中考整式和因式分解复习教案(最新整理)
中考复习教案《因式分解》

中考复习教案《因式分解》一、教学目标1. 掌握因式分解的基本概念和方法。
2. 能够运用提公因式法、公式法、分组分解法等方法进行因式分解。
3. 提高解决实际问题的能力,培养逻辑思维和运算能力。
二、教学重难点1. 重点:因式分解的方法和技巧。
2. 难点:灵活运用各种方法进行因式分解,解决实际问题。
三、教学方法1. 采用讲解法、示范法、练习法、讨论法等相结合的教学方法。
2. 以学生为主体,注重引导学生主动探究、合作交流。
四、教学内容1. 回顾因式分解的基本概念和方法。
2. 提公因式法:找出多项式的公因式,将其提出来进行因式分解。
3. 公式法:运用平方差公式、完全平方公式等进行因式分解。
4. 分组分解法:将多项式中的项进行合理分组,分别进行因式分解。
五、教学过程1. 导入:通过复习已学过的因式分解实例,引发学生对因式分解的兴趣和思考。
2. 新课讲解:讲解提公因式法、公式法、分组分解法等因式分解方法,并结合例题进行演示。
3. 课堂练习:布置一些因式分解的练习题,让学生独立完成,并及时给予指导和反馈。
4. 合作交流:组织学生进行小组讨论,分享各自的解题方法和经验,互相学习和借鉴。
6. 课后作业:布置一些综合性的因式分解题目,让学生进一步巩固所学知识。
六、教学评估1. 课堂练习环节,及时观察学生的掌握情况,针对性地进行个别辅导。
2. 通过课后作业的完成情况,了解学生对因式分解方法的掌握程度。
3. 在下一节课开始时,进行简短的测试,检验学生对上节课内容的复习情况。
七、教学拓展1. 引导学生思考:因式分解在实际生活中的应用,如分解数字、简化表达式等。
2. 鼓励学生探索更多的因式分解方法,提高解决问题的能力。
八、教学反思2. 根据学生的反馈,调整教学方法和策略,以提高教学效果。
九、课后作业1. 完成练习册上的因式分解题目,巩固所学知识。
2. 选择两道具有挑战性的题目进行思考和解答,提高自己的解题能力。
十、教学计划1. 下一节课将继续复习因式分解,重点讲解交叉相乘法和综合除法等高级因式分解技巧。
(完整版)中考数学第2讲整式与因式分解复习教案

(完整版)中考数学第2讲整式与因式分解复习教案课题:第⼆讲整式与因式分解像课:是学习⽬标:1.了解单项式、多项式、整式的概念,弄清它们与代数式之间的联系和区别;2.理解同类项的概念,掌握合并同类项的法则和去、添括号的法则,能准确地进⾏整式的加、减、乘、除、乘⽅混合运算;3.会根据多项式的结构特征,进⾏因式分解,并能利⽤因式分解的⽅法进⾏整式的化简和求值。
教学重点、难点:重点:整式的运算法则和因式分解.难点:乘法公式与因式分解.课前准备:⽼师:导学案、课件学⽣:导学案、练习本、课本(⼋年级下册、七年级下册)教学过程:⼀、基础回顾,课前热⾝活动内容:整式相关内容回顾1.单项式是数与字母的积,单独⼀个数或⼀个字母也是单项式.2.多项式是⼏个单项式的和,每个单项式叫做多项式的项,次数最⾼的项的次数叫做这个多项式的次数.3.单项式与多项式统称整式.4.所含字母相同,并且相同字母的指数也相同的项叫做同类项. 5.合并同类项的⽅法:系数相加减,字母部分不变.6.去括号法则:如果括号前是 + 号,去括号后括号⾥各项都不改变符号;如果括号前是 - 号,去括号后括号⾥各项都改变符号.7.整式的加减法则:⼏个整式相加减,如果有括号先去括号,然后再合并同类项. 8.幂的运算性质:(1)n m a a ?=m n a +(m ,n 都是正整数) (2)()n m a =mn a (m ,n 都是正整数)(3)()n ab =n n b a (n 是正整数)(4)m n a a ÷= m n a -(a ≠0,m ,n 都是正整数,并且m >n ) (5)0a = 1 (a ≠0) (6)pa -=1p a( a ≠0, p 是正整数)9.整式乘法法则:(1)单项式与单项式相乘,系数相乘,相同字母的幂相乘,其它照抄,作为积的因式.(2)单项式与多项式相乘,就是根据分配律⽤单项式去乘多项式的每⼀项,再把所得的积相加;(3)多项式与多项式相乘,先⽤⼀个多项式的每⼀项乘另⼀个多项式的每⼀项,再把所得的积相加.10.乘法公式:(1)平⽅差公式:(a+b )(a-b )=22b a -(2)完全平⽅公式: (a+b )2=222ab b a ++ (a-b )2=222ab b a -+ 11.整式除法法则:(1)单项式与单项式相除,把系数、同底数幂分别相除后,,其它照抄,作为商的因式.(2)多项式除以单项式,先把这个多项式的每⼀项分别除以这个单项式,再把所得的商相加.12.把⼀个多项式化成⼏个因式积的形式,叫做因式分解.13.因式分解常⽤的⽅法有提公因式法、运⽤公式法法.分解因式要分解到不能再分解为⽌.多媒体出⽰知识⽹络处理⽅式:多媒体出⽰知识提纲,学⽣依次回答,不完整的地⽅其他学⽣补充。
