变压器油温过高原因浅析
变压器过热故障原因分析及处理对策

变压器过热故障原因分析及处理对策一、变压器绕组过热分析近十几年来,为降低变压器损耗,各制造厂先后采用了带有统包绝缘的换位导线绕制变压器绕组。
由于早期国内对换位导线生产技术尚未全面掌握,使之采用换位导线的变压器在运行十年左右出现了统包绝缘膨胀。
段间油道堵塞、油流不畅,匝绝缘得不到充分冷却,使之严重老化,以致发糊、变脆,在长期电磁振动下,绝缘脱落,局部露铜,形成匝间(段间)短路,导致变压器烧损事故。
另外,绕组本身的质量不良也会导致过热现象。
二、分接开关动、静触头接触不良引起的过热在有载调压变压器中,特别是调压频繁、负荷电流较大的变压器,在频繁的调动中会造成触头之间的机械磨损、电腐蚀和触头污染,电流的热效应会使弹簧的弹性变弱,从而使动、静触头之间的接触压力下降。
接触压力减小,会使触头之间的接触电阻增大,从而导致触头之间的发热量增大,由于发热又加速触头表面的氧化腐蚀和机械变形,形成恶行循环,如不及时处理,往往会使变压器发生损坏事故。
在无载调压变压器中,分接开关接触不良,也会使其表面腐蚀、氧化,或触头之间的接触压力下降使接触电阻增大,而形成变压器的过热性故障。
三、引线故障引起的过热故障(1)引线接头过热:引线接头(将军冒)过热也是多发性故障。
例如,东北电网某局的一台主变压器,总烃为455.9ppm乙炔为4.23ppm。
吊检发现66KVA 相套管穿缆引线过热,焊锡流出到夹件和压件上;有如,某台主变压器,B 相套管头部发热,经检查,将军冒螺扣匹配不良,将螺扣烧坏5~6扣,造成过热。
(2)引线断股某台DFL-6000/220型单相变压器,1990年5月开始发现色谱分析结果异常,热点温度可能高压1000C,直到1993年5月进行大修时才发现,该变压器中性点套管内的引线有两股烧断、三股烧伤(共35股,240mm2),其原因是在1989年5月检修中,更新该中性点套管时引线(铜辫子)向上拉比较别劲,使引线外层半迭绕白布带脱落,裸辫子引线与套管内的铜管内壁相碰,发生分流、放电、过热。
某220kV主变油温高报警原因分析及处理方法

某220kV主变油温高报警原因分析及处理方法针对某220kV变压器发油温高报警信号,通过红外测温、分析负荷曲线等手段,逐步排除主变发热的可能原因,最终得出结论是由于冷却系统效率下降导致主变发热。
为减小在带电运行主变上工作的风险,采用高压气体清洗冷却器油管,经过清洗,冷却系统效率恢复明显,主变油温逐步恢复正常。
标签:变压器;油温高;冷却器;高压气体清理0 引言变压器在运行过程中,铁芯、绕组中会产生损耗,同时伴随着发热现象的存在,而一般油浸变压器绕组采用A级绝缘,绕组允许温度可达105℃,过高的温升会使变压器绕组发热,绝缘下降。
温升超过限值一定时间将导致变压器绝缘受损,甚至缩短寿命。
因此在变电运行过程中,快速查找到变压器异常发热原因,能有效避免变压器温度过高造成更严重的电网安全事故的发生。
1 某220kV变压器油温高案例情况简介220kV某变电站2号主变投运时间为1997年8月20日,累计运行21年。
2018年04月09日19:58分,220kV某变电站发出“2号主变油温高报警的信号”。
后台显示油温77℃,现场测温冷却器上层连接管温度78℃,下层80℃。
经现场检查,油阀正常,油流继电器正常,风扇全启运行正常。
实时有功76.9MV A,负载率为42.7%。
2号主变潜油泵正常开启,上下油管温差2度左右,2号主变油位为刻度9处,符合温度-油位曲线。
