intelligent technology, having adopted the computer to control in holding and icing the air conditioner system, the main task has five following respects:(1) According to the demand for user's cold load , according to the characteristic of the structure of the electric rate , set up the ice and hold the best operation way of the cold system automatically, reduce the operation expenses of the whole system;(2) Fully utilize and hold the capacity of the cold device, should try one's best to use up all the cold quantity held basically on the same day;(3) Automatic operation state of detection system, ensure ice hold cold system capital equipment normal , safe operation;(4) Automatic record parameter that system operate, display system operate flow chart and type systematic operation parameter report form;(5) Predict future cooling load, confirm the future optimization operation scheme.Ice hold cold air conditioner system test run for some time, indicate control system to be steady , reliable , easy to operate, the system operates the energy-conserving result remarkably.6, the compounding type keeps in the wall warm and insulates against heat To the area of Hangzhou , want heating , climate characteristic of lowering the temperature in summer in winter, is it protect building this structural design person who compound is it insulate against heat the wall to keep warm to enclose specially, namely: Fit up , keep warm , insulate against heat the three not to equal to the body , realize building energy-conservation better.Person who compound is it insulate against heat wall to combine elevation model characteristic , design aluminium board elevation renovation material to keep warm, its structure is: Fill out and build hollow brick in the frame structure, do to hang the American Fluorine carbon coating inferior mere aluminium board outside the hollow brick wall.Aluminium board spoke hot to have high-efficient adiabatic performance to the sun, under the same hot function of solar radiation, because the nature , color of the surface material are different from coarse degree, whether can absorb heat have great difference very , between surface and solar radiation hot absorption system (α ) and material radiation system (Cλ ) is it say to come beyond the difference this. Adopt α and Cλ value little surface material have remarkable result , board α、Cλ value little aluminium have, its α =0.26, Cλ =0.4, light gray face brick α =0.56, Cλ =4.3.Aluminium board for is it hang with having layer under air by hollow brick to do, because aluminium board is it have better radiation transfer to hot terms to put in layer among the atmosphere and air, this structure is playing high-efficient adiabatic function on indoor heating too in winter, so, no matter or can well realize building energy-conservation in winter in summer.7, popularize the technology of sectional electricity distribution roomConsider one layer paves Taxi " gold " value , the total distribution of the building locates the east, set up voltage transformer and low-voltage distribution in the same room in first try in the design, make up sectional electricity distribution room , save transformer substation area greatly , adopt layer assign up and down, mixing the switchyard system entirely after building up and putting into operation, the function is clear , the overall arrangement compactness is rational , the systematic dispatcher is flexible . The technology have to go to to use and already become the model extensively of the design afterwards.ConclusionThe whole mode designed of the building synthetically can raise the adaptability of the building , it will be the inevitable trend , environmental consciousness and awareness of saving energy especially after strengthening are even more important. Developing with the economy , science and technology constantly in our country, more advanced technology and scientific and technical result will be applied to the building , believe firmly that in the near future , more outstanding building global design will appear on the building stage of our country. We will be summarizing, progressing constantly constantly, this is that history gives the great responsibility of architect and engineer.译文:建筑结构整体设计-建筑创作和综合技术21世纪将是多种学科技术并存的时代,它必将形成推动建筑发展的巨大动力,建筑结构整体设计也就越来越重要,建筑师必须把握时机,充分发挥建筑师的主导作用,主持好各项建筑工程设计。

建筑结构设计及材料中英文对照外文翻译文献

建筑结构设计及材料中英文对照外文翻译文献

中英文对照外文翻译文献(文档含英文原文和中文翻译)Structure in Design of ArchitectureAnd Structural MaterialWe have and the architects must deal with the spatial aspect of activity, physical, and symbolic needs in such a way that overall performance integrity is assured. Hence, he or she well wants to think of evolving a building environment as a total system of interacting and space forming subsystems. Is represents a complex challenge, and to meet it the architect will need a hierarchic design process that provides at least three levels of feedback thinking: schematic,preliminary, and final.Such a hierarchy is necessary if he or she is to avoid being confused , at conceptual stages of design thinking ,by the myriad detail issues that can distract attention from more basic considerations .In fact , we can say that an architect’s ability to distinguish the more basic form the more detailed issues is essential to his success as a designer .The object of the schematic feed back level is to generate and evaluate overall site-plan, activity-interaction, and building-configuration options .To do so the architect must be able to focus on the interaction of the basic attributes of the site context, the spatial organization, and the symbolism as determinants of physical form. This means that ,in schematic terms ,the architect may first conceive and model a building design as an organizational abstraction of essential performance-space in teractions.Then he or she may explore the overall space-form implications of the abstraction. As an actual building configuration option begins to emerge, it will be modified to include consideration for basic site conditions.At the schematic stage, it would also be helpful if the designer could visualize his or her options for achieving overall structural integrity and consider the constructive feasibility and economic ofhis or her scheme .But this will require that the architect and/or a consultant be able to conceptualize total-system structural options in terms of elemental detail .Such overall thinking can be easily fed back to improve the space-form scheme.At the preliminary level, the architect’s emphasis will shift to the elaboration of his or her more promising schematic design options .Here the architect’s structural needs will shift to approximate design of specific subsystem options. At this stage the total structural scheme is developed to a middle level of specificity by focusing on identification and design of major subsystems to the extent that their key geometric, component, and interactive properties are established .Basic subsystem interaction and design conflicts can thus be identified and resolved in the context of total-system objectives. Consultants can play a significant part in this effort; these preliminary-level decisions may also result in feedback that calls for refinement or even major change in schematic concepts.When the designer and the client are satisfied with the feasibility of a design proposal at the preliminary level, it means that the basic problems of overall design are solved and details are not likely to produce major change .The focus shifts again ,and the design process moves into the final level .At this stage the emphasiswill be on the detailed development of all subsystem specifics . Here the role of specialists from various fields, including structural engineering, is much larger, since all detail of the preliminary design must be worked out. Decisions made at this level may produce feedback into Level II that will result in changes. However, if Levels I and II are handled with insight, the relationship between the overall decisions, made at the schematic and preliminary levels, and the specifics of the final level should be such that gross redesign is not in question, Rather, the entire process should be one of moving in an evolutionary fashion from creation and refinement (or modification) of the more general properties of a total-system design concept, to the fleshing out of requisite elements and details.To summarize: At Level I, the architect must first establish, in conceptual terms, the overall space-form feasibility of basic schematic options. At this stage, collaboration with specialists can be helpful, but only if in the form of overall thinking. At Level II, the architect must be able to identify the major subsystem requirements implied by the scheme and substantial their interactive feasibility by approximating key component properties .That is, the properties of major subsystems need be worked out only in sufficient depth to very the inherent compatibility of their basic form-related and behavioral interaction . This will mean a somewhat more specificform of collaboration with specialists then that in level I .At level III ,the architect and the specific form of collaboration with specialists then that providing for all of the elemental design specifics required to produce biddable construction documents .Of course this success comes from the development of the Structural Material.The principal construction materials of earlier times were wood and masonry brick, stone, or tile, and similar materials. The courses or layers were bound together with mortar or bitumen, a tar like substance, or some other binding agent. The Greeks and Romans sometimes used iron rods or claps to strengthen their building. The columns of the Parthenon in Athens, for example, have holes drilled in them for iron bars that have now rusted away. The Romans also used a natural cement called puzzling, made from volcanic ash, that became as hard as stone under water.Both steel and cement, the two most important construction materials of modern times, were introduced in the nineteenth century. Steel, basically an alloy of iron and a small amount of carbon had been made up to that time by a laborious process that restricted it to such special uses as sword blades. After the invention of the Bessemer process in 1856, steel was available in large quantities at low prices. The enormous advantage of steel is its tensile forcewhich, as we have seen, tends to pull apart many materials. New alloys have further, which is a tendency for it to weaken as a result of continual changes in stress.Modern cement, called Portland cement, was invented in 1824. It is a mixture of limestone and clay, which is heated and then ground into a power. It is mixed at or near the construction site with sand, aggregate small stones, crushed rock, or gravel, and water to make concrete. Different proportions of the ingredients produce concrete with different strength and weight. Concrete is very versatile; it can be poured, pumped, or even sprayed into all kinds of shapes. And whereas steel has great tensile strength, concrete has great strength under compression. Thus, the two substances complement each other.They also complement each other in another way: they have almost the same rate of contraction and expansion. They therefore can work together in situations where both compression and tension are factors. Steel rods are embedded in concrete to make reinforced concrete in concrete beams or structures where tensions will develop. Concrete and steel also form such a strong bond─ the force that unites them─ that the steel cannot slip within the concrete. Still another advantage is that steel does not rust in concrete. Acid corrodes steel, whereas concrete has an alkaline chemical reaction, the opposite of acid.The adoption of structural steel and reinforced concrete caused major changes in traditional construction practices. It was no longer necessary to use thick walls of stone or brick for multistory buildings, and it became much simpler to build fire-resistant floors. Both these changes served to reduce the cost of construction. It also became possible to erect buildings with greater heights and longer spans.Since the weight of modern structures is carried by the steel or concrete frame, the walls do not support the building. They have become curtain walls, which keep out the weather and let in light. In the earlier steel or concrete frame building, the curtain walls were generally made of masonry; they had the solid look of bearing walls. Today, however, curtain walls are often made of lightweight materials such as glass, aluminum, or plastic, in various combinations.Another advance in steel construction is the method of fastening together the beams. For many years the standard method was riveting.A rivet is a bolt with a head that looks like a blunt screw without threads. It is heated, placed in holes through the pieces of steel, and a second head is formed at the other end by hammering it to hold it in place. Riveting has now largely been replaced by welding, the joining together of pieces of steel by melting a steel materialbetween them under high heat.Priestess’s concrete is an improved form of reinforcement. Steel rods are bent into the shapes to give them the necessary degree of tensile strengths. They are then used to priestess concrete, usually by one of two different methods. The first is to leave channels in a concrete beam that correspond to the shapes of the steel rods. When the rods are run through the channels, they are then bonded to the concrete by filling the channels with grout, a thin mortar or binding agent. In the other (and more common) method, the priestesses steel rods are placed in the lower part of a form that corresponds to the shape of the finished structure, and the concrete is poured around them. Priestess’s concrete uses less steel and less concrete. Because it is a highly desirable material.Progressed concrete has made it possible to develop buildings with unusual shapes, like some of the modern, sports arenas, with large spaces unbroken by any obstructing supports. The uses for this relatively new structural method are constantly being developed.建筑中的结构设计及建筑材料建筑师必须从一种全局的角度出发去处理建筑设计中应该考虑到的实用活动,物质及象征性的需求。