整式和因式分解复习教案

整式和因式分解复习教案一、教学目标:1. 复习和巩固学生对整式的概念、性质和运算法则的理解。
2. 提高学生对因式分解的方法和技巧的掌握,增强其解决问题的能力。
3. 培养学生的逻辑思维和数学表达能力,使其能运用整式和因式分解解决实际问题。
二、教学内容:1. 整式的概念、性质和运算法则。
2. 因式分解的方法和技巧。
3. 实际问题中的应用。
三、教学过程:1. 复习整式的概念、性质和运算法则:a. 回顾整式的定义,提醒学生注意整式中各项的系数、变量和指数。
b. 通过例题,复习整式的加减、乘法和除法运算。
c. 讨论整式的性质,如合并同类项、分配律等。
2. 讲解因式分解的方法和技巧:a. 介绍因式分解的概念,解释因式分解的意义。
b. 通过例题,演示因式分解的基本步骤,如提取公因式、十字相乘法等。
c. 分析因式分解的技巧,如观察多项式的结构、寻找合适的公因式等。
3. 应用练习:a. 提供一些实际问题,要求学生运用整式和因式分解的方法进行解决。
b. 引导学生讨论解题过程,互相交流经验和心得。
c. 教师对学生的解答进行评价和指导,纠正错误和不足。
四、作业布置:1. 完成课后练习题,巩固整式和因式分解的知识。
五、教学反思:本节课通过复习整式和因式分解的知识,帮助学生巩固和提高相关技能。
在教学过程中,注意引导学生的思考,培养其逻辑思维和数学表达能力。
通过实际问题的解决,让学生感受数学的应用价值,激发其学习兴趣。
在作业布置方面,注重学生的自主学习和思考,培养其解决问题的能力。
总体来说,本节课达到了预期的教学目标,学生在整式和因式分解方面的掌握情况较好。
六、教学评估:1. 通过课堂提问,检查学生对整式概念、性质和运算法则的理解程度。
2. 通过例题讲解和练习,评估学生对因式分解方法和技巧的掌握情况。
3. 收集学生的作业和练习,分析其在实际问题中应用整式和因式分解的能力。
七、教学策略调整:1. 根据学生的课堂表现和作业情况,针对性地进行讲解和辅导,巩固学生的薄弱环节。
初中整式与因式分解教案

初中整式与因式分解教案教学目标:1. 知识与技能:- 学生能够理解整式的概念,掌握整式的加减乘除运算。
- 学生能够理解因式分解的概念,掌握因式分解的方法和技巧。
2. 过程与方法:- 学生能够通过观察、分析和推理,探索整式运算的规律和性质。
- 学生能够运用因式分解的方法,将多项式分解为几个整式的乘积形式。
3. 情感态度价值观:- 学生能够培养对数学的兴趣和好奇心,体验到数学的乐趣。
- 学生能够通过解决实际问题,感受到数学与生活的紧密联系。
教学内容:1. 整式的概念和运算:- 学生首先需要了解整式的定义,包括单项式和多项式。
- 学生需要掌握整式的加减乘除运算规则,例如同类项的合并、系数的乘除等。
2. 因式分解的概念和方法:- 学生需要了解因式分解的定义,即将一个多项式分解为几个整式的乘积形式。
- 学生需要学习不同的因式分解方法,如提公因式法、十字相乘法、平方差法等。
教学过程:1. 导入:- 教师可以通过实际生活中的例子,如购物问题,引出整式和因式分解的概念。
- 教师可以提问学生是否曾经遇到过类似的问题,让学生思考和参与进来。
2. 整式的概念和运算:- 教师可以通过示例和练习,引导学生理解和掌握整式的概念和运算规则。
- 教师可以设置一些练习题,让学生进行自主学习和合作交流,巩固对整式的理解。
3. 因式分解的概念和方法:- 教师可以通过讲解和示例,引导学生理解和掌握因式分解的概念和方法。
- 教师可以设置一些练习题,让学生进行自主学习和合作交流,巩固对因式分解的理解。
4. 应用和拓展:- 教师可以提供一些实际问题或综合题目,让学生运用整式和因式分解的知识进行解决。
- 教师可以引导学生思考和探索更高级的因式分解方法,如差平方、完全平方等。
教学评价:1. 课堂参与度:观察学生在课堂上的积极参与程度,提问和回答问题的积极性。
2. 练习题完成情况:检查学生完成练习题的情况,对整式和因式分解的理解和应用能力。
3. 学生互评和自我评价:鼓励学生进行互评和自我评价,反思自己的学习过程和进步。
初三数学专题复习教案:整式及因式分解.

