英文版化学实验报告

合集下载

化学震荡实验报告(完整版)

化学震荡实验报告(完整版)

化学震荡实验报告(完整版)报告编号:YT-FS-5574-86化学震荡实验报告(完整版)After Completing The T ask According To The Original Plan, A Report Will Be Formed T o Reflect The Basic Situation Encountered, Reveal The Existing Problems And Put Forward Future Ideas.互惠互利共同繁荣Mutual Benefit And Common Prosperity化学震荡实验报告(完整版)备注:该报告书⽂本主要按照原定计划完成任务后形成报告,并反映遇到的基本情况、实际取得的成功和过程中取得的经验教训、揭露存在的问题以及提出今后设想。

⽂档可根据实际情况进⾏修改和使⽤。

化学振荡操作说明1. 根据需处理⼯件选⽤合适的磨料,投⼊研磨机,视⼯件的实际情况⼤⼩配好药剂PM600,并对⼯件进⾏清洗直⾄排⽔⼝流出清⽔为⽌。

2. 当排出之清⽔量⾄⼀根尾指粗细时,即关闭排⽔阀投⼊⽔及PM600⽐例 1:1,调⾼研磨频率进⾏研磨。

3. 当⼯件变灰⽩⾊时,对⼯件进⾏检测。

如⼯件表⾯情况不甚理想(纹路过深)对⼯件进⾏清洗,投⼊第⼆次PM600研磨⼯件⾄端⾯柱⾯光泽⼀⾄,⽆⽩雾雾及⿇点⿊斑的感觉。

4.研磨⼯件⾄理想效果后,对⼯件进⾏彻底清洗。

投⼊抛光剂及防锈剂进⾏抛光处理30min,抛光速度视⼯件⼤⼩及机台⼤⼩⽽定。

备注:1.选⽤磨料之原则:不堵塞⼯件及不扩孔为原则。

2.⼯件端⾯⼑痕过深时,退⾄车床组做端⾯研磨处理。

3.加⼊PM600切削⼀段时间后,若发现⽯头翻转过慢时或是⽯头过黏时,对研磨机内加⼊适量的⽔润滑。

4.⼤锅处理量为200~250kg,⼩锅处理量为50~80kg。

⼯件越长处理料越少。

5.每48hr打黄油⼀次,设备间隔使⽤每72hr打黄油⼀次。

化学实验报告全英

化学实验报告全英

Experiment Title: Synthesis of Silver Nitrate from Silver and Nitric AcidDate: March 10, 2022Objective: The objective of this experiment was to synthesize silver nitrate (AgNO3) by reacting silver (Ag) with nitric acid (HNO3) and to observe the formation of the product.Materials:1. Silver (Ag) - 0.5 g2. Nitric acid (HNO3) - 10 mL3. Beaker4. Test tube5. Funnel6. Pipette7. Distilled water8. Sodium chloride (NaCl) - 0.5 g9. Ethanol (C2H5OH) - 10 mL10. Sodium chloride (NaCl) - 0.5 g11. Ethanol (C2H5OH) - 10 mL12. SpectrophotometerProcedure:1. Weigh 0.5 g of silver (Ag) using a balance and transfer it into a test tube.2. Add 10 mL of nitric acid (HNO3) to the test tube containing the silver (Ag).3. Swirl the test tube gently to ensure that the silver (Ag) reacts completely with the nitric acid (HNO3).4. Observe the reaction and note any changes in color or appearance.5. Once the reaction is complete, allow the mixture to cool to room temperature.6. Filter the mixture using a funnel and filter paper to separate the silver nitrate (AgNO3) from the remaining solution.7. Collect the silver nitrate (AgNO3) on a filter paper and dry it in an oven at 100°C for 1 hour.8. Dissolve 0.5 g of sodium chloride (NaCl) in 10 mL of ethanol (C2H5OH) and transfer it to a test tube.9. Add 10 mL of distilled water to the test tube containing the sodium chloride (NaCl) solution.10. Add a few drops of the silver nitrate (AgNO3) solution to the sodium chloride (NaCl) solution.11. Observe the formation of a white precipitate and note its color and appearance.12. Measure the absorbance of the silver nitrate (AgNO3) solution usinga spectrophotometer at a wavelength of 590 nm.Results:1. The reaction between silver (Ag) and nitric acid (HNO3) resulted in the formation of a colorless solution, indicating the successful synthesis of silver nitrate (AgNO3).2. The silver nitrate (AgNO3) was successfully separated from the remaining solution using filtration.3. The precipitate formed when silver nitrate (AgNO3) was added to the sodium chloride (NaCl) solution was white, confirming the presence of silver nitrate (AgNO3) in the reaction mixture.4. The absorbance of the silver nitrate (AgNO3) solution was measured using a spectrophotometer at a wavelength of 590 nm, and the value obtained was 0.6.Discussion:The synthesis of silver nitrate (AgNO3) from silver (Ag) and nitric acid (HNO3) was successful in this experiment. The reaction between silver (Ag) and nitric acid (HNO3) resulted in the formation of a colorless solution, which was consistent with the expected color of silver nitrate (AgNO3) solution. The precipitate formed when silver nitrate (AgNO3) was added to the sodium chloride (NaCl) solution was white, indicating the presence of silver nitrate (AgNO3) in the reaction mixture. The absorbance value obtained using a spectrophotometer confirmed the presence of silver nitrate (AgNO3) in the solution.Conclusion:In conclusion, the synthesis of silver nitrate (AgNO3) from silver (Ag) and nitric acid (HNO3) was successfully achieved in this experiment. The reaction resulted in the formation of a colorless solution, and the presence of silver nitrate (AgNO3) was confirmed through the formation of a white precipitate and the absorbance measurement using a spectrophotometer.。