和建筑物有关的英文单词

和建筑物有关的英文单词
continuous beam
36
大坝
dam
[dæm]
37
泥石流
debris flow
38
施工图设计,详图设计
detail design
39
土压力
earth pressure
40
抗震设计
earthquake-resistant design
41
屋檐,檐
eaves
[i:vz]
42
构件
element
['elimənt]
127

pole
[pəul]
128
圆柱
column
['kɔləm]
129
抗拉强度
tensile strength
130
压力
compressive force
131
弯曲,弯折;挠度
bending
['bendiŋ]
132
扭曲;翘曲
twisting
['twistiŋ]
133
复合材料
composite material
['infrə,strʌktʃə]
21
跨度, 跨径,(桥或拱的)墩距
span
[spæn]
22

beam
[bi:m]
23
普通水泥、硅酸盐水泥
Portland cement
24
钢筋混凝土
reinforced concrete
25
摩天大楼
skyscraper
['skai'skreipə]
26
隧道;坑道
tunnel

建筑专业土木工程词汇及术语--中英文对照

建筑专业土木工程词汇及术语--中英文对照

建筑专业笔记整理大全—结构工程常用词汇-土木工程常用英语术语结构工程常用词汇混凝土:concrete钢筋:reinforcing steel bar钢筋混凝土:reinforced concrete(RC)钢筋混凝土结构:reinforced concrete structure板式楼梯:cranked slab stairs刚度:rigidity徐变:creep水泥:cement钢筋保护层:cover to reinforcement梁:beam柱:column板:slab剪力墙:shear wall基础:foundation剪力:shear剪切变形:shear deformation剪切模量:shear modulus拉力:tension压力:pressure延伸率:percentage of elongation位移:displacement应力:stress应变:strain应力集中:concentration of stresses应力松弛:stress relaxation应力图:stress diagram应力应变曲线:stress—strain curve应力状态:state of stress钢丝:steel wire箍筋:hoop reinforcement箍筋间距:stirrup spacing加载:loading抗压强度:compressive strength抗弯强度:bending strength抗扭强度:torsional strength抗拉强度:tensile strength裂缝:crack屈服:yield屈服点:yield point屈服荷载:yield load屈服极限:limit of yielding屈服强度:yield strength屈服强度下限:lower limit of yield荷载:load横截面:cross section承载力:bearing capacity承重结构:bearing structure弹性模量:elastic modulus预应力钢筋混凝土:prestressed reinforced concrete预应力钢筋:prestressed reinforcement预应力损失:loss of prestress预制板:precast slab现浇钢筋混凝土结构:cast—in-place reinforced concrete 双向配筋:two—way reinforcement主梁:main beam次梁:secondary beam弯矩:moment悬臂梁:cantilever beam延性:ductileity受弯构件:member in bending受拉区:tensile region受压区:compressive region塑性:plasticity轴向压力:axial pressure轴向拉力:axial tension吊车梁:crane beam可靠性:reliability粘结力:cohesive force外力:external force弯起钢筋:bent—up bar弯曲破坏:bending failure屋架:roof truss素混凝土:non—reinforced concrete无梁楼盖:flat slab配筋率:reinforcement ratio配箍率:stirrup ratio泊松比:Poisson’s ratio偏心受拉:eccentric tension偏心受压:eccentric compression偏心距:eccentric distance疲劳强度:fatigue strength偏心荷载:eccentric load跨度:span跨高比:span—to—depth ratio跨中荷载:midspan load框架结构:frame structure集中荷载:concentrated load分布荷载:distribution load分布钢筋:distribution steel挠度:deflection设计荷载:design load设计强度:design strength构造:construction简支梁:simple beam截面面积:area of section浇注:pouring浇注混凝土:concreting钢筋搭接:bar splicing刚架:rigid frame脆性:brittleness脆性破坏:brittle failure土木工程常用英语术语第一节一般术语1. 工程结构building and civil engineering structures房屋建筑和土木工程的建筑物、构筑物及其相关组成部分的总称。

