流体力学:第5章势流理论-上
势流理论

第六章:势流理论一.内容总结:二元流动包括平面流动和轴对称流动。
对于不可压缩流体的平面定常势流可以引入流函数和速度势函数。
而不可压缩平面势流速度势函数和流函数均满足拉普拉斯方程。
速度势函数的等值线与流函数等值线正交,流函数的等值线与流线重合。
本章研究物体在静止理想流体中平面运动时,流体对物体的作用力。
求解势流问题的思路为:当物体在流体中运动,即物体与流体之间产生相对运动时,物体受到流体的作用力。
对于理想流体的运动不存在切应力,理想流体中运动的物体表面上只受到法向的压力作用。
因此要解决在流场中物体所受的作用力,只要把物体表面上合压力求出即可。
由伯努利方程可知,若物面上(理想流体中无分离绕流时物面与流线重合)的速度分布已知可求出物面上压力分布,再沿物面积分便可求出物体受到的合压力。
因此,问题归结为求出流场的速度分布,对于不可压缩平面流动,求速度分布的问题又可归结为求速度势函数和流函数问题。
1. 势流问题求解的思路 基本方程 : 20ϕ∇= 无旋流动20ψ∇=二维不可压缩流动V grad φ=G即得到三个速度分量u v 伯努立方程压力,,w →→P 再由边界条件→ 积分 spds ∫便求得了合力,因此只要确定V ϕ→→p G就可积分求合力了。
对于二维不可压缩无旋流动,整个问题的关键在于找到满足边界条件的ϕ或ψ。
求速度势ϕ的方法:因为方程是线性方程, 几个解的线性之和仍满足拉普拉斯方程。
20ϕ∇=根据已知知识确定应选的势流. 简单平面势流的表示式 1) 等速直线运动等速V 平行x 轴的平行流动速度势和流函数为: 0V x ϕ= 0V y ψ=2) 源和汇源心在坐标原点时速度势和流函数在平面极坐标下为: ln 2Q r ϕπ= 2Q ψθπ= 式中为源 为汇0Q >0Q <3) 旋涡速度势和流函数在平面极坐标下为: 2ϕθπΓ= ln 2r ψπΓ=−4)偶极子速度势和流函数为:222M x z x y ϕπ=+ 222M yx yψπ=−+ 221214sin p p p c V θρ∞∞−==− 在位置上,指向与X 轴成β角. 0z M :称偶极矩,由汇指向源。
东北大学《流体力学》第五章层流、紊流及其能量损失-第四次课

9899当边界壁面发生形状改变时,壁面边界层会发生分离现象,出现许多漩涡,耗散了流体的部分机械能。
由于受到压差阻力,流体的机械能也会减少。
100112v2 A2v1 A12流体从小直径的管道流往大直径的管道,假定流动是紊流流态。
实验发现,在边壁突变处流体脱离壁面,在主流与边壁之间形成环状回流区。
强剪切层:回流区与主流的分界面上流速的横向梯度很大,形成强剪切层。
剪切层上产生涡体,把时均能量转化成脉动能,大多涡体进入主流区,经过沿程发展最后耗尽动能而衰亡。
主流区的部分能量会传递到回流区在当地被消耗。
5.6.1 突扩圆管局部损失的理论公式101102112v 2A 2v 1A 12分析局部损失的大小,据伯努利方程:22121122010212()2j p p V Vh H H z z gg ααρ--=-=-++11222211()p A p A Q V V ρββ-=-22211222211()2j V V Vh V V g gααββ-=-+212()2j V V h g-=称波达-卡诺特公式,简称波达公式.103由突扩圆管的连续性,波达公式可改写成:22211112(1)22j A V Vh A g g ζ=-=ζ1、ζ2称突扩管道流动的局部损失系数或局部阻力系数。
以上两式表明:局部损失的大小与流速水头成比例。
2112(1)A A ζ=-22222221(1)22j A V V h A g g ζ=-=2221(1)A A ζ=-5.6.2 局部损失系数112v 2A 2v 1A 12104一般情形下,局部损失的算式可表示成通用公式22j V h gζ= V 表示参考断面的平均流速, ζ 是局部损失系数,一般要由实验测定。
理论上局部损失数取决于流道的局部形状变化和雷诺数。