化学实验报告 英文版

化学实验报告 英文版

化学实验报告英文版Chemical Experiment ReportAbstract:This report presents the findings and analysis of a chemical experiment conducted to investigate the effects of temperature on the rate of reaction between hydrochloric acid (HCl) and sodium thiosulfate (Na2S2O3). The experiment involved varying the temperature of the reactants and measuring the time taken for the reaction to occur. The results indicate a clear correlation between temperature and reaction rate, with higher temperatures leading to faster reactions.Introduction:Chemical reactions are influenced by various factors, including temperature, concentration, and catalysts. The purpose of this experiment was to examine the impact of temperature on the rate of a chemical reaction. The reaction between hydrochloric acid and sodium thiosulfate was chosen due to its well-documented reaction kinetics.Methodology:The experiment was conducted using a simple setup consisting of a conical flask, a stopwatch, and a thermometer. Initially, 50 mL of 1 M hydrochloric acid was poured into the flask, followed by the addition of 10 mL of 0.1 M sodium thiosulfate. The stopwatch was started as soon as the sodium thiosulfate was added, and the time was recorded when the solution turned opaque due to theformation of a yellow precipitate. The experiment was repeated at different temperatures by immersing the flask in water baths maintained at specific temperatures.Results and Discussion:The experiment was carried out at four different temperatures: 20°C, 30°C, 40°C, and 50°C. The average reaction times at each temperature were recorded and are presented in Table 1 below:Temperature (°C) Reaction Time (s)20 12030 9040 7050 50Table 1: Average reaction times at different temperaturesFrom the results, it is evident that as the temperature increased, the reaction time decreased. This indicates that higher temperatures accelerate the rate of the reaction between hydrochloric acid and sodium thiosulfate. The relationship between temperature and reaction rate can be explained by the collision theory. According to this theory, particles must collide with sufficient energy to overcome the activation energy barrier for a reaction to occur. As temperature increases, the average kinetic energy of the particles also increases, leading to more frequent and energetic collisions.Furthermore, the reaction between hydrochloric acid and sodium thiosulfate isexothermic, meaning it releases heat. As the reaction progresses, the released heat raises the temperature of the solution, further increasing the reaction rate. This positive feedback mechanism contributes to the observed trend of faster reactions at higher temperatures.Conclusion:In conclusion, this experiment demonstrates the significant influence of temperature on the rate of the reaction between hydrochloric acid and sodium thiosulfate. As temperature increases, the reaction time decreases due to more energetic collisions and the exothermic nature of the reaction. These findings have practical implications in various fields, such as industrial chemistry and environmental science, where controlling reaction rates is crucial.Further research could explore the effect of temperature on other chemical reactions and investigate the specific activation energy values for different reactants. Additionally, studying the impact of other factors, such as concentration and catalysts, on reaction rates would provide a comprehensive understanding of chemical kinetics.。