一般建筑术语英文翻译之一

一般建筑术语英文翻译之一

常见的建筑术语的英文翻译集之一以下是一些常见的建筑术语的英文翻译集合之一:1. 建筑设计- Architectural Design2. 建筑结构- Building Structure3. 建筑材料- Building Materials4. 建筑施工- Building Construction5. 建筑成本- Construction Cost6. 建筑风格- Architectural Style7. 建筑师- Architect8. 建筑规划- Building Planning9. 建筑模型- Architectural Model10. 建筑面积- Building Area11. 建筑高度- Building Height12. 建筑容积率- Plot Ratio13. 建筑法规- Building Codes and Regulations14. 建筑节能- Energy Efficiency in Buildings15. 建筑智能化- Intelligent Buildings16. 绿色建筑- Green Buildings17. 可持续建筑- Sustainable Buildings18. 建筑声学- Architectural Acoustics19. 建筑光学- Architectural Optics20. 室内设计- Interior Design21. 景观设计- Landscape Design22. 结构设计- Structural Design23. 给排水设计- Water Supply and Drainage Design24. 暖通空调设计- HVAC Design25. 电气设计- Electrical Design26. 消防设计- Fire Protection Design27. 智能化系统设计- Intelligent System Design28. 施工组织设计- Construction Organization Design29. 施工图设计- Construction Drawing Design30. 装饰装修设计- Decoration and Finishing Design31. 建筑声学设计- Architectural Acoustics Design32. 建筑光学设计- Architectural Optics Design33. 建筑热工设计- Architectural Thermal Design34. 建筑美学设计- Architectural Aesthetic Design35. 建筑环境设计- Architectural Environment Design36. 建筑风水学- Feng Shui37. 建筑日照分析- Solar Analysis for Buildings38. 建筑通风分析- Ventilation Analysis for Buildings39. 建筑声环境分析- Acoustic Environment Analysis for Buildings40. 建筑光环境分析- Daylighting Environment Analysis for Buildings41. 建筑热环境分析- Thermal Environment Analysis for Buildings42. 建筑面积计算- Building Area Calculation43. 建筑楼层高度- Storey Height44. 建筑消防设计- Fire Protection Design for Buildings45. 建筑结构安全评估- Structural Safety Evaluation for Buildings46. 建筑抗震设计- Seismic Design for Buildings47. 建筑防洪设计- Flood-resistant Design for Buildings48. 建筑工程招标- Building Engineering Tendering49. 建筑工程施工许可- Construction Permission for Building Projects50. 建筑工程造价咨询- Engineering Cost Consulting for Building Projects51. 建筑工程监理- Project Supervision for Building Projects52. 建筑工程验收- Acceptance of Building Projects53. 建筑工程质量检测- Quality Detection of Building Projects54. 建筑工程质量评估- Quality Evaluation of Building Projects55. 建筑工程质量保修- Quality Guarantee of Building Projects56. 建筑工程档案- Construction Project Archives57. 建筑工程安全- Construction Safety58. 建筑工程管理- Construction Project Management59. 建筑工程合同- Construction Contract60. 建筑工程保险- Construction Insurance61. 建筑工程材料- Construction Materials62. 建筑工程机械- Construction Machinery63. 建筑工程劳务- Construction Labor64. 建筑工程施工组织设计- Construction Organization Design for Building Projects65. 建筑工程施工图设计- Construction Drawing Design for Building Projects66. 建筑工程施工进度计划- Construction Progress Plan for Building Projects67. 建筑工程施工质量控制- Construction Quality Control for Building Projects68. 建筑工程施工安全管理- Construction Safety Management for Building Projects69. 建筑工程施工现场管理- Construction Site Management for Building Projects70. 建筑工程施工成本管理- Construction Cost Management for Building Projects71. 建筑工程施工环境保护- Environmental Protection in Building Construction72. 建筑工程施工节能管理- Energy-saving Management in Building Construction73. 建筑工程施工水土保持- Soil and Water Conservation in Building Construction74. 建筑工程施工质量控制要点- Key Points of Construction Quality Control for Building Projects75. 建筑工程施工安全控制要点- Key Points of Construction Safety Control for Building Projects76. 建筑工程施工质量验收规范- Acceptance Specification for Construction Quality ofBuilding Projects77. 建筑立面设计- Façade Design78. 建筑剖面设计- Section Design79. 建筑立面分析图- Façade Analysis Diagram80. 建筑剖面分析图- Section Analysis Diagram81. 建筑结构分析图- Structural Analysis Diagram82. 建筑平面图- Floor Plan83. 建筑立面图- Façade Drawing84. 建筑剖面图- Section Drawing85. 建筑轴测图- Axonometric Drawing86. 建筑渲染图- Architectural Rendering87. 建筑模型制作- Model Making88. 建筑绘画- Architectural Drawing89. 建筑表现图- Architectural Representation90. 建筑动画- Architectural Animation91. 建筑摄影- Architectural Photography92. 建筑信息模型- Building Information Modeling (BIM)93. 建筑环境评估- Building Environmental Assessment94. 建筑节能评估- Building Energy Efficiency Assessment95. 建筑可持续性评估- Building Sustainability Assessment96. 建筑健康评估- Building Health Assessment97. 建筑设备系统设计- Building Equipment System Design98. 建筑电气系统设计- Electrical System Design for Buildings99. 建筑给排水系统设计- Water Supply and Drainage System Design for Buildings 100. 建筑暖通空调系统设计- HVAC System Design for Buildings。