105流道收缩:据实验研究,圆管突缩的局部损失为:210.5(1)A A ζ=-22j V h gζ=v 2A 2v 1A 1v cA c管道突缩后形成环状回流区,主流区形成过流面积最小的收缩断面,收缩断面前的流线收缩段损失较小,大部分损失发生在断面后的流线扩散段,局部损失系数值取决于收缩程度。
工程流体力学讲义

强制涡
r r0
ω
复合涡
自由涡
1.速度分布
前面已讨论过涡核内外的速度分布:
涡内:
与半径成正比如图
。由于
Hale Waihona Puke 这部分流体有旋。涡外:
与半径r成反比。
在时
当 不变 处 的 为常数
2、压力分布: 自由涡:由于是无旋流动,在自由涡中 任取一点与无穷远处写伯努利方程:
忽略位能
若
则
将
代入
在自由涡中 p与r 成平方关系,(抛物线)
3.点源的压力分布 在源上任取一点与无穷远处写能量方程
将 , 代入
有
p
P与r成抛物线正比。r
p;r p
r r0
三、点涡
点涡:无限长的直 线涡束所形成的平 面流动。除涡线本 身有旋外涡线外的 流体绕涡线做等速 圆周运动且无旋。
这种流动也称纯环流。若设点涡的强度
为
则在半径r处由点涡所诱导的速
度为 而
例2:求有间断面的平行流的速度环量 Γ=?
4
3
b
1L 2
u1 u2
例3:龙卷风的速度分布为 时
时
试根据 stokes law 来判断是否为有 旋流动。
如图,当
,流体以ω象刚体一样转
动,称风眼或强迫涡(涡核)。
在
区域,流体绕涡核转动,流体
质点的运动轨迹是圆但本身并没有旋转
称之为自由涡或势涡。
强制涡
y
d
c
vu
a
b
c’ d’
Δα
b’
a’ Δβ
定义:单位时间内ab、cd转过的平均角度
称角变形速度,用 θ表示。 由定义有:
第4章 势流理论_1

V 2 p U F (t ) 在理想流体的势运动中, t 2
设流动定常,质量力为零, F(t)=A
则压强 p A V 2 A f z f z
2
2
ip d 为微元 d 上的的总压力,垂直 于c,方向向内
D
2
d n ds 2 2
D s
ds 2 s n
二、有关定理
1、在一个完全为固体壁包围的流体中,不可能有无旋流 (但内部有奇点情况例外);
复速度
f ' ( z) f ' ( z) (u 2 v2 )
在单连同域内
f z dz 0
l
l
柯西定理
证:
f z dz i d x iy
l
dx dy i dy dx
l l
0
利用格林公式
2 2 2 d 2 x y z 2 2 2 u * v * w * d 2 x y z
4.3 平面势运动、复势
一、复势的概念
借助复变函数数学工具解平面势流问题。 1、复数的两种表示方法
z x iy i z re
(1) (2)
2、复变函数
f z x, y i x, y
3、解析函数: 若复变函数的导数无论从何方向趋于零,其导数相同, 则称该复变函数为解析函数。 解析函数存在的充要条件:柯西—黎曼条件
流体力学第五章 量纲分析和相似理论

第五章 量纲分析与相似原理
5.2 量纲分析与П定理
2. П定理
提议用量纲分析的是瑞利(L.Reyleigh,1877),奠定理论基础的是美国物理
学家布金汉(E.Buckingham,1914):
Π定理
若某一物理过程包含 n 个物理量,即:
f(q1 , q 2,q 3, ……, q n )=0
其中有 m 个基本量(量纲独立,不能相互导出的物理 量),则该物理过程可由 n个物理量构成的 n-m 个无 量纲的关系表达式来描述。即:
5.1 量纲与物理方程的量纲齐次性
1. 物理量的量纲(因次):物理量的本质属性。
2. 物理量的单位:物理量的度量标准。
基本量纲和导出量纲:根据物理量之间的关系把无 任何联系且相互独立的量纲作为基本量纲,可由基本量 导出的量纲为导出量纲。
SI制中的基本量纲:
dim m = M , dim l = L , dim t = T ,dim θ=Θ
第五章 量纲分析与相似原理
5.1 量致性原则,也叫量纲齐次性原理(量纲和谐原理)