化学实验报告英语

化学实验报告英语

化学实验报告英语Chemical Experiment ReportIntroductionChemical experiments play a crucial role in the field of science and technology. They provide valuable insights into the properties and behavior of various substances. In this report, we will discuss a series of chemical experiments that were conducted in a laboratory setting. The experiments aimed to explore the effects of different variables on the reaction rate and product formation. Experiment 1: Reaction Rate and ConcentrationIn this experiment, we investigated the relationship between reaction rate and concentration. We prepared a solution of hydrochloric acid and sodium thiosulfate. By varying the concentration of sodium thiosulfate and keeping the concentration of hydrochloric acid constant, we observed the time taken for the solution to turn cloudy. As expected, we found that a higher concentration of sodium thiosulfate resulted in a faster reaction rate. This experiment demonstrated the importance of concentration in determining the rate of a chemical reaction.Experiment 2: Temperature and Reaction RateTemperature is another crucial factor that influences reaction rates. To study this, we heated a solution of potassium permanganate and oxalic acid to different temperatures. We then measured the time taken for the solution to change color. The results showed that an increase in temperature led to a significantincrease in the reaction rate. This can be attributed to the fact that higher temperatures provide more energy to the reacting particles, increasing their collision frequency and the likelihood of successful collisions.Experiment 3: Catalysts and Reaction RateCatalysts are substances that can speed up a chemical reaction without being consumed in the process. In this experiment, we examined the effect of a catalyst on the decomposition of hydrogen peroxide. We added a small amount of manganese dioxide to a solution of hydrogen peroxide and observed the release of oxygen gas. The presence of the catalyst facilitated the decomposition of hydrogen peroxide, leading to a faster reaction rate. This experiment highlighted the role of catalysts in enhancing reaction rates and their importance in various industrial processes.Experiment 4: pH and Product FormationThe pH of a solution can significantly influence the formation of products in a chemical reaction. To investigate this, we conducted an experiment involving the reaction between acetic acid and sodium bicarbonate. We varied the pH of the acetic acid solution by adding different amounts of sodium hydroxide. We then measured the volume of carbon dioxide gas produced. The results indicated that a higher pH resulted in a greater volume of carbon dioxide gas. This experiment emphasized the impact of pH on the formation of products in chemical reactions.ConclusionChemical experiments provide valuable insights into the behavior and properties of substances. Through the experiments discussed in this report, we explored the effects of concentration, temperature, catalysts, and pH on reaction rates and product formation. These experiments demonstrate the importance of understanding the factors that influence chemical reactions and their applications in various fields, including pharmaceuticals, materials science, and environmental studies. By furthering our knowledge in this area, we can continue to make advancements in the field of chemistry and contribute to the development of new technologies.。

英文版化学实验报告

英文版化学实验报告
三、The Main reagentsandInstrument
Themain reagents:Cyclohexanol、Sodium chloride、Concentrated sulfuric acid、Anhydrous magnesium sulfate、Ethyl ether、Sodium dichromate
The last, the productas a colorlessoil,0.8 gofproduct wasobtained,andin the experiment,we can knowthe boiling pointof the product is154.1°C
There aretheoretical yield2.36 gproductexperimentwas0.8grams, sothere isa yieldof 34.8%
二、The experimental principle
The main reaction:
3 RCH2OH (环己醇)+ Cr2O72-+ 2 H+→ 3 RC=O +2Cr3++7H2O
The deputy reaction:
3 RCH2OH (环己醇)+H2Cr2O7+H2SO4→ 3 RCHO + Cr2(SO4)3+8H2O
Fractions of stratification, the upper is a colorless liquid, the lower is a colorless oily
3 gof theliquid wasevaporatedtoa saturatedsalt,aftertransferred to a separatoryfunnel andthe organiclayer wasseparated andallowed to standlayered,dried over anhydrous magnesiumsulfate.The liquidwas distilledafter drying, theproductweighed

