第12讲资本资产定价模型
投资学中的资本资产定价模型

投资学中的资本资产定价模型资本资产定价模型(Capital Asset Pricing Model,CAPM)是投资学中的一种重要理论模型,用于估计某项资产的预期回报率。
它在投资决策、资产评估和风险管理等领域扮演着重要角色。
本文将对CAPM的基本概念、公式推导和应用进行阐述。
一、CAPM的基本概念资本资产定价模型是在一定假设条件下,以市场组合为基准,通过测量资产的风险和预期回报率之间的关系来解释资本市场的定价现象。
CAPM的核心思想是,投资者对于资产的风险厌恶程度决定了他们对于收益与风险的权衡。
CAPM的基本假设包括:1. 完全市场假设:假设市场上没有交易成本,所有的投资者都能以相同的无风险利率借贷。
2. 投资者效用最大化假设:投资者在进行投资决策时,总是试图最大化自己的效用。
3. 投资者无限分散化假设:认为投资者将其投资资金充分分散到各种不同的证券上,消除了个别资产的特异性风险。
二、CAPM的公式推导CAPM的核心公式如下:E(Ri) = Rf + βi(E(Rm) - Rf)其中,E(Ri)表示资产i的预期回报率,Rf表示无风险利率,βi表示资产i相对于市场组合的β系数,E(Rm)表示市场组合的预期回报率。
公式的含义是,资产i的预期回报率等于无风险利率加上市场风险溢价与资产i的β系数的乘积。
通过公式可以看出,β系数是CAPM模型的重要指标之一。
β系数衡量了资产相对于市场组合的系统性风险。
β系数大于1意味着资产具有高于市场平均水平的风险,而小于1则意味着资产具有低于市场平均水平的风险。
三、CAPM的应用CAPM在实际应用中有多种用途。
以下是其中的几个方面:1. 资产估值:CAPM可以用于估计资产的合理价值。
通过计算资产的预期回报率,可以与市场价格进行比较,判断该资产是否被低估或高估。
2. 投资组合管理:CAPM可以帮助投资者构建有效的投资组合。
通过选择具有不同β系数的资产,可以实现投资组合的风险与回报的平衡。
资本资产定价模型PPT课件

资产定价的随机过程
随机过程的基本概念
随机过程是描述一系列随机事件的数学模型,其中每个事件的发生都具有不确定性。在资产定价的上下文中,随 机过程通常用于描述资产价格的变动。
资本资产定价模型的随机过程
资本资产定价模型假设资产价格的变动遵循随机过程,并且这种变动与资产的预期回报和风险有关。通过建立适 当的随机过程模型,可以进一步研究资产价格的动态行为和风险特征。
发展历程
起源
资本资产定价模型起源于20世纪60年代,由经济学家威廉·夏普、 约翰·林特纳和简·莫辛共同发展。
发展
在随后的几十年中,CAPM经历了多次修订和完善,以适应金融市 场的变化。
应用
资本资产定价模型被广泛应用于投资组合管理、风险评估和资本预算 等领域。
发展历程
起源
资本资产定价模型起源于20世纪60年代,由经济学家威廉·夏普、 约翰·林特纳和简·莫辛共同发展。
发展
在随后的几十年中,CAPM经历了多次修订和完善,以适应金融市 场的变化。
应用
资本资产定价模型被广泛应用于投资组合管本资产定价模型用于确定投资 组合的风险和预期回报,帮助投 资者在风险和回报之间做出权衡。
风险评估
通过CAPM,投资者可以评估特 定资产或投资组合的风险,并与 其他资产或基准进行比较。
主要发现
是一种用于评估风险和预期回报之间关系的金融模型,主要用于投资组合管理 和风险评估。
CAPM的核心思想
资本的预期收益率由两部分组成,一部分是无风险利率,另一部分是风险溢价, 即风险超过无风险资产的部分。
目的和目标
目的
通过理解CAPM,投资者可以更准确 地评估投资的风险和预期回报,从而 做出更明智的投资决策。