物理方程可以是单项式或多项式,甚至是微分方程等,同 一方程中各项的量纲必须相同。
用基本量纲的幂次式表示时,每个基本量纲的幂次应相等,
这就是物理方程的量纲一致性原则,也叫量纲齐次原则或量纲
1. 客观性 2. 不受运动规模的影响 3. 可以进行超越函数运算
整理课件
第五章 量纲分析与相似原理
5.1 量纲与物理方程的量纲齐次性
2. 量纲一的量(无量纲量)
基本量独立性判别条件:
设A、B、C为三个基本量,他们成立的条件是:指数行列式 不等于零。
diB m M 2L 2T 2 diA m M 1L 1T1 diC m M 3L 3T 3
流体力学第五章

5.2 边界层流动
5.2 边界层流动
*
0
u 1 u e e
dy
5.2 边界层流动
**
0
u eue
u 1 u dy e
5.2 边界层流动
平面边界层流动方程
边界层近似假定 1. 纵向偏导数远小于横向偏导数
5.2 边界层流动
边界层分离
理想流体能量转换过程 边界层内粘性对机械能的耗散使得流体微团在逆 压区 MF 段间的某个点处 V 降为零,后来的质点 将改道进入主流区,使来流边界层与物面分离; 在分离点下游区域,受逆压作用而发生倒流。
5.2 边界层流动
边界层分离
分离点:紧邻壁面顺流区与倒流区分界点。 边界层分离的必要条件:粘性、逆压梯度。
湍流边界层摩阻系数大
0.664 C fL Re x
C fT
0.0576 /5 Re 1 x
5.2 边界层流动
边界层分离
边界层流动:流体质点受惯性力、粘性力和压力 作用;粘性力阻滞流体质点运动,使流体质点减 速和失去动能;压力的作用取决于绕流物体形状; 顺压梯度有助于流体加速前进,而逆压梯度阻碍 流体运动。
研究方法:实验、数值(RANS、LES、DNS)
5.1 粘流的基本特性
层流、紊流速度型 紊流粘性应力比层流大
5.2 边界层流动
边界层概念的提出
高 Re流动,惯性力远大于粘性力,研究忽略粘 性的流动有实际意义。 阻力、分离、涡扩散等问题,无粘解与实际相 差甚远。 研究表明:虽然 Re很大,但在靠近物面的薄层 流体内,沿物面法向存在很大的速度梯度,粘 性力与惯性力相当而不可忽略。 Prandtl把物面附近粘性力起重要作用的薄层称 为边界层。
流体力学实验_第五章

§5.4 流动显示的光学方法
1. 适用范围 光学显示方法:利用流场的光学性质,如流体的密 度变化会造成光学折射率或传播速度的变化,通过 适当的光学装置可以显示流体的流动特性。
流场的温度、压力、浓度和马赫数等状态参数与密度 有确定的函数关系,而流体的光学折射率是其密度的 函数,因此下列流动可以采用光学流动显示的方法:
分光镜 补偿片
单色 点光 源
全反镜
风洞实验段
屏幕
40
密度均匀:干涉条纹彼此平行 密度不均匀:干涉条纹发生移动或变形,干涉条纹的改变与
流体密度的变化有关
干涉条纹 41
§5.5 流动显示技术的新发展——定量的流 动显示和测量技术
1. 激光诱导荧光(LIF)技术
激光诱导荧光技术:是一种20世纪80年代发展起来的光 致发光流动显示与测量技术,把某些物质(如碘、钠或 荧光染料等)溶解或混合于流体中,这些物质的分子在 特定波长的激光照射下能激发荧光。
照明光源:高亮度的白光碘钨灯
25
26
27
3. 荧光微丝法
采用直径为0.01 ~0.02mm的合成 纤维丝,经柔化 和抗静电处理, 使微丝染上荧光 物质,粘贴于模 型表面。
光源:采用连续 紫外光源
照相:选用合适 的滤光片
Flourescent minitufts on aircraft wing
在定常流动中,流线、迹线和染色线相同。
但在非定常流动中,是互不相同的。
4
3. 流动显示方法的分类
(1)示踪粒子流动显示:在透明无色的气流或水流中加
入一些可见的粒子,通过可见的外加粒子跟随流体微团的运 动来使各种流动现象显示出来。 固态示踪粒子:
水流(铝粉、有机玻璃粉末或聚苯乙烯小球等) 气流(烟颗粒) 液态示踪粒子:水流(牛奶、染料溶液) 气态示踪粒子:水流(氢气泡、空气泡)