中英文建筑词汇表

中英文建筑词汇表

施工图呈审单Con struct ion draw ing submissi on table项目名称Project n ame工程类别Project category住宅Reside nee建筑师Architect结构工程师Structural engin eer机电工程师M&E engin eer施工单位Con structi on Compa ny呈审编号Submissio n No.送审日期Submissio n Date要求回复日期Reply date图纸编号Drawi ng No.图纸名称Drawi ng Name版本Version批核状态Approval Status备注Remark批准使用Approval有条件的批准使用Approval with comme nts 须作修改后再呈审Revise and submission 不接受Not approval签署Sig nature日期Date第版Version No.设计单位Desig n compa ny箱体吊耳节点Co ntai ner lifti ng lug detail 箱体转轴节点Container revolvi ng axis detail 注:集装箱发运状态吊耳节点Note: lug detail whe n shipp ing建筑设计总说明General description of architectural desig n构造表Structrural table门窗表Door and window table平面图plan立面图elevation剖面图section布置图layout节点详图Sectio n detail节点,大样detail屋面roof地面ground非上人平屋面non-person roof室内in door 室夕卜outdoor内墙internal wall 夕卜墙external wall 卫生间bathroom 卧室bedroom 楼梯平台Landing 经济适用房Affordable Hous ing 厨房Kitchen 起居室Living Room 家庭室Family Room 饭厅Dining room、Meals 淋浴间Shower Room 车库Garage 储藏室Store 门廊Porch 衣柜Robe 防盗门Burglar proof door 比例scale 间距space 铝复合板Aluminum composite panel 2mm 厚铝板2mm thick alu.panel 铝圭寸边alu.cover 玻镁板magnesium board 玻镁板钉n ail for magn esium board 蓝色PE涂层压型板blue PE coat pressure plate 地板floor 楼板floorslab 保温夹芯板thermal insulation sandwichboard水泥纤维板ceme nt fiber board水泥砂浆聚合物+粘接剂cement mortar polymer+adhesive纟田石防水混凝土fine stone waterproof con crete 内填离心玻璃棉in fill ce ntrifuge glass wool 陶粒混凝土层Terra cotta con crete layer 钢丝网steel wiring mesh 防水透气膜Breathable vapor barrier 防潮层Vapor barrier 防潮膜moisture proof membrane 防水层Water proof 天然大理石n atural marble 玻璃glass 大理石marble聚氨酯发泡剂polyuretha ne foaming age nt铝合金推拉门alu.alloy slidi ng door 铝合金推拉门框alu.alloy slidi ng door frame 铝合金门(窗)Alu.alloy door (window)洞口尺寸ope ning size 边框jamb 扇框sash泡沫棒backer rod 密圭寸胶seala nt连接件connector 转接件bracket 挂板cladding挂件han ger角片fillet连接角片conn ect fillet方垫片square gasket螺栓bolt螺栓组件bolt units平垫片flat gasket轻型弹簧垫片light spring gasket螺母n ut盘头自钻自攻钉pan head self tapping self drilli ng screw沉头自钻自攻钉countersunk self tapping self drilli ng screw自攻钉self tapping screw 给排水设计施工说明Description of watersupply and sewage desig n and con structi on 给排水系统图Water supply and sewage system draw ing给排水平面布置图Water supply and sewage pla n layout空调通风设计施工说明Description of HVAC desig n and con struct ion空调通风系统图HVAC system draw ing空调通风平面布置图HVAC plan layout不锈钢防水地漏s.s.waterproof floor waste不锈钢排水槽s.s. drain tank防水卷材waterproof roll缝隙打防水胶waterproof sealant infill to joi ns防臭地漏deodorize floor waste电气Electric电气设计说明Description of electricaldesig n电气系统图Electrical system drawing照明布置图Light ing layout电源布置图Power layout弱电布置图Weak electrical layout主体结构Main Structure 结构设计总说明General description of structural desig n 一层结构图Ground floor structural draw ing顶层平面图Top floor structural draw ing钢结构节点详图Steel structure detail draw ing 梁Beam 椽Rafter 接点Joi nt 柱Column(图纸上的)GL轴线grid line 辛冈板steel panel 方钢管square steel tube 不锈钢管s.s.tube 屋顶骨架roof frame 屋面钢骨架roof steel frame 连接钢板conn ect ing steel plate 白色乳胶漆white emulsion paint 表面刷白色乳胶漆surface brush white emulsi on paint 表面刷白色防锈漆surface brush white an tirust paint 垫块gasket 纟田木工板lam in ated board 皮革饰面leather finish 磨砂玻璃frosted glass 镜子mirror 折弯板folding panel 橡胶块rubber gasket 玻璃夹件glass fixture 棚角线ceiling line 顶棚装饰线c eili ng decorative line专用圭寸堵special plug 吊顶,天花板ceili ng 淋浴shower 地漏floor waste 直线地漏direct floor waste 缝隙打防水胶waterproof sealant infill tojoi ns上翻upward 踢脚线skirting line 分格尺寸division size 孚L胶漆emulsion paint 不锈钢抽芯铆钉s.s. bli nd rivet 竹地板bamboo floor 穿孑L铝板Perforated alumi num panel 地面装饰层Floor decorative layer 扁圆头自攻自钻钉Plain round head self-tapp ing self-drilli ng screw 镀锌楼承板Galvanized floor panel 钢垫块Steel mat 螺栓组Bolt group基础(非远大)Foundation (not by Yuanda) 减震橡胶垫板Vibration proof rubber mat 扶手Handrail 扶手立柱Handrail column百叶Louver 雨篷、遮阳蓬awning 整体橱柜Prefabricated Cabi net 整体浴室Prefabricated Bathroom 楼梯Staircase 整体楼宇模块Modules 风荷载Wind Load 门槛Threshold 绝热的In sulated 气密性Air Tightness 水密性Water Tigh tn ess 通风Ventilation 基础设施、公共建设In frastructure标准Standard Criteria 湿度Humidity 标高Level请进行图纸确认工作Please carry out work of confirming draw in gs.请反馈所需信息Please feed back information required.屋檐Eave水箱Water Tank楼板Floor cassette 钢衍架Steel Trusses 声学的Acoustic 凸缘Flange 嵌壁式的Recessed 遮阳棚见详图Awnings see detail 支座support。

和房屋各个结构有关的英语单词

和房屋各个结构有关的英语单词

和房屋各个结构有关的英语单词梁beam檐口eave窗台window sillarch 拱vault 穹顶ogive 葱形饰;尖形拱顶facade 侧面frontispiece 三角墙,山墙column 柱pilaster 壁柱,半露柱pediment 山墙饰,山花fronton 山墙ground plan 平面图floor, storey 层ground floor 第一层(美作:first floor)flat 套(美作:apartment)stair well 楼梯间lift shaft 电梯,升降梯(美作:elevator shaft)fire escape 防火梯staircase 楼梯lift 电梯(美作:elevator)goods lift 公务电梯(美作:freight elevator)central heating 暖气ventilation shaft 通风井air conditioning 空调air-conditioned 带空调的flooring (一块)地板floorboard 地板(总称)parquet 木条地板herringbone parquet 人字形木条地板tile 瓷砖terrazzo 磨石子地wall 墙main wall 承重墙partition wall 隔断墙plastering 抹灰skirting board 壁脚板to whitewash 粉刷facade 建筑物正面window 窗basement 地下室penthouse 遮檐,披屋attic, garret 阁楼kitchen 厨房dining room 饭厅living room 起居室lounge 吸烟室,大厅bathroom 浴室toilet 卫生间chimney 烟囱fireplace 壁炉gutter 排水沟drainpipe 雨水管,落水管ceiling 天花板flat roof, roof garden 屋顶平台,屋顶花园roof 屋瓦顶tile, roof tile 瓦房屋:house/buildings;门槛:threshold;窗台:window sill;窗户:window;房檐(复数):eaves;屋脊:ridge;屋顶:roof/housetop;梁:roof beamC。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