资本资产定价模型概述(ppt42张)

6、可以在无风险折现率R的水平下无限制地借 入或贷出资金; 7、所有投资者对证券收益率概率分布的看法一 致,因此市场上的效率边界只有一条; 8、所有投资者具有相同的投资期限,而且只有 一期; 9、所有的证券投资可以无限制的细分,在任何 一个投资组合里可以含有非整数股份;
10、税收和交易费用可以忽略不计; 11、市场信息通畅且无成本; 12、不考虑通货膨胀,且折现率不变; 13、投资者具有相同预期,即他们对预期收益率、 标准差和证券之间的协方差具有相同的预期值。 上述假设表明:第一,投资者是理性的,而且严格 按照马科威茨模型的规则进行多样化的投资,并将 从有效边界的某处选择投资组合;第二,资本市场 是完全有效的市场,没有任何磨擦阻碍投资。
又由(7.3)
dv 1 dE ( r E ( r )E ( r c) M j)
于是
d d d v c c d Er ( c) d vd Er ( c)
2 2 [ ( 1 v ) ( 1 2)c v o v ( r , r ) v ]/ j j m M c Er ( M) Er ( j)
假定2:针对一个时期,所有投资者的预期 都是一致的。
这个假设是说,所有投资者在一个共同的时期内 计划他们的投资,他们对证券收益率的概率分布 的考虑是一致的,这样,他们将有着一致的证券预 期收益率﹑证券预期收益率方差和证券间的协方 差。同时,在证券组合中,选择了同样的证券和同 样的证券数目。 这个假设与下面的关于信息在整个资本市场中畅 行无阻的假设是一致的。
故
2 c o v ( r , r ) d j M M c d Er ( c)v Er ( M) Er ( j) ) c( 1
资本资产定价模型

M
线变成了AM射线。
A
N
CML B
P
• M点是包括了所有证券的市场投资组合
•
AM是资本市场线:
RP
Rf
Rm R f
m
p
– 资本市场线描述的是市场投资组合与无风险资产所构
成的投资组合的收益率与风险之间的关系。
第五节、资本资产定价模型
• 威廉夏普对资本市场线进行了扩展,发现 个别证券或者证券组合的收益率和风险可
• 可行集:由n种证券所 RP
形成的所有可能的组合 的集合,如图ANBH所
N
示。
A
B H
P
• 有效集:满足两个条件的证券组合集合:
– 风险相同条件下,选择收益最高的组合
– 收益相同条件下,选择风险最低的组合
• 有效集的形状:NB曲线
第四节、无风险借贷与资本市场线
• 无风险资产:银行存贷款、国债、货币基金等。
2 A
xB2
2 B
2xA xB AB A B
–
多种证券组合:
证券i(Ri
,
, 2
i
xi
)
n
RP xi Ri i 1
nn
2 P
xi x j ih
i1 j1
风险的分散
•
多种证券组合的风险为:
2 P
n
n
xi x j ih
i1 j1
组合的风险
非系统性风险 系统性风险
证券的数量n
第三节、有效集与最优投资组合
CAPM模型的评价
• 资本资产定价模型在马科维茨的证券组合理论的基础上, 对金融资产和投资组合的风险衡量进行了更深入的研究, 并提出了单个金融资产预期收益率与其系统性风险的均衡 关系,从而导出了各种资产根据其系统性风险定价的资本 资产定价模型。应该说,夏普的研究是具有建设性的,他 把马科维茨的研究向前推进了一大步。
投资学第章资本资产定价模型剖析ppt课件

与指数模型的期望形式:
E(ri ) rf i i[E(rM ) rf ] 可知二者差别在于,CAPM认为所有的i都为0。 市场模型:rf E(ri ) i[rf E(rM )] ei
如果CAPM有效,则市场模型等同于指数模型。
E(Ri ) kE(Ci ) ( L1 L2 L3 )