各散热片温度均匀油温表1,2均读数在78℃左右,后台无绕温遥测量。
1号主变为自然风冷,型号厂家均不一样,2017年投产,无法进行横向对比。
2 某220kV变压器油温高原因分析2.1 负荷变化分析针对“2号主变油温高报警的信号”运行人员通过后台监控调取了近一周的监控数据,近一周油温最大值在75℃-81℃之间,并且时间油温最大值发生时间集中在23:00-00:00之间。
分析后台的温度变化曲线可知,当日温度变化趋势与负荷变化基本一致,且近一周主变负载率都在50%左右波动,可以排除是因为负荷过大导致主变油温升高。
韶山7E型机车主变压器油温高的原因分析及措施

变压器风机对板翅式 散热器进行强制对流散热冷却 ,以便达到
控 制主 变 压器 温 度的 目的 。 2 . 2板 翅 式冷 却 器的 冷却 及技 术 参数
该 板 翅 式 冷 却器 采 用全 铝 合 金 材 质 ,散 热 趔 片 在 结 构 上 采
用叉排方式 ,以便提高散热效率 。板翅式冷却器的热量传递途 径为 :高温变压器油将热 量传递给散热器壳体 ,然后散热 器壳 体将热量传递给 散热 器翅 片 ,最后通过高速流过翅片表面的冷
定 范 围以 内 。
其次 ,在 确认了主变压器内部没有异常之后 ,又通过对变 压器油泵线路和主变风机线路检查后确认线路没有异常 ,然后 对油泵和风机 的输 入电压和稳定运行 后的电流 ,油流方向和风
机 风 向进行 观 察 ,也未 发 现异 常 。
S S 7 E 型 电 力机 车 主 变 压 器 型 号 为 J D F P 3 — 9 1 8 ( ) / 2 5 ,内装 1 台 主 变 压 器 ,6 6牵 引 电机 平波 电抗 器 ,2 6供 电 电抗 器 ,4 台辅 助
2 主 变压 器 油温 高 的故 障 查找
2 . 1 S S 7 E 机 车主 变压 器及散 热 系统 简介
放 阀以及泄油管进 行初步检查并未发现压 力释放阀存在动作现
象 ,然 后 通 过 对 变 压器 油样 进 行 化验 ,确 认主 变 内部 没 有 发 生 放 电 ,最 后 对 变压 器 的空 载 电流 进行 测量 ,发 现 空 载 电 流 在 规
2 . 3轴 流通 风机 技 术参 数
电动 机 型号 风量
风压 转速
限 ( 9 0℃ )时亮灯并发 出断开机车主断路器指令分开主断起到 保护作用 。正是 由于这套油温保护装置作用 ,西 安机 务段配属
干式变压器运行中温度升高的原因及处理

干式变压器运行中温度升高的原因及处理摘要:变压器在运行中会产生大量的热量,促使变压器温度升高,因而在变压器运行中会有冷却系统对其进行降温,但在变压器的实际运行中,难免会有疏漏之处,比如巡查不到位、冷却系统故障、接地故障、短路故障等,本文首先阐述了变压器温度控制的要求,然后对引起变压器运行中温度升高的原因做了详细的分析,在此基础上总结出几点具有针对性的处理方式。
关键词:变压器、温升、原因分析、处理方式引言:变压器在运行过程中,因为变压器中存在电磁场和线圈电流的作用,因此损耗了电能,电能又转化为热能,热能的扩散加快了变压器各部件温度的升高,进而转化为热能不断扩散,导致变压器各个部位的温度升高。
而运行电压、环境温度、性能参数、散热方式等均会影响温度的上升,持续的高温会损毁变压器的部分零件,降低变压器的使用年限,所以采取必要的降温措施具有重要的现实意义。