第2讲整式及因式分解一、教学目标1、整式乘除的计算法则;平方差公式和完全平方公式;掌握因式分解的方法。
2、会运用法则进行整式的乘除运算,会对一个多项式分解因式。
3、能选用恰当的方法进行相应的代数式的变形,并通过代数式的适当变形求代数式的值.二、教学重难点重点:公式及法则的运用。
难点:会运用法则进行整式乘除运算,会对一个多项式进行因式分解。
三、教学用具:多媒体四、学情分析:九年级的学生对于整式及因式分解掌握不是很好,特别是因式分解的内容,加强学生的整式的乘除运算及因式分解五、教学方法:归纳、探究六教学资源:PPT七、教学过程:一、知识要点知识点一:代数式知识点二:整式的概念知识点三:整式的运算1.同类项所含相同,并且相同字母的也相同的项叫做同类项,几个项也是同类项.2.合并同类项(1)概念:把多项式中的合并成一项,叫做合并同类项.(2)法则:把同类项的相加,所得的结果作为系数,字母和字母的指数.3.去括号法则如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号.4.整式的加减有括号就先,再.5.幂的运算(常考点)(1)同底数幂的乘法:a m·a n= (m,n为整数).(2)幂的乘方:(a m)n= (m,n 为整数).(3)积的乘方:(ab)n= (n为整数).(4)同底数幂的除法:a m÷a n= (a≠0,m,n为整数).6.整式的乘法(1)单项式乘以单项式:把它们的, 分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(2)单项式乘以多项式:m(a+b+c)= .(3)多项式乘以多项式:(m+n)(a+b)=(4)乘法公式:(常考点)平方差公式:(a+b)(a-b)= .完全平方公式:(a±b)2= .7.整式的除法(1)单项式除以单项式:把与分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.(2)多项式除以单项式:先把这个多项式的除以这个单项式,再把所得的商相加.知识点四:因式分解1.概念把一个多项式化成几个整式的的形式,像这样的式子变形叫做这个多项式的因式分解,因式分解与是方向相反的变形.2.方法(1)提公因式法:ma+mb+mc=m(a+b+c).(2)公式法:a2-b2=(a+b)(a-b).a2±2ab+b2=(a±b)2.(3)十字相乘法:x2+(p+q)x+pq=(x+p)(x+q).3.步骤一提:有公因式要先;二套:再考虑应用;三检查:因式分解的结果要彻底,每个因式要分解到为止(结果必须是整式).二、典型例题例1 (1)(2020山西模拟)某水果店老板以每千克x元的单价购进草莓100千克,加价30%卖出70千克以后,每千克比进价降低a元,将剩下的30千克全部卖出,则可获得利润为元;(2)(2020临洮一模)图①是一个三角形,分别连接这个三角形的中点得到图②;再分别连接图②中间小三角形三边的中点,得到图③.按上面的方法继续下去,第n个图形中有个三角形(用含字母n的代数式表示).变式1 (2020甘孜)若m2-2m=1,则代数式2m2-4m+3的值为.变式2 (2020黔西南改编)如图,是一个运算程序的示意图,若开始输入x的值为625,求第2 020次输出的结果.思政元素:程序是电脑的逻辑,一个个程序组成代码,手机、电脑的芯片就是由核心技术编制的代码,这是知识产权,我国仍是芯片进口国,未能掌握核心技术,华为在美国的排挤下自主研发芯片,为祖国不牵制于人打下基础。
整式乘除与因式分解复习教案

整式乘除与因式分解复习教案第一篇:整式乘除与因式分解复习教案整式的乘除与因式分解复习菱湖五中教学内容复习整式乘除的基本运算规律和法则,因式分解的概念、方法以及两者之间的关系。
通过练习,熟悉常规题型的运算,并能灵活运用。
教学目标通过知识的梳理和题型训练,提高学生观察、分析、推导能力,培养学生运用数学知识解决问题的意识。
教学分析重点根据新课标要求,整式的乘除运算法则与方法和因式分解的方法与应用是本课重点。
难点整式的除法与因式分解的应用是本课难点。