高等流体力学

概念第一章绪论连续介质:但流体力学研究的是流体的宏观运动,不以分子作为流动的基本单元,而是以流体质点为基本单元,把流场看做是由无数流体质点组成的连续体。
流体质点:流场中一个体积很小并可以忽略其几何尺寸,但与分子相比,这个体积可容纳足够多的分子数目的流体元,有一个稳定的平均特性,即满足大数定律理想流体:忽略流体黏性的流体,即μ=0.可压缩流体与不可压缩流体:简单地讲,密度为常数的流体为不可压缩流体,如水、石油及低速流动的气体。
反之,密度不为常数的流体为可压缩流体。
牛顿流体与非牛顿流体:根据流体流动时切应力与流速梯度之间的关系,即牛顿内摩擦定律。
凡是符合牛顿内摩擦定律的成为牛顿流体,如水、空气、石油等。
否则为非牛顿流体,如污泥、泥石流、生物流体、高分子溶液等动力粘度与运动粘度:动力粘度又成为动力黏度系数,动力黏度是流体固有的属性。
运动粘度又称为运动粘性系数,运动黏性系数则取决于流体的运动状态体积力与表面力:体积力亦称质量力,是一种非接触力,即外立场对流体的作用,且外立场作用于流体每一质点上,如重力、惯性力、离心力。
表面力是一种表面接触力,指流体与流体之间或流体与物体之间的相互作用,主要指压力、切应力、阻力等定常流与非定常流:又称恒定流与非恒定流。
若流场中流体质点的所有运动要素均不随时间变化,则这种流动称为定常流;反之只要有一个运动要素随时间变化则为非定常流大气层分为5层:对流层、同温层、中间层、电离层及外逸层第二章流体运动学描述流体质点的位置、速度及加速度的两种方法,即拉格朗日法和欧拉法质点导数:亦称随体导数,表示流体质点的物理量对时间的变化率,亦即跟随流体质点求导数那布拉P9流体质点的运动轨迹称为迹线流线:此曲线上任一点的切线方向就是该点流速方向依照一定次序经过流场中某一固定点的各个质点连线称为脉线,也叫序线。
流体线:在流场中任意指定的一段线,该段线在运动过程中始终保持由原来那些规定的质点所组成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
c1
c2
5.2.1 复势的可叠加性 解析函数 W1(z) 1 i1 W2 (的z) 线性2 组i合2 ,
W (z) W1(z) W2 (z)
仍然是解析函数,仍然代表某一种流动的复势。简单 流动组合成复杂流动——叠加法
5.3 平面势流的基本解
目的:求解最简单的流动,为解决复杂势流奠定基础。 内容:均匀流、点源、点涡、偶极。
v 0 (R )
5.1.3 初始条件(initial condition)
初始时刻 t0速度势 (或 )在流 体域内
或边界上满足的条件。
例5-1 半径为R 的固定大球壳中充满不可压缩理想流体,半径为a
的小球以速度V(t) 在其中运动。试建立速度势定解问题。
解 : 取静坐标系o - xyz
z
2 0 (在流体中)
势流问题的数学描述—— Mathematical Model
5.1.1 基本方程——Laplace Equition
v 0
v
0
v
2 0 (in fluid)
Laplace方程是线性方程。要使 解唯一,需给出边界条件、初
v
p(x, y, z,t)
始条件。
R( M )
5.1.2 边界条件(Boundary Condition)
借助复变函数数学工具解平面势流问题。
平面势流:φ和ψ都是调和函数, 2 0, ,且2满足0
x y
y x
(C-R 条件)
5.2.1 复势与复速度(复平面)
1)复势函数:W (z) (x, y) i (x, y)
解析函数
平面势流
2)复速度(导数)与流体速度的关系:
z x iy
dW W W i i u iv Vei
W (z) V0 z cos iV0 z sin V0 ze i
=0 时:
V0x, V0 y, W (z) V0z
y 平板
V0
o
x
5.3.2 平面点源、点汇 (source and sink)
源强:源点注入流场的体积流量 m。 m 点0源, m点汇 。0
点源位于(0,0): m 2 rvr
F z
2