化学实验报告常见英文

化学实验报告常见英文

Experiment Title: Synthesis of Ethanol from EthanolamineDate: [Date]Objective:The objective of this experiment was to synthesize ethanol from ethanolamine using the dehydration reaction. Ethanolamine is a compound with the molecular formula NH2CH2CH2OH, and it can be dehydrated to produce ethanol (CH3CH2OH) and ammonia (NH3).Materials:- Ethanolamine (NH2CH2CH2OH)- Sulfuric acid (H2SO4)- Concentrated sulfuric acid- Ethanol- Sodium chloride (NaCl)- Distilled water- Sodium hydroxide (NaOH)- Sodium sulfate (Na2SO4)- Potassium permanganate (KMnO4)- Barium chloride (BaCl2)- Distillation apparatus- Reaction vessel- Round-bottom flask- Condenser- Thermometer- Test tubes- Pipettes- Weighing scale- Stirring rod- Safety goggles- Gloves- Lab coatProcedure:1. Measure 5 g of ethanolamine using a weighing scale and transfer it toa round-bottom flask.2. Add 5 mL of concentrated sulfuric acid to the flask and stir the mixture thoroughly.3. Place the flask in a water bath and heat it to 60°C for 2 hours. This will facilitate the dehydration reaction.4. After 2 hours, remove the flask from the water bath and allow it to cool to room temperature.5. Transfer the reaction mixture to a distillation apparatus. The distillation apparatus consists of a round-bottom flask, a condenser, and a receiving flask.6. Heat the mixture to approximately 78°C, which is the boiling point of ethanol. Ethanol will vaporize and be collected in the receiving flask.7. Collect the distillate and transfer it to a test tube. Add 5 mL of water to the test tube and observe the appearance of the liquid.8. To identify the presence of ammonia, add a few drops of potassium permanganate to the test tube. If the solution turns brown, it indicates the presence of ammonia.9. To confirm the purity of the ethanol, add a few drops of barium chloride to the test tube. If a white precipitate forms, it indicates the presence of sodium chloride, which was used as a catalyst in the reaction.10. Dispose of the waste products and clean the equipment.Results:- The reaction mixture was heated to 60°C for 2 hours, and the distillation was performed at approximately 78°C.- Ethanol was collected in the receiving flask, and the distillate was observed to be a clear liquid.- A brown color was observed in the test tube when potassium permanganate was added, indicating the presence of ammonia.- A white precipitate formed when barium chloride was added, indicating the presence of sodium chloride.Discussion:The dehydration reaction of ethanolamine to produce ethanol was successfully achieved in this experiment. The reaction mixture was heated to 60°C for 2 hours to facilitate the dehydration process. Ethanol was collected in the receiving flask, and the distillate was observed to be a clear liquid, indicating the successful synthesis of ethanol.The presence of ammonia was confirmed by the brown color observed when potassium permanganate was added. This suggests that the dehydration reaction also produced ammonia as a byproduct.The formation of a white precipitate when barium chloride was added confirms the presence of sodium chloride, which was used as a catalyst in the reaction. The sodium chloride did not affect the purity of the ethanol product.Conclusion:The objective of synthesizing ethanol from ethanolamine using the dehydration reaction was successfully achieved in this experiment. Ethanol was produced, and the purity of the product was confirmed by observing the color changes and precipitate formation. This experiment provided a practical approach to understanding the dehydration reaction and its application in the synthesis of organic compounds.。

化学性质实验报告

化学性质实验报告

糖、氨基酸和蛋白质的鉴定糖类化合物:又称碳水化合物,是多羟基醛或多羟基酮及其缩聚物和某些衍生物的总称,一般由碳、氢与氧三种元素所组成。

实验目的:(1)进一步了解糖的化学性质;(2)掌握鉴定糖的方法及其原理。

(一)-萘酚试验(molish)糖类化合物一个比较普遍的定性反应是molish 反应。

即在浓硫酸存在下,糖与-萘酚(molish试剂)作用生成紫色环。

实验方法取3支试管,编号,分别加入 ml %的各待测糖水溶液,滴入2滴molish 试剂( -萘酚的乙醇溶液),摇匀。

把试管倾斜450,沿管壁慢慢加入约1ml 浓硫酸(切勿摇动),小心竖直后仔细观察两层液面交界处的颜色变化。

硫酸在下层,试液在上层样品:葡萄糖、蔗糖及淀粉解释:糖被浓硫酸脱水生成糠醛或糠醛衍生物,后者进一步与-萘酚缩合生成紫红色物质,在糖液和浓硫酸的液面间形成紫色环。

(二) fehling试验(1)实验原理fehling试剂:含有硫酸铜和酒石酸钾钠的氢氧化钠溶液。

硫酸铜与碱溶液混合加热,生成黑色的氧化铜沉淀。

若同时有还原糖存在,则产生黄色或砖红色的氧化亚铜沉淀。

为防止铜离子和碱反应生成氢氧化铜或碱性碳酸铜沉淀,fehling试剂中需加入酒石酸钾钠,它与cu2+形成的酒石酸钾钠络合铜离子是可溶性的络离子。

(2)操作方法取4支试管,编号,分别加入fehling试剂i和ii 各。

摇匀并置于水浴中微热后,分别加入5滴待测糖溶液,振荡后置于沸水浴中加热2 ~ 3min,取出冷却,观察颜色变化及有无沉淀析出。

fehling试剂 i:称取 g硫酸铜溶于100 ml蒸馏水中, 得淡蓝色的 fehling试剂 i。

fehling试剂 ii:将17g酒石酸钾钠溶于20ml热水中,然后加入20 ml 含5 g naoh的水溶液,稀释至100 ml得无色透明的fehling试剂 ii。

样品:葡萄糖、果糖、蔗糖及麦芽糖解释: 硫酸铜与碱溶液混合加热,生成黑色的氧化铜沉淀。

生物化学实验报告参考模板

生物化学实验报告参考模板

实验一考马斯亮蓝G-250染色法测定蛋白质的含量(p24)一、目的要求掌握考马斯亮蓝(Coomassie Brilliant Blue)法测定蛋白质含量原理和方法。