1.变压器运行时温度控制的意义对于人们所熟知变压器油起着冷却和绝缘的作用,其在长期高温热作用下会氧化和裂解,生成稳定的氧化物和有机酸,造成变压器油酸性增加,粘度增大,甚至会析出油泥和水分,影响变压器的绝缘和散热水平,伴随而来的还会产生可燃性气体,引起瓦斯继电器发出信号,长时间热作用下的绝缘纸板和电缆纸等绝缘材料会丧失弹性、变的松脆,丧失机械强度。
另外,若变压器的温度过高,变压器油以及各种材料均会因过热而过度膨胀,出现储油柜中的变压器油外溢、喷油等现象,所以,不论变压器处于何种运行状态,对其的温度监测和控制都非常重要。
2.引起变压器运行温度升高的原因分析2.1散热器积污散热器表面很容易积聚大量的脏东西,阻碍风扇吹出的风经过散热管,以至于降低了散热效率,如果在每年的负荷高峰和高温季节来临前,工作人员没有对变压器进行冲水、清理变压器的散热器,那么变压器的油温会上升的非常快,从而影响变压器的正常运行。
2.2冷却系统异常电力变压器常用的冷却方式一般分为三种,油浸自冷式、油浸风冷式、强迫油循环。
论变电站主变压器油温偏高成因及控制措施

论变电站主变压器油温偏高成因及控制措施1 现状某变电站现配置两台常州变压器厂生产的三相双绕组油浸风冷式有载调压主变压器,主变型号为SFZ9-50000/110,每台容量50MVA。
油顶层温升55℃,绕组温升65℃。
通过长期跟踪观察发现,两台主变压器的油温在负荷高峰期都维持在较高水平。
由于两台变压器是线串变接线方式,并且10kV母线处于分列运行状态,而两台主变压器的负荷分配极不平衡,#2主变压器负荷比#1主变压器明显偏高(2011年#2主变压器有功功率平均值约为#1主变压器的1.7倍),#2主变压器的油温长期超过70℃运行。
2 原因分析2.1 变压器内因2.1.1 损耗过大。
变压器的发热主要来自损耗,其损耗分为铁损和铜损,铁损又叫空载损耗,就是其固定损耗,实是铁芯所产生的损耗(也称铁芯损耗),而铜损也叫负荷损耗。
#1、#2主变压器于1995年10月投运,两台主变的冷却器运行均已超过16年,随着变压器的老化,变压器性能也会随着下降,其绕组的电阻以及其铁芯漏磁通增加,导致变压器损耗增大,造成变压器正常运行时的温度异常。
2.1.2 冷却装置故障。
对于油浸风冷式变压器,绕组、铁心以及其他结构件中产生的热量是通过变压器油传给油箱和冷却器,再由周围空气进行冷却。
变压器在运行时,当变压器的负荷达到额定容量的四分之三或变压器上层油温达到65℃时,冷却器自动投入。
如果冷却装置发生故障(比如二次回路故障),那么当油温达到启动温度时冷却装置不能正常投入,从而造成油温升高。
通过对两台主变冷却装置的多次测试,发现无论是自动还是手动方式,冷却器都能够正常投入,因此,冷却系统故障不是造成主变升温的原因。
2.1.3 冷却器散热性能不佳。
主变压器的安全可靠运行和使用寿命,在很大程度上取决于主变压器冷却器的散热性能。
如果冷却器运行时间比较长,各部分均可能出现不同程度的磨损和老化,在夏季环境气温相对较高,冷却器散热片间如稍有风沙后积灰,就会导致冷却器换热效果恶化,散热性能不佳。
500KV主变压器油温异常升高的剖析与对策

500KV 主变压器油温异常升高的剖析与对策发布时间:2022-11-07T11:34:36.550Z 来源:《当代电力文化》2022年13期作者:王子刚[导读] 油浸式变压器系统中王子刚贵州乌江水电开发电有限责任公司构皮滩发电厂贵州遵义563000摘要:油浸式变压器系统中,绝缘油主要起灭弧、绝缘、散热的作用,当绝缘油的温度发生异常升高现象时,势必会对变压器的安全运行造成一定的影响。
本文主要介绍了构皮滩发电厂500kV 5号主变C相发生油温异常升高的现象,对发现的问题逐条剖析、制定对策及对策实施,最终解决油温异常升高的问题。