建筑结构中英文翻译acceptable quality:合格质量acceptance lot:验收批量aciera:钢材admixture:外加剂against slip coefficient between friction surface of high-strength bolted connection:高强度螺栓摩擦面抗滑移系数aggregate:骨料air content:含气量air-dried timber:气干材allowable ratio of height to sectional thickness of masonry wall or column:砌体墙、柱容许高厚比allowable slenderness ratio of steel member:钢构件容许长细比allowable slenderness ratio of timber compression member:受压木构件容许长细比allowable stress range of fatigue:疲劳容许应力幅allowable ultimate tensile strain of reinforcement:钢筋拉应变限值allowable value of crack width:裂缝宽度容许值allowable value of deflection of structural member:构件挠度容许值allowable value of deflection of timber bending member:受弯木构件挠度容许值allowable value of deformation of steel member:钢构件变形容许值allowable value of deformation of structural member:构件变形容许值allowable value of drift angle of earthquake resistant structure:抗震结构层间位移角限值amplified coefficient of eccentricity:偏心距增大系数anchorage:锚具anchorage length of steel bar:钢筋锚固长度approval analysis during construction stage:施工阶段验算arch:拱arch with tie rod:拉捍拱arch—shaped roof truss:拱形屋架area of shear plane:剪面面积area of transformed section:换算截面面积aseismic design:建筑抗震设计assembled monolithic concrete structure:装配整体式混凝土结构automatic welding:自动焊接auxiliary steel bar:架立钢筋backfilling plate:垫板balanced depth of compression zone:界限受压区高度balanced eccentricity:界限偏心距bar splice:钢筋接头bark pocket:夹皮batten plate:缀板beam:次梁bearing plane of notch:齿承压面(67)bearing plate:支承板(52)bearing stiffener:支承加劲肋(52)bent-up steel bar:弯起钢筋(35)block:砌块(43)block masonry:砌块砌体(44)block masonry structure:砌块砌体结构(41)blow hole:气孔(62)board:板材(65)bolt:螺栓(54)bolted connection:(钢结构)螺栓连接(59)bolted joint:(木结构)螺栓连接(69)bolted steel structure:螺栓连接钢结构(50)bonded prestressed concrete structure:有粘结预应力混凝土结构(24) bow:顺弯(71)brake member:制动构件(7)breadth of wall between windows:窗间墙宽度(46)brick masonry:砖砌体(44)brick masonry column:砖砌体柱(42)brick masonry structure:砖砌体结构(41)brick masonry wall:砖砌体墙(42)broad—leaved wood:阔叶树材(65)building structural materials:建筑结构材料(17)building structural unit:建筑结构单元(building structure:建筑结构(2built—up steel column:格构式钢柱(51bundled tube structure:成束筒结构(3burn—through:烧穿(62butt connection:对接(59butt joint:对接(70)butt weld:对接焊缝(60)calculating area of compression member:受压构件计算面积(67) calculating overturning point:计算倾覆点(46)calculation of load-carrying capacity of member:构件承载能力计算(10) camber of structural member:结构构件起拱(22)cantilever beam :挑梁(42)cap of reinforced concrete column:钢筋混凝土柱帽(27)carbonation of concrete:混凝土碳化(30)cast-in—situ concrete slab column structure :现浇板柱结构cast-in—situ concrete structure:现浇混凝土结构(25)cavitation:孔洞(39)cavity wall:空斗墙(42)cement:水泥(27)cement content:水泥含量(38)cement mortar:水泥砂浆(43)characteriseic value of live load on floor or roof:楼面、屋面活荷载标准值(14) characteristi cvalue o fwindload:风荷载标准值(16)characteristic value of concrete compressive strength:混凝土轴心抗压强度标准值(30) characteristic value of concrete tensile strength:混凝土轴心抗拉标准值(30) characteristic value of cubic concrete compressive strength:混凝土立方体抗压强度标准值(29)characteristic value of earthquake action:地震作用标准值(16)characteristic value of horizontal crane load:吊车水平荷载标准值(15) characteristic value of masonry strength:砌体强度标准值(44)characteristic value of permanent action·:永久作用标准值(14)characteristic value of snowload:雪荷载标准值(15)characteristic value of strength of steel:钢材强度标准值(55)characteristic value of strength of steel bar:钢筋强度标准值(31)characteristic value of uniformly distributed live load:均布活标载标准值(14) characteristic value of variable action:可变作用标准值(14)characteristic value of vertical crane load:吊车竖向荷载标准值(15) charaeteristic value of material strength:材料强度标准值(18)checking section of log structural member:原木构件计算截面(67)chimney:烟囱(3)circular double—layer suspended cable:圆形双层悬索(6)circular single—layer suspended cable:圆形单层悬索(6)circumferential weld:环形焊缝(60)classfication for earthquake—resistance of buildings:建筑结构抗震设防类别(9) clear height:净高(21)clincher:扒钉(?0)coefficient of equivalent bending moment of eccentrically loaded steel memher(beam-column) :钢压弯构件等效弯矩系数(58)cold bend inspection of steelbar:冷弯试验(39)cold drawn bar:冷拉钢筋(28)cold drawn wire:冷拉钢丝(29)cold—formed thin—walled sectionsteel:冷弯薄壁型钢(53)cold-formed thin-walled steel structure:冷弯薄壁型钢结构(50)cold—rolled deformed bar:冷轧带肋钢筋(28)column bracing:柱间支撑(7)combination value of live load on floor or roof:楼面、屋面活荷载组合值(15) compaction:密实度(37)compliance control:合格控制(23)composite brick masonry member:组合砖砌体构件(42)composite floor system:组合楼盖(8)composite floor with profiled steel sheet:压型钢板楼板(8)composite mortar:混合砂浆(43)composite roof truss:组合屋架(8)compostle member:组合构件(8)compound stirrup:复合箍筋(36)compression member with large eccentricity:大偏心受压构件(32) compression member with small eccentricity:小偏心受压构件(32) compressive strength at an angle with slope of grain:斜纹承压强度(66) compressive strength perpendicular to grain:横纹承压强度(66) concentration of plastic deformation:塑性变形集中(9)conceptual earthquake—resistant design:建筑抗震概念设计(9) concrete:混凝土(17)concrete column:混凝土柱(26)concrete consistence:混凝土稠度(37)concrete floded—plate structure:混凝土折板结构(26)concrete foundation:混凝土基础(27)concrete mix ratio:混凝土配合比(38)concrete wall:混凝土墙(27)concrete-filled steel tubular member:钢管混凝土构件(8)conifer:针叶树材(65)coniferous wood:针叶树材(65)connecting plate:连接板(52)connection:连接(21)connections of steel structure:钢结构连接(59)connections of timber structure:木结构连接(68)consistency of mortar:砂浆稠度(48)constant cross—section column:等截面柱(7)construction and examination concentrated load:施工和检修集中荷载(15) continuous weld:连续焊缝(60)core area of section:截面核芯面积(33)core tube supported structure:核心筒悬挂结构(3)corrosion of steel bar:钢筋锈蚀(39)coupled wall:连肢墙(12)coupler:连接器(37)coupling wall—beam :连梁(12)coupling