5.1.1 基本方程——Laplace Equition
vn vb n
F vb F (on S)
若物面运动:对 F(x, y, z,求t)全(0物质)导数
dF dt
F t
F x
dx dt
F y
dy dt
F z
dz dt
F t
vb
F
0
F F F F 0 t x x y y z z
方法:利用已知流动的特征,“凑”。
V0
m
M
5.3.1 均匀流 (uniform stream)
≠ 0 时:
V V0ei u V0 cos , v V0 sin
u d x v d y V0 x cos V0 y sin
v d x u d y V0 x sin V0 y cos
d z x (iy) x x y y
dW u iv dz
dW u2 v2 v V dz
5.2.1 复势与复速度(复平面)
3)复速度的环路积分与速度环量和流量的关系:
l
dwdz dz
dw
l
l d id l iQl
l
Re
dw l dz
Ql
I
m
l
dw dz
dz
4) W (z) c1 ic2
F F 0
t
若物面静止不动: vb ,0则物面边界条件简化为
0
n
F F F 0 ( on S )
x x y y z z
2) 无穷远边界条件
(1)大地坐标系:
v0
0 (R )
(2)随体坐标系:若物体以V0 运动,则问题转化为物体不动,
而流体从无穷远处以-V0 流来 —— 绕流问题。
——速度势在流体域边界面上满足的条件
1)物面边界条件:物面不可穿透
v b — 物面运动速度
v — 流体质点的速度
n — 物面的单位外法向量
n
V0
S : F(x, y, z,t) 0
vn vb n
(on S)
n
vb
n
n F F
F i F j F k x y z
F x
2
F y
2
vr
m
2 r
,
v 0
vr
dr
v r
d
m
2
ln
r
v
dr
vrr d
m
2
W (z) m ln r i m m ln z
2
2 2
y
r
x
ψ=const
φ=const
5.3.2 平面点源、点汇 (source and sink)
点源位于(x0,y0):
m ln 2
(x x0 )2 ( y y0 )2
内边界条件:小球表面方程为
F (x x0 )2 y2 z 2 a2
y
o V(t)
x
x0
(x
x0 )V (t) (x
x0 )
x
y
y
z
z
0
外边界条件:大球面方程为 F x 2 y 2 ,z 2得 R 2
x y zБайду номын сангаас 0
x y z
5.1.4 势流问题的求解方法
定解问题: 2 0 (in fluid)
m
4
ln{(x
x0 )2
(y
y0 )2}
m
4
ln{[x
( x0
x0 )]2
(y
y0 )2}
M
n
vb
n
(on S)
寻求速度势满足边界条件 和初始条件的Laplace 方程
的解 (x, y,。z;t)
0 (R )
v
pF
解析解:简单边界问题。 奇点叠加法;保角变换法(平面流)。
数值解:复杂边界问题。
CFD — Computational Fluid Dynamics
5.2 复势(complex potential )
m arcg y y0
2
x x0
W (z)
m
2
ln( z
z0 )
5.3.3 平面偶极 (dipole)
偶极强度:设强度为m 的源和汇相距 x0
lim m
x0 0
x0
M
x +m -m
这对源汇构成一新的奇点为偶极,方向由汇指向源。
偶极既有大小,又有方向。
位于(x0,y0),沿 -x 轴方向:点源 (x0 , y0,) 点汇 (x0 x0 , y0 )
流体力学
第5章 势流理论 (Chapter 5. Potential Flow Theory)
本章内容: 研究不可压理想流体无旋运动流场的 速度分布、压力分布及作用于物体上的力。
Background:
Aviation, ship & ocean eng. water waves.
5.1 势流问题的基本方程和边界条件