关键字:变压器绝缘油温升1 概述构皮滩发电厂主变压器型号为DSP-223000/500,由保定天威保变电气股份有限公司生产制造,于2009年7月投入使用。
主变为单相变压器,三相连接组别为YNd11,主变冷却方式为强迫油循环水冷,单台主变压器充绝缘油约28吨,绝缘油牌号为DB-25。
主变冷却器由长沙东屋机电制造有限公司生产,型号为YSPG-250(Y-强迫油循环、S-水冷却器、PG-双重管防堵排沙型、250-单台冷却器额定冷却容量为250kW),额定水流量28m3/h,设计运行水压0.02~0.3MPa。
单台主变配置4台冷却器。
2 5号主变C相油温异常升高的剖析2.1 5号主变C相油温异常升高情况2019年7月机组持续高负荷运行,7月1日巡检时发现5号主变C相油温温升异常,机组负荷554MW,通过对异常前后48天的油温进行分析,形成趋势图如下:根据《变压器油中溶解气体分析和判断导则》DL/T 722-2014的要求,运行中的变压器油色谱要求氢≤150μL/L,总烃≤150μL/L;与历年试验数据对比没有异常升高的现象。
通过试验数据可以得出以下分析:1、氢气和甲烷均无异常上升现象,说明变压器内部未发生局部放电;2、乙烷和乙烯并未成为主要气体,说明变压器内部并无故障温度升高;3、乙炔含量为0,说明变压器内部无放电电弧;4、一氧化碳和二氧化碳无异常升高,说明变压器内部固体绝缘材料正常。
变压器档位调整不当造成油温升高的分析

变压器档位调整不当造成油温升高的分析摘要:根据工作实际,针对一起并列运行变压器档位调整不当造成变压器间产生环流,使主变温高异常情况的分析,提出值班人员在进行电压调整时应注意的事项。
关键字:变压器;并列运行;档位调整;环流0 引言变压器并列运行时,理想状态下,并列运行变压器之间是没有环流的,但在实际上,由于变压器变比的误差存在,以及并列运行母线上的负荷不平衡,并列运行变压器之间存在环流,但不影响变压器的正常运行,如果在进行电压调整时,对变压器档位调整不当,造成并列运行变压器之间形成大的环流,使变压器超温,危及变压器的绝缘,更不利于变压器的安全、经济运行。
1 正常运行方式该110kV变电站共有3台变压器,1#、2#变压器额定容量40MW,3#变压器额定容量63MW,正常运行方式为1#、2#、3#变压器高、中压侧并列运行,1#、2#变压器低压侧带10kV东、西并列运行,3#变压器低压侧带10kV南、北母并列运行,并与1#、2#变压器低压侧分列运行,如图1所示:2 异常发生时情况8月14日,监控后台告警窗报:“110千伏某变电站3#变压器油温高”动作,值班人员检查发现该站3#变压器温度75℃,1#、2#变压器温度分别是45℃、49℃,查看3#变压器有功37MW、无功51MVar,随即通知负责该站的运维人员到现场检查设备,并同时汇报调度。
运维人员到站检查后告知3#变压器现场实际温度是77℃,有功、无功数值同监控后台接近,其它无异常,已向调度上报缺陷。
3 检查分析情况3.1 变压器运行方式的检查。
异常发生时三台变压器均为正常运行方式。
经过检查值班记录得知7月30日3#变压器与1#、2#变压器中、低压侧还处于分列运行状态,这时3#变压器档位可以单独调整;在8月1日三台变压器恢复正常并列运行方式,并列运行的变压器调档时应保证档位调整后三台变压器变比是相同的。
通过检查三台变压器恢复并列运行状态时,主变档位均在5档运行。
变压器温度过高的原因分析