其中,E(Ci )为期望流动性代价; k为所有资产的调整后的平均持有期
为平均市场流动性的市场风险溢价净值 为系统性市场风险敏感度, L1、 L 2、 L3为流动性 E(RM CM ),CM 表示市场平均流动性溢价。
37
流动性的三要素
25
9.3 CAPM符合实际吗?
CAPM的实用性取决于证券分析。 9.3.1 CAPM能否检验 ▪ 规范方法与实证方法 ▪ 实证检验的两类 错误(数据、统计方法) 9.3.2 实证检验质疑CAPM
26
9.3 CAPM符合实际吗?
9.3.3CAPM的经济性与有效性 ▪ CAPM在公平定价领域的广泛应用 ▪ CAPM被普遍接受的原因 9.3.4 投资行业与CAPM的有效性 投资公司更趋向于支持CAPM
39
27
9.4 计量经济学和期望收益-贝塔关系
▪ 计量经济方法可能是引起CAPM被错误拒 绝的原因
▪ 相关改进
➢ 用广义最小二乘法处理残差相关性 ➢ 时变方差模型ARCH
28
9.5 CAPM的拓展形式
两种思路: ▪ 假定的放宽 ▪ 投资者心理特征的应用
29
9.5.1 零模型
有效前沿的三大性质:
▪ 两种有效前沿上的资产组合组成的任意资产组合仍在有 效前沿上
23
9.2.2 指数模型和已实现收益
资本资产定价模型

资本资产定价模型在金融领域,资本资产定价模型(Capital Asset Pricing Model,简称 CAPM)是一个具有重要地位的理论框架。
它为投资者理解资产风险与预期收益之间的关系提供了关键的指导。
要明白资本资产定价模型,首先得清楚什么是资产的风险和收益。
想象一下,你把钱投资到股票、债券或者其他金融资产上,你期望能从中获得回报,这就是收益。
但同时,投资也伴随着不确定性,可能赚得盆满钵满,也可能亏得血本无归,这种不确定性就是风险。
CAPM 认为,资产的预期收益率主要取决于两个因素:无风险利率和资产的系统性风险。
无风险利率就像是一个基准,通常可以用国债的收益率来代表。
因为国债被认为是几乎没有违约风险的。
那什么是系统性风险呢?简单来说,就是整个市场都面临的风险,比如经济衰退、通货膨胀、政策调整等。
这些因素会对所有的资产产生影响,不是单个投资者或者企业能够控制的。
在 CAPM 中,用贝塔系数(β)来衡量资产的系统性风险。
β值大于 1 表示该资产的风险高于市场平均水平,预期收益也会相应较高;β值小于 1 则表示风险低于市场平均水平,预期收益也较低;β值等于 1 意味着资产的风险与市场平均水平相当。
举个例子,假如市场的预期收益率是 10%,无风险利率是 3%,某只股票的β值是 15。
那么根据 CAPM 公式,这只股票的预期收益率就应该是 3% + 15×(10% 3%)= 135%。
资本资产定价模型的意义非常重大。
对于投资者来说,它帮助他们评估不同资产的合理价格和预期收益,从而做出更明智的投资决策。
如果一只股票的实际价格低于根据 CAPM 计算出的合理价格,那么投资者可能会认为这是一个买入的好机会;反之,如果实际价格高于合理价格,可能就需要考虑卖出了。
对于企业来说,CAPM 也有很大的作用。
企业在进行项目投资决策时,可以利用 CAPM 来计算项目的必要收益率,从而判断项目是否值得投资。
然而,资本资产定价模型也并非完美无缺。
资本资产定价模型

资本资产定价模型
在金融领域,资本资产定价模型(Capital Asset Pricing Model,简称CAPM)是一种被广泛应用的理论模型,用于衡量资产的预期收益率。
资本资产定价模型基于市场有效性假设,即市场上的所有投资者都具有相同的信息和投资目标,在没有风险的市场中将做出相似的投资选择。
CAPM模型通过分析资产的系统性风险和风险溢价来确定资产的预期回报率。