教学方法与手段采用多媒体课件,由于本课内容较多,故设计了大量的练习,使学生理解各种类型的运算方法。
本课教学以练习为主。
教学过程一.回顾知识点(一)整式的乘法1、同底数的幂相乘2、幂的乘方3、积的乘方4、同底数的幂相除5、单项式乘以单项式6、单项式乘以多项式7、多项式乘以多项式8、平方差公式9、完全平方公式(二)整式的除法1、单项式除以单项式2、多项式除以单项式(三)因式分解1、因式分解的概念2、因式分解与整式乘法的关系3、因式分解的方法4、因式分解的应用二.练习巩固(一)单项式乘单项式(1)(5x3)⋅(-2x2y),(2)(-3ab)2⋅(-4b3)(3)(-am)2b⋅(-a3b2n),231(4)(-a2bc3)⋅(-c5)⋅(ab2c)343(二)单项式与多项式的乘法(1)(-2a)⋅(x+2y-3c),(2)(x+2)(y+3)-(x+1)(y-2)(3)(x+y)(-2x-1y)2(三)乘法公式应用(1)(-6x+y)(-6x-y)(2)(x+4y)(x-9y)(3)(3x+7y)(-3x-7y)(四)整式的除法1(1)(-a6b4c)÷((2a3c)41(2)6(a-b)5÷[(a-b)2]3(3)(5x2y3-4x3y2 +6x)÷(6x)13(4)x3my2n-x2m-1y2+x2m+1y3)÷(-0.5x2m-1y2)3 4(五)提取公因式法因式分解(1)3ay-3by+3y(2)-4a3b2+6a2b-2ab(3)3(x-y)3-6(x-y)2(4)5m(a-b)4-4m2(b-a)3(六)乘法公式因式分解(1)25-16x2(2)-81x2+4(y-1)2(3)x2-14x+49(4)(x+y)2-6(x+y)+9(七)因式分解的应用1、解方程(1)9x2+4x=0(2)x2=(2x-5)22、计算(1)(2mp-3mq+4mr)÷(2p-3q+4r)(2)(16-x4)÷(4+x2)÷(x-2)探究活动:求满足4x2-9y2=31的正整数解。
整式和因式分解复习教案

整式和因式分解复习教案第一章:整式的概念与性质1.1 内容概述本节主要回顾整式的定义、分类及其基本性质。
1.2 教学目标(1) 理解整式的概念,掌握整式的分类;(2) 掌握整式的加减法、乘法运算规则;(3) 理解整式的系数、次数、度等基本性质。
1.3 教学重点与难点重点:整式的概念、分类、基本性质;难点:整式的运算规则及性质的灵活运用。
1.4 教学方法采用讲授法、例题解析法、小组讨论法等。
1.5 教学过程(1) 复习整式的定义及分类;(2) 复习整式的加减法、乘法运算规则;(3) 复习整式的系数、次数、度等基本性质;(4) 进行典型例题讲解与分析;(5) 学生练习,教师点评。
第二章:因式分解的概念与方法2.1 内容概述本节主要回顾因式分解的定义、方法及其应用。
(1) 理解因式分解的概念,掌握因式分解的方法;(2) 学会运用因式分解解决实际问题。
2.3 教学重点与难点重点:因式分解的概念、方法;难点:因式分解在实际问题中的应用。
2.4 教学方法采用讲授法、例题解析法、小组讨论法等。
2.5 教学过程(1) 复习因式分解的定义及方法;(2) 复习因式分解在实际问题中的应用;(3) 进行典型例题讲解与分析;(4) 学生练习,教师点评。
第三章:提公因式法与公式法3.1 内容概述本节主要回顾提公因式法与公式法在因式分解中的应用。
3.2 教学目标(1) 掌握提公因式法与公式法的运用;(2) 学会运用提公因式法与公式法解决实际问题。
3.3 教学重点与难点重点:提公因式法与公式法的运用;难点:提公因式法与公式法在实际问题中的应用。
采用讲授法、例题解析法、小组讨论法等。
3.5 教学过程(1) 复习提公因式法与公式法的定义及运用;(2) 复习提公因式法与公式法在实际问题中的应用;(3) 进行典型例题讲解与分析;(4) 学生练习,教师点评。
第四章:因式分解的应用4.1 内容概述本节主要回顾因式分解在实际问题中的应用。
4.2 教学目标(1) 学会运用因式分解解决实际问题;(2) 培养学生的数学应用能力。