变压器温度过高的原因分析变压器温度过高的原因有很多,可能是变压器本身故障的原因,也可能是变压器外部的原因。
一、变压器本身故障的原因变压器运行中当发热与散热达到平衡状态时,各部分的温度趋于稳定。
若在同样条件下,油温比平时高出10℃以上,或负荷不变,但温度不断上升,则可认为变压器内部发生了故障。
1、分接开关接触不良由于分接开关在运行中其接触点压力不够或接触处污秽等原因,使接触电阻增大。
接触电阻增大又会使接点的温度升高而发热。
尤其是在倒换分接头后和变压器过负荷运行时,更容易使分接开关接触不良而发热。
分接开关接触不良可以从轻瓦斯频繁动作来判断,并通过取油样进行化验,可以发现分接开关接触不良使油闪点迅速下降;此外还可以通过测量线圈的直流电阻值来确定分接开关的接触情况。
2、绕组线圈匝间短路由于线圈相邻几个线匝之间的绝缘损坏,将会出现一个闭合的短路环流。
同时该相的线圈减少了匝数,短路环流产生高热使变压器的温升过高,严重时将会烧毁变压器。
造成线圈匝间短路的原因很多,如线圈制造时工艺粗糙使绝缘受到机械损伤;高温使绝缘老化;在电动力作用下使线匝发生轴向位移,将绝缘磨损等,但发展成匝间短路的主要原因是过电压和过电流。
严重的匝间短路使油温上升,短路匝处的油像沸腾似的,能听到“咕噜咕噜”的声音。
取油样化验时油质变坏,并由轻瓦斯动作发展到重瓦斯动作。
此时用测量直流电阻的方法测试也能发现匝间短路。
3、铁芯硅钢片间短路由于外力损伤或绝缘老化等原因,使硅钢片间绝缘损坏,涡流增大,造成局部过热。
此外穿心螺杆绝缘损坏也是造成涡流的原因,轻者造成局部发热,一般观察不出变压器油温的上升;严重时使铁芯过热,油温上升,轻瓦斯频繁动作,油的闪点下降,严重时重瓦斯动作。
4、缺油或散热管内阻塞变压器油是变压器内部的主绝缘,起绝缘、冷却和灭弧的作用,如果缺油或散热管内部阻塞,油的循环冷却速度下降,导致变压器运行中温度升高。
二、变压器温度过高的外部原因1、严重过负荷变压器在运行中由于铁芯的磁滞损耗、涡流损耗和线圈的铜损耗都转化为热量,使温度升高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变压器油温变压器油
运行中的变压器,有时其油温升高,超过许可限度,在此浅析其原因,供检修参考。
当发现变压器油温过高时,应检查变压器的负荷大小以及冷却油的温度。
同时与以往的同样的负荷时的温度相比较,检查温度计本身是否失灵。
若以上检查均正常,但是油温比以往条件下高,且温升继续加大,则有可能是变压器内部故障.一般油浸式变压器内部故障有以下几种情况:
1.分接开关接触不良.运行中分接开关的接触点压力不够或接触处污秽等原因,使接触电阻增大,从而导致接触点的温升而发热,非凡是在倒换分接头后和变压器过负荷运行时,更易使分接开关接触不良而发热,引起变压器油温过高。
分接开关是否接触不良可以通过测量线圈直流电阻来确定。
2.线圈匝间短路。
当几个相邻线圈匝间的绝缘损坏,它们之间将会出现短路电流.此短路电流使油温迅速上升.造成线圈绝缘损伤的原因很多,包括:外力、高温、制造工艺等多方面的原因。
引起匝间短路的主要原因是过电流和过电压。
测量线圈匝间是否短路,可以通过测量线圈的直流电阻和取油样化验来确定。
3.铁心硅钢片片间短路。
由于外力损伤或绝缘老化等原因,使片间发生短路,造成铁心涡流损耗增加而局部过热。
此外,穿心螺杆绝缘损坏也是造成涡流的原因。
以上几点关于油浸或变压器油温过高的主要原因,仅供参考,但是主要由哪个部位引起的,需要结合变压器油温、声音等情况具体分析。