资本资产定价模型的基本公式为:
\[ E(R_i) = R_f + \beta_i(E(R_m) - R_f) \]
其中,\( E(R_i) \) 表示资产的预期回报率,\( R_f \) 表示无风险利率,
\( \beta_i \) 表示资产的贝塔系数,\( E(R_m) \) 表示市场组合的预期回报率。
CAPM模型的核心概念是风险溢价,即投资者对承担风险所要求的回报。
贝塔系数代表了资产相对于市场组合的风险敞口,当贝塔系数大于1时,表示资产的风险大于市场平均水平;当贝塔系数小于1时,表示资产的风险低于市场平均水平。
资本资产定价模型的应用范围涵盖了各种金融资产,包括股票、债券、衍生品等。
投资者可以利用CAPM模型来评估资产的风险和回报之间的关系,从而制定有效的投资策略。
然而,CAPM模型也存在一些局限性,例如假设过于理想化、参数估计误差等问题,限制了其在实际投资中的应用。
总的来说,资本资产定价模型作为金融领域中重要的理论框架,为投资者提供了一种有效的资产定价方法。
通过对资产的风险和回报进行定量分析,CAPM模型帮助投资者更准确地评估资产的价值,优化投资组合,实现资产配置的最优化。
第12讲 C-CAPM及其讨论 (《金融经济学》PPT课件)

费平滑意愿) 13
12.5 对资产定价逻辑的再思考
《
金
融
经 济
关键问题
学
二 五
投资者为什么会买卖资产?
讲
》 配 套
市场上为什么会存在对资产的交易?
课
件 误导的逻辑
对同一种资产有不同的观点不同才会形成交易——有买有卖才有交易
正确的观点挣钱,错误的观点亏钱
资产交易是个零和博弈
正确的逻辑
对同一种资产的不同观点可能都是对的——投资者的消费状况决定了
消费品不可储存假设与储蓄
微观层面的消费者总是可以储蓄的——签订金融契约把自己的消费品借给别人, 换取别人未来消费品的偿付
利率的变化保证了微观层面消费者(基于利率的最优)行为与宏观层面的物理 约束匹配
尽管在技术上没有储存消费品的可能,但可以用储蓄动机来分析利率的变化
8
12.3 风险溢价的决定
他对资产的评价
14
无风险利率表达式的推导
《
金
融
经 济
学
从无风险利率开始对资产期E[r%j望] r回f 报E[r%j率] r(f 资产价格)的研究
二
五
讲
》 配
定义消费的增长率为
g% c%1 1
套 课
c0
件
定义͞g≡E[g͂]为消费增长率的期望值
var(g%) E[g% g ]2 E[g%2 ] 2gE[g%] g 2 E[g%2 ] g 2 E[g%2 ]
u(c0 )
u(c%1), r%j
资产的风险溢价由系统风险而非个体风险决定
完备市场中消费者只承担总消费(总禀赋)的波动,其他波动可被分散掉 总消费波动就是系统性风险,超出其波动的波动是个体风险 资产回报中那些与总消费波动相关的部分才是需要承担的“真正风险”,才会
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四、资本资产定价模型
(一)资本资产定价模型的基本原理
1.资本资产定价模型的基本表达式
必要收益率=无风险收益率+风险收益率
R=R f+β×(R m-R f)
2.(R m-R f)含义及影响因素
反映市场作为整体对风险的平均容忍程度(或厌恶程度)。
市场整体对风险越是厌恶和回避,市场风险溢酬的数值就越大。
市场的抗风险能力强,则对风险的厌恶和回避就不是很强烈,市场风险溢酬的数值就小。
【教材例2-21】假设平均风险的风险收益率为5%,平均风险的必要收益率为8%,计算[例2-20]中乙方案(β系数为1.01)的风险收益率和必要收益率。
【答案】
乙方案的风险收益率=1.01×5%=5.05%