整式乘法与因式分解复习课教案

《第九章整式乘法与因式分解》复习课(教案)
教学目标
知识与技能
了解本章的知识框架,通过“做一做想一想”、“怎样做最简便”、“灵活运用”等环节,使学生理解本章各知识点并总结归纳各知识点运用过程中的注意点、易错点,在此过程中培养总结归纳、取长补短、查漏补缺的数学学习方法。
过程与方法、情感态度与价值观
本章各环节注重培养学生归纳总结各知识点的学习方法,在全体合作的基础上,对自身进行查漏补缺,取长补短。
在归纳、探索最简方法等活动中,激发学生学习数学的热情,充分调动学生的自主性,培养学生的合作意识和团队精神。
教学重难点
重点
归纳总结本章各知识点
难点
对本章各知识点易错点、注意点的归纳及灵活运用
突破方法:采用教师引导和学生合作的教学方法。
教学手段
多媒体辅助教学
教学过程
板书设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
聚智堂教育学科教师辅导讲义
整体代人
指数:(a≠0,n 为正整数);n n a
a 1=-4.整式的乘除法:
(1)几个单项式相乘除,系数与系数相乘除,同底数的幂结合起来相乘除.
(2)单项式乘以多项式,用单项式乘以多项式的每一个项.
(3)多项式乘以多项式,用一个多_项式的每一项分别乘以另一个多项式的每一项.
(4)多项式除以单项式,将多项式的每一项分别除以这个单项式.
(5)平方差公式:两个数的和与这两个数的差的积等于这两个数的平方,
即;
22))((b a b a b a -=-+(6)完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)
它们的积的2倍,即2
222)(b ab a b a +±=±5.分解因式:把一个多项式化成几个整式的积的形式,叫做把这个多项式分解因式.
6.分解因式的方法:
⑴提公团式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出
来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式
法.
⑵运用公式法:
(1)(a+b)(a-b) = a 2-b 2 ---------a 2-b 2=(a+b)(a-b);
(2) (a±b)2 = a 2±2ab+b 2 ——— a 2±2ab+b 2=(a±b)2;
(3) (a+b)(a 2-ab+b 2) =a 3+b 3------ a 3+b 3=(a+b)(a 2-ab+b 2);
(4) (a-b)(a 2+ab+b 2) = a 3-b 3 ------a 3-b 3=(a-b)(a 2+ab+b 2).
7.分解因式的步骤:分解因式时,首先考虑是否有公因式,如果有公因式,一定先提
取公团式,然后再考虑是否能用公式法分解.
6.分解因式时常见的思维误区:
⑴ 提公因式时,其公团式应找字母指数最低的,而不是以首项为准.
⑵ 提取公因式时,若有一项被全部提出,括号内的项“ 1”易漏掉.
(3) 分解不彻底,如保留中括号形式,还能继续分解等
【例题精讲】
【例1】下列计算正确的是(
)A. a +2a=3a B. 3a -2a=a
2
6.因式分解
(9)
641622++ax x a z xy yz x z x 22344+-已知是的三边,且,
a b c ,,ABC ∆222a b c ab bc ca ++=++则的形状是( )
ABC ∆A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形
7、 已知:的值。
x y xy x y +==-+6133,,求:8、. 矩形的周长是28cm ,两边x,y 使,求矩形的面积。
x x y xy y 32230+--=9、若的值.()()()2
2005123456789,20151995N N N +=++求
“”
“”
At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。