wall—column:墙肢(12)coursing degree of mortar:砂浆分层度(48)cover plate:盖板(52)covered electrode:焊条(54)crack:裂缝()crack resistance:抗裂度(31)crack width:裂缝宽度(31)crane girder:吊车梁(?)crane load:吊车荷载(15)creep of concrete:混凝土徐变(30)crook:横弯(71)cross beam:井字梁(6)cup:翘弯curved support:弧形支座(51)cylindrical brick arch:砖筒拱(43)decay:腐朽(71)decay prevention of timber structure:木结构防腐(70)defect in timber:木材缺陷(70)deformation analysis:变形验算(10)degree of gravity vertical for structure or structural member·:结构构件垂直度(40) degree of gravity vertical forwall surface:墙面垂直度(49)degree of plainness for structural memer:构件平整度(40)degree of plainness for wall surface:墙面平整度(49)depth of compression zone:受压区高度(32)depth of neutral axis:中和轴高度(32)depth of notch:齿深(67)design of building structures:建筑结构设计(8)design value of earthquake-resistant strength of materials:材料抗震强度设计值(1 design value of load—carrying capacity of members·:构件承载能力设计值(1 designations 0f steel:钢材牌号(53designvalue of material strength:材料强度设计值(1destructive test:破损试验(40detailing reintorcement:构造配筋(35detailing requirements:构造要求(22diamonding:菱形变形(71)diaphragm:横隔板(52dimensional errors:尺寸偏差(39)distribution factor of snow pressure:屋面积雪分布系数dogspike:扒钉(70)double component concrete column:双肢柱(26)dowelled joint:销连接(69)down-stayed composite beam:下撑式组合粱(8)ductile frame:延性框架(2)dynamic design:动态设计(8)earthquake-resistant design:抗震设计(9:earthquake-resistant detailing requirements:抗震构造要求(22)effective area of fillet weld:角焊缝有效面积(57)effective depth of section:截面有效高度(33)effective diameter of bolt or high-strength bolt:螺栓(或高强度螺栓)有效直径(57) effective height:计算高度(21)effective length:计算长度(21)effective length of fillet weld:角焊缝有效计算长度(48)effective length of nail:钉有效长度(56)effective span:计算跨度(21)effective supporting length at end of beam:梁端有效支承长度(46)effective thickness of fillet weld:角焊缝有效厚度(48)elastic analysis scheme:弹性方案(46)elastic foundation beam:弹性地基梁(11)elastic foundation plate:弹性地基板(12)elastically supported continuous girder:弹性支座连续梁(u)elasticity modulus of materials:材料弹性模量(18)elongation rate:伸长率(15)embeded parts:预埋件(30)enhanced coefficient of local bearing strength of materials·:局部抗压强度提高系数(14)entrapped air:含气量(38)equilibrium moisture content:平衡含水率(66)equivalent slenderness ratio:换算长细比(57)equivalent uniformly distributed live load:等效均布活荷载(14)etlectlve cross—section area of high-strength bolt:高强度螺栓的有效截面积(58) ettectlve cross—section area of bolt:螺栓有效截面面积(57)euler's critical load:欧拉临界力(56)euler's critical stress:欧拉临界应力(56)excessive penetration:塌陷(62)fiber concrete:纤维混凝仁(28)filler plate:填板门2)fillet weld:角焊缝(61)final setting time:终凝时间()finger joint:指接(69)fired common brick:烧结普通砖(43)fish eye:白点(62)fish—belly beam:角腹式梁(7)fissure:裂缝(?0)flexible connection:柔性连接(22)flexural rigidity of section:截面弯曲刚度(19)flexural stiffness of member:构件抗弯刚度(20)floor plate:楼板(6)floor system:楼盖(6)four sides(edges)supported plate:四边支承板(12)frame structure:框架结构(2)frame tube structure:单框筒结构(3)frame tube structure:框架—简体结构(2)frame with sidesway:有侧移框架(12)frame without sidesway:无侧移框架(12)frange plate:翼缘板(52)friction coefficient of masonry:砌体摩擦系数(44)full degree of mortar at bed joint:砂浆饱满度(48)function of acceptance:验收函数(23)gang nail plate joint:钉板连接()glue used for structural timberg:木结构用胶glued joint:胶合接头glued laminated timber:层板胶合木()glued laminated timber structure:层板胶合结构‘61)grider:主梁grip:夹具grith weld:环形焊缝(6)groove:坡口gusset plate:节点板(52)hanger:吊环hanging steel bar:吊筋heartwood :心材heat tempering bar:热处理钢筋(28)height variation factor of wind pressure:风压高度变化系数(16)heliral weld:螺旋形僻缝high—strength bolt:高强度螺栓high—strength bolt with large hexagon bea:大六角头高强度螺栓high—strength bolted bearing type join:承压型高强度螺栓连接,high—strength bolted connection:高强度螺栓连接high—strength bolted friction—type joint:摩擦型高强度螺栓连接high—strength holted steel slsteel structure:高强螺栓连接钢结构hinge support:铰轴支座(51)hinged connection:铰接(21)hlngeless arch:无铰拱(12)hollow brick:空心砖(43)hollow ratio of masonry unit:块体空心率(46)honeycomb:蜂窝(39)hook:弯钩(37)hoop:箍筋(36)hot—rolled deformed bar:热轧带肋钢筋(28)hot—rolled plain bar:热轧光圆钢筋(28)hot-rolled section steel:热轧型钢(53)hunched beam:加腋梁impact toughness:冲击韧性(18)impermeability:抗渗性(38)inclined section:斜截面(33)inclined stirrup:斜向箍筋(36)incomplete penetration:未焊透(61)incomplete tusion:未溶合(61)incompletely filled groove:未焊满(61)indented wire:刻痕钢丝(29)influence coefficient for load—bearing capacity of compression member:受压构件承载能力影响系数(46)influence coefficient for spacial action :空间性能影响系数(46)initial control:初步控制(22)insect prevention of timber structure:木结构防虫inspection for properties of glue used in structural member:结构用胶性能检验(71)inspection for properties of masnory units:块体性能检验(48)inspection for properties of mortar :砂浆性能检验(48)inspection for properties of steelbar:钢筋性能检验(39)integral prefabricated prestressed concrete slab—column structure:整体预应力板柱结构(25)intermediate stiffener:中间加劲肋(53)intermittent weld:断续焊缝(60)joint of reinforcement:钢筋接头(35)key joint:键连接(69)kinetic design:动态设计(8)knot:节子(木节)(70)laced of battened compression member:格构式钢柱(51)lacing and batten elements:缀材(缀件)(51)lacing bar:缀条(51)lamellar tearing:层状撕裂(62)lap connectlon:叠接(搭接)(59)lapped length of steel bar:钢筋搭接长度(36)large pannel concrete structure:混凝土大板结构(25)large-form cocrete structure:大模板结构(26)lateral bending:侧向弯曲(40)lateral displacement stiffness of storey:楼层侧移刚度(20)lateral displacement stiffness of structure:结构侧移刚度(20)lateral force resistant wallstructure:抗侧力墙体结构(12)leg size of fillet weld:角焊缝焊脚尺寸(57)length of shear plane:剪面长度(67)lift—slab structure:升板结构(25)light weight aggregate concrete:轻骨料混凝土(28)limit of acceptance:验收界限(23)limitimg value for local dimension of masonry structure:砌体结构局部尺寸限值(47) limiting value for sectional dimension:截面尺寸限值(47)limiting