乙方案的必要收益率=3%+5.05%=8.05%。
【例题•判断题】市场整体对风险越是厌恶和回避,市场风险溢酬的数值就越小。
()
【答案】×
【解析】市场整体对风险越是厌恶和回避,要求的补偿就越高,因此,市场风险溢酬的数值就越大。
【例题•多选题】关于资本资产定价模型,下列说法正确的有()。
(2018Ⅱ)
A.该模型反映资产的必要收益率而不是实际收益率
B.该模型中的资本资产主要指的是债券资产
C.该模型解释了风险收益率的决定因素和度量方法
D.该模型反映了系统性风险对资产必要收益率的影响
【答案】ACD
【解析】资本资产定价模型中,所谓资本资产主要指的是股票资产,选项B错误。
【例题•判断题】依据资本资产定价模型,资产的必要收益率不包括对公司特有风险的补偿。
()(2017年)
【答案】√
【解析】资本资产定价模型中,某资产的必要收益率是由无风险收益率和资产的风险收益率决定的。
而风险收益率中的β系数衡量的是证券资产的系统风险,公司特有风险作为非系统风险是可以分散掉的。
【例题•计算题】某公司拟进行股票投资,计划购买A、B、C三种股票,并分别设计了甲乙两种投资组合。
已知三种股票的β系数分别为1.5、1.0和0.5,它们在甲种投资组合下的投资比重为50%、30%和20%;乙种投资组合的风险收益率为3.4%。
同期市场上所有股票的平均收益率为12%,无风险收益率为8%。
要求:
(1)根据A、B、C股票的β系数,分别评价这三种股票相对于市场投资组合而言的投资风险大小。
(2)按照资本资产定价模型计算A股票的必要收益率。
(3)计算甲种投资组合的β系数和风险收益率。
(4)计算乙种投资组合的β系数和必要收益率。
(5)比较甲乙两种投资组合的β系数,评价它们的投资风险大小。
(2005年)
【解析】
(1)A股票的β>1,说明该股票所承担的系统风险大于市场投资组合的风险(或A股票所承担的系统风险等于市场投资组合风险的1.5倍)
B股票的β=1,说明该股票所承担的系统风险与市场投资组合的风险一致(或B股票所承担的系统风险等于市场投资组合的风险)
C股票的β<1,说明该股票所承担的系统风险小于市场投资组合的风险(或C股票所承担的系统风险等于市场投资组合风险的0.5倍)
(2)A股票的必要收益率=8%+1.5×(12%-8%)=14%
(3)甲种投资组合的β系数=1.5×50%+1.0×30%+0.5×20%=1.15
甲种投资组合的风险收益率=1.15×(12%-8%)=4.6%
(4)乙种投资组合的β系数=3.4%/(12%-8%)=0.85
乙种投资组合的必要收益率=8%+3.4%=11.4%
或者:
乙种投资组合的必要收益率=8%+0.85×(12%-8%)=11.4%
(5)甲种投资组合的β系数(1.15)大于乙种投资组合的β系数(0.85),说明甲投资组合的系统风险大于乙投资组合的系统风险。
(二)资本资产定价模型的有效性和局限性
有效性:
资本资产定价模型和证券市场线最大的贡献在于它提供了对风险和收益之间的一种实质性的表述,CAPM和SML首次将“高收益伴随着高风险”这样一种直观认识,用这样简单的关系式表达出来。
到目前为止,CAPM和SML是对现实中风险与收益关系最为贴切的表述。
局限性:
(1)某些资产或企业的β值难以估计,特别是对一些缺乏历史数据的新兴行业;
(2)由于经济环境的不确定性和不断变化,使得依据历史数据估算出来的β值对未来的指导作用必然要打折扣;
(3)CAPM是建立在一系列假设之上的,其中一些假设与实际情况有较大偏差,使得CAPM的有效性受到质疑。
这些假设包括:市场是均衡的,市场不存在摩擦,市场参与者都是理性的、不存在交易费用、税收不影响资产的选择和交易等。