二、实验原理考马斯亮蓝法测定蛋白质浓度,是利用蛋白质─染料结合的原理,定量的测定微量蛋白浓度的快速、灵敏的方法。

这种蛋白质测定法具有超过其他几种方法的突出优点,因而正在得到广泛的应用。

这一方法是目前灵敏度最高的蛋白质测定法。

考马斯亮兰G-250染料在酸性溶液中为棕红色,当它与蛋白质通过范德华键结合后,变为蓝色。

在酸性溶液中与蛋白质结合,使染料的最大吸收峰(lmax)的位置,由465nm变为595nm。

且在蛋白质一定浓度范围内符合比尔定律,通过测定595nm处光吸收的增加量可知与其结合蛋白质的量。

研究发现,染料主要是与蛋白质中的碱性氨基酸(特别是精氨酸)和芳香族氨基酸残基相结合。

考马斯亮蓝染色法的突出优点是:(1)灵敏度高,据估计比Lowry法约高四倍,其最低蛋白质检测量可达1mg。

这是因为蛋白质与染料结合后产生的颜色变化很大,蛋白质-染料复合物有更高的消光系数,因而光吸收值随蛋白质浓度的变化比Lowry法要大的多。

(2)测定快速、简便,只需加一种试剂。

完成一个样品的测定,只需要5分钟左右。

由于染料与蛋白质结合的过程,大约只要2分钟即可完成,其颜色可以在1小时内保持稳定,且在5分钟至20分钟之间,颜色的稳定性最好。

因而完全不用像Lowry法那样费时和严格地控制时间。

(3)干扰物质少。

如干扰Lowry法的K+、Na+、Mg2+离子、Tris缓冲液、糖和蔗糖、甘油、巯基乙醇、EDTA等均不干扰此测定法。

此法的缺点是:(1)由于各种蛋白质中的精氨酸和芳香族氨基酸的含量不同,因此考马斯亮蓝染色法用于不同蛋白质测定时有较大的偏差,在制作标准曲线时通常选用g—球蛋白为标准蛋白质,以减少这方面的偏差。

(2)仍有一些物质干扰此法的测定,主要的干扰物质有:去污剂、Triton X-100、十二烷基硫酸钠(SDS)等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Preparation of n -bromobutane
一、Purpose
1、Study the principle and method of preparing n-butyl bromide from n-butyl alcohol by treatment with sodium bromide and concentrated sulfuric acid
2、Learn the technique of reflux with a gas trap apparatus and washing.
二、Principle
n-Butyl bromide can be easily prepared by allowing n-butyl alcohto react with sodium bromide and concentrated sulfuric acid. Main reactions :
NaBr + H 2SO4 → HBr + NaHSO4
24
H SO 322232222CH CH CH CH OH HBr CH CH CH CH Br H O +−−−→+
Secondary reactions :
24H SO 32223222CH CH CH CH OH CH CH CH=CH H O
−−−→+; ()24H SO 32223222222CH CH CH CH OH CH CH CH CH O H O
−−−→+
24222H SO HBr Br SO H O
+−−→++
三、Materials n-butyl alcohol :4mL Sodium bromide :5g
Concentrated sulfuric acid :2.5mL/6mL Anhydrous calcium chloride:0.5g 10% aqueous sodium hydroxide:5mL
四、Primary reagent And Product physical constants
五、Apparatus
六、Procedure
(1)50mLboiling flask+50mLwater+6mLconcentrated sulfuric acid Cool down
(2)Assembling equipment
(3) Stop and simple distill (4)
(5)
七、Experimental records
(1) Sulfuric acid soluble in water gives off a lot of heat
(2) The solution of the distillation flask become yellow and the sodium bromide dissolve
(3)Solution is divided into two layers and liquid of the distillation become clear
(4) Liquid layer, upper as the water phase, the lower is positive bromobutane and liquid for the milky haze
(5) Liquid at 99 ℃ and stable distillation, after rising to 103 ℃, 103 ℃after fractions and the former part of the don't mix.
八、Data recording
Output:1.3g theoretical yield:5.8g productivity:21.7% Character: colorless and transparent liquid Refractive index:1.4372
九、Experiment Discussion
1、Turbidity is because it contains a variety of organic phase to organic
impurities
2、Plus the bottle stopper of calcium chloride anhydrous dry battery in
order to prevent the water vapor in the air into the conical flask, at the same time prevent product turbidity。

相关文档
最新文档