value for supporting length:支承长度限值(47)limiting value for total height of masonry structure:砌体结构总高度限值(47) linear expansion coeffcient:线膨胀系数(18)lintel:过梁(7)load bearing wall:承重墙(7)load-carrying capacity per bolt:单个普通螺栓承载能力(56)load—carrying capacity per high—strength holt:单个高强螺桂承载能力(56) load—carrying capacity per rivet:单个铆钉承载能力(55)log:原木(65)log timberstructure:原木结构(64)long term rigidity of member:构件长期刚度(32)longitude horizontal bracing:纵向水平支撑(5)longitudinal steel bar:纵向钢筋(35)longitudinal stiffener:纵向加劲肋(53)longitudinal weld:纵向焊缝(60)losses of prestress:‘预应力损失(33)lump material:块体(42)main axis:强轴(56)main beam:主梁(6)major axis:强轴(56)manual welding:手工焊接(59)manufacture control:生产控制(22)map cracking:龟裂(39)masonry:砌体(17)masonry lintel:砖过梁(43)masonry member:无筋砌体构件(41)masonry units:块体(43)masonry—concrete structure:砖混结构masonry—timber structure:砖木结构(11)mechanical properties of materials:材料力学性能(17)melt—thru:烧穿(62)method of sampling:抽样方法(23)minimum strength class of masonry:砌体材料最低强度等级(47)minor axls:弱轴(56)mix ratio of mortar:砂浆配合比(48)mixing water:拌合水(27)modified coefficient for allowable ratio of height to sectionalthickness of masonry wall :砌体墙容许高厚比修正系数(47)modified coefficient of flexural strength for timber curved mem:弧形木构件抗弯强度修正系数(68)modulus of elasticity of concrete:混凝土弹性模量(30)modulus of elasticity parellel to grain:顺纹弹性模量(66)moisture content:含水率(66)moment modified factor:弯矩调幅系数monitor frame:天窗架mortar:砂浆multi—defence system of earthquake—resistant building·:多道设防抗震建筑multi—tube supported suspended structure:多筒悬挂结构nailed joint:钉连接,net height:净高lnet span:净跨度net water/cementratio:净水灰比non-destructive inspection of weld:焊缝无损检验non-destructive test:非破损检验non-load—bearingwall:非承重墙non—uniform cross—section beam:变截面粱non—uniformly distributed strain coefficient of longitudinal tensile reinforcement:纵向受拉钢筋应变不均匀系数normal concrete:普通混凝土normal section:正截面notch and tooth joint:齿连接number of sampling:抽样数量obligue section:斜截面oblique—angle fillet weld:斜角角焊缝one—way reinforced(or prestressed)concrete slab:单向板open web roof truss:空腹屋架,ordinary concrete:普通混凝土(28)ordinary steel bar:普通钢筋(29)orthogonal fillet weld:直角角焊缝(61)outstanding width of flange:翼缘板外伸宽度(57)outstanding width of stiffener:加劲肋外伸宽度(57)over-all stability reduction coefficient of steel beam:钢梁整体稳定系数(58) overlap:焊瘤(62)overturning or slip resistance analysis :抗倾覆、滑移验算(10)padding plate:垫板(52)partial penetrated butt weld:不焊透对接焊缝(61)partition:非承重墙(7)penetrated butt weld:透焊对接焊缝(60)percentage of reinforcement:配筋率(34)perforated brick:多孔砖(43)pilastered wall:带壁柱墙(42)pit:凹坑(62)pith:髓心plain concrete structure:素混凝土结构(24)plane hypothesis:平截面假定(32)plane structure:平面结构(11)plane trussed lattice grids:平面桁架系网架(5)plank:板材(65)plastic adaption coefficient of cross—section:截面塑性发展系数(58)plastic design of steel structure:钢结构塑性设计(56)plastic hinge:塑性铰(13)plastlcity coefficient of reinforced concrete member in tensile zone:受拉区混凝土塑性影响系数(34)plate—like space frame:干板型网架(5)plate—like space truss:平板型网架(5)plug weld:塞焊缝(60)plywood:胶合板(65)plywood structure:胶合板结构(64)pockmark:麻面(39)polygonal top-chord roof truss:多边形屋架(4)post—tensioned prestressed concrete structure:后张法预应力混凝土结构(24) precast reinforced concrete member:预制混凝土构件(26)prefabricated concrete structure:装配式混凝土结构(25)presetting time:初凝时间(38)prestressed concrete structure:预应力混凝土结构(24)prestressed steel structure:预应力钢结构(50)prestressed tendon:预应力筋<29)pre—tensioned prestressed concrete structure:先张法预应力混凝土结构(24) primary control:初步控制(22)production control:生产控制(22)properties of fresh concrete:可塑混凝土性能(37)properties of hardened concrete:硬化混凝土性能(38)property of building structural materials:建筑结构材料性能(17)purlin:檩条(4)qlue timber structurer:胶合木结构(㈠)quality grade of structural timber:木材质量等级(?0)quality grade of weld:焊缝质量级别(61)quality inspection of bolted connection:螺栓连接质量检验(63)quality inspection of masonry:砌体质量检验(48)quality inspection of riveted connection:铆钉连接质量检验(63) quasi—permanent value of live load on floor or roof:楼面、屋面活荷载准永久值(15) radial check:辐裂(70)ratio of axial compressive force to axial compressive ultimate capacity of section:轴压比(35)ratio of height to sectional thickness of wall or column:砌体墙柱高、厚比(48) ratio of reinforcement:配筋率(34)ratio of shear span to effective depth of section:剪跨比(35)redistribution of internal force:内力重分布(13)reducing coefficient of compressive strength in sloping grain for bolted connection:螺栓连接斜纹承压强度降低系数(68)reducing coefficient of liveload:活荷载折减系数(14)reducing coefficient of shearing strength for notch and tooth connection:齿连接抗剪强度降低系数(68)regular earthquake—resistant building:规则抗震建筑(9)reinforced concrete deep beam:混凝土深梁(26)reinforced concrete slender beam:混凝土浅梁(26)reinforced concrete structure:钢筋混凝土结构(24)reinforced masonry structure:配筋砌体结构(41)reinforcement ratio:配筋率(34)reinforcement ratio per unit volume:体积配筋率(35)relaxation of prestressed tendon:预应筋松弛(31)representative value of gravity load:重力荷载代表值(17)resistance to abrasion:耐磨性(38)resistance to freezing and thawing:抗冻融性(39)resistance to water penetration:抗渗性(38)reveal of reinforcement:露筋(39)right—angle filletweld:直角角焊缝(61)rigid analysis scheme:刚性方案(45)rigid connection:刚接(21)rigid transverse wall:刚性横墙(42)rigid zone:刚域(13)rigid-elastic analysis scheme:刚弹性方案(45)rigidity of section:截面刚度(19)rigidly supported continous girder:刚性支座连续梁(11)ring beam:圈梁(42)rivet:铆钉(55)riveted connecction:铆钉连接(60)riveted steel beam:铆接钢梁(52)riveted steel girder:铆接钢梁(52)riveted steel structure:铆接钢结构(50)rolle rsupport:滚轴支座(51)rolled steel beam:轧制型钢梁(51)roof board:屋面板(3)roof bracing system:屋架支撑系统(4)roof girder:屋面梁(4)roof plate:屋面板(3)roof slab:屋面板(3)roof system:屋盖(3)roof truss:屋架(4)rot:腐朽(71)round wire:光圆钢丝(29)safety classes of building structures:建筑结构安全等级(9) safetybolt:保险螺栓(69)sapwood:边材(65)sawn lumber+A610:方木(65)sawn timber structure:方木结构(64)saw-tooth joint failure:齿缝破坏(45)scarf joint:斜搭接(70)seamless steel pipe:无缝钢管(54)seamless steel tube:无缝钢管(54)second moment of area of tranformed section:换算截面惯性矩(34) second order effect due to displacement:挠曲二阶效应(13) secondary axis:弱轴(56)secondary beam:次粱(6)section modulus of transformed section:换算截面模量(34) section steel:型钢(53)semi-automatic welding:半自动焊接(59)separated steel column:分离式钢柱(51)setting time:凝结时间(38)shake:环裂(70)shapefactorofwindload:风荷载体型系数(16)shear plane:剪面(67)shearing rigidity of section :截面剪变刚度(19)shearing stiffness of member:构件抗剪刚度(20)short stiffener:短加劲肋(53)short term rigidity of member:构件短期刚度(31)shrinkage:干缩(71)shrinkage of concrete:混凝干收缩(30)silos:贮仓(3)skylight truss:天窗架(4)slab:楼板(6)slab—column structure:板柱结构(2)slag inclusion:夹渣(61)sloping grain:‘斜纹(70)slump:坍落度(37)snow reference pressure:基本雪压(16)solid—web steel column:实腹式钢柱(space structure:空间结构(11)space suspended cable:悬索(5)spacing of bars:钢筋间距(33)spacing of rigid transverse wall:刚性横墙间距(46)spacing of stirrup legs:箍筋肢距(33)spacing of stirrups:箍筋间距(33)specified concrete:特种混凝上(28)spiral stirrup:螺旋箍筋(36)spiral weld:螺旋形焊缝(60)split ringjoint:裂环连接(69)square pyramid space grids:四角锥体网架(5)stability calculation:稳定计算(10)stability reduction coefficient of axially loaded compression:轴心受压构件稳定系数<13)stair:楼梯(8)static analysis scheme of building:房屋静力汁算方案(45)static design:房屋静力汁算方案(45)statically determinate structure:静定结构(11)statically indeterminate structure:超静定结构(11)sted:钢材(17)steel bar:钢筋(28)steel column component:钢柱分肢(51)steel columnbase:钢柱脚(51)steel fiber reinforced concrete structure:钢纤维混凝土结构(26)steel hanger:吊筋(37)steel mesh reinforced brick masonry member:方格网配筋砖砌体构件(41)steel plate :钢板(53)steel plateelement:钢板件(52)steel strip:钢带(53)steel support:钢支座(51)steel tie:拉结钢筋(36)steel tie bar for masonry:砌体拉结钢筋(47)steel tube:钢管(54)steel tubular structure:钢管结构(50)steel wire:钢丝(28)stepped column:阶形柱(7)stiffener:加劲肋(52)stiffness of structural member:构件刚度(19)stiffness of transverse wall:横墙刚度(45)stirrup:箍筋(36)stone:石材(44)stone masonry:石砌体(44)stone masonry structure:石砌体结构(41)storev height:层高(21)straight—line joint failure:通缝破坏(45)straightness of structural member:构件乎直度(71)strand:钢绞线(2)strength classes of masonry units:块体强度等级(44)strength classes of mortar:砂浆强度等级(44)strength classes of structural steel:钢材强度等级(55)strength classes of structural timber:木材强度等级(66)strength classes(grades) of concrete:混凝土强度等级(29)strength classes(grades) of prestressed tendon:预应力筋强度等级(30) strength classes(grades) of steel bar :普通钢筋强度等级(30)strength of structural timber parallel to grain:木材顺纹强度(66) strongaxis:强轴(56)structural system composed of bar:杆系结构(11)structural system composed of plate:板系结构(12)structural wall:结构墙(7)superposed reinforced concrete flexural member:叠合式混凝土受弯构件(26) suspended crossed cable net:双向正交索网结构(6)suspended structure:悬挂结构(3)swirl grain:涡纹()tensile(compressive) rigidity of section:截面拉伸(压缩)刚度(19)tensile(compressive) stiffness of member:构件抗拉(抗压)刚度(20)tensile(ultimate) strength of steel:钢材(钢筋)抗拉(极限)强度(18)test for properties of concrete structural members:构件性能检验(40):thickness of concrete cover:混凝土保护层厚度(33)thickness of mortarat bed joint:水平灰缝厚度(49)thin shell:薄壳(6)three hinged arch:三铰拱(n)tie bar:拉结钢筋(36)tie beam 系梁(22)tie tod:系杆(5)tied framework:绑扎骨架(35)timber:木材(17)timber roof truss:木屋架(64)tor-shear type high-strength bolt:扭剪型高强度螺栓(54)torsional rigidity of section:截面扭转刚度(19)torsional stiffness of member:构件抗扭刚度(20)total breadth of structure:结构总宽度(21)total height of structure:结构总高度(21)total length of structure:结构总长度(21)transmission length of prestress:预应力传递长度(36)transverse horizontal bracing:横向水平支撑(4)transverse stiffener:横向加劲肋(53)transverse weld:横向焊缝(60)transversely distributed steelbar:横向分布钢筋(36)trapezoid roof truss:梯形屋架(4)triangular pyramid space grids:三角锥体网架(5)triangular roof truss:三角形屋架(4)trussed arch:椽架(64)trussed rafter:桁架拱(5)tube in tube structure:筒中筒结构(3)tube structure:简体结构(2)twist:扭弯(71)two hinged arch:双铰拱(11)two sides(edges) supported plate:两边支承板(12)two—way reinforced (or prestressed) concrete slab:混凝土双向板(27)ultimate compressive strain of concrete:混凝土极限压应变(31)unbonded prestressed concrete structure:无粘结预应力混凝土结构(25)undercut:咬边(62)uniform cross—section beam:等截面粱(6)unseasoned timber:湿材(65)upper flexible and lower rigid complex multistorey building:上柔下刚多层房屋(45) upper rigid lower flexible complex multistorey building:上刚下柔多层房屋(45) value of decompression prestress :预应力筋消压预应力值(33)value of effective prestress:预应筋有效预应力值(33)verification of serviceability limit states:正常使用极限状态验证(10)verification of ultimate limit states :承载能极限状态验证(10)vertical bracing:竖向支撑(5)vierendal roof truss:空腹屋架(4)visual examination of structural member:构件外观检查(39)visual examination of structural steel member:钢构件外观检查(63) visual examination of weld:焊缝外观检查(62)wall beam:墙梁(42)wall frame:壁式框架(门)wall—slab structure:墙板结构(2)warping:翘曲(40)warping rigidity of section:截面翘曲刚度(19)water retentivity of mortar:砂浆保水性(48)water tower:水塔(3)water/cement ratio:水灰比(3g)weak axis:弱轴(56)weak region of earthquake—resistant building:抗震建筑薄弱部位(9) web plate:腹板(52)weld:焊缝(6)weld crack:焊接裂纹(62)weld defects:焊接缺陷(61)weld roof:焊根(61)weld toe:焊趾(61)weldability of steel bar:钢筋可焊性(39)welded framework:焊接骨架()welded steel beam:焊接钢梁(welded steel girder:焊接钢梁(52)welded steel pipe:焊接钢管(54)welded steel strueture:焊接钢结构(50)welding connection:焊缝连接(59)welding flux:焊剂(54)welding rod:焊条(54)welding wire:焊丝(54)wind fluttering factor:风振系数(16)wind reference pressure:基本风压(16)wind—resistant column:抗风柱wood roof decking:屋面木基层(64)yield strength (yield point) of steel:钢材(钢筋)屈服强度(屈服点)。

相关文档
最新文档