分数的混合运算应用题知识点汇总
4分数混合运算应用题的列式技巧

分数混合运算应用题的列式技巧常用关键字和词:“比”、“占”、“是”、“相当于”、字词应用解释:当所求问题在字词之前用乘法“×”;当所求问题在字词之后用除法“÷” 应用口诀 ①“比”前“×”,“比”后“÷”;②“占”前“×”,“占”后“÷”;③“是”前“×”,“是”后“÷”;④ 总结:前“×”后“÷”一、基础题型:杨树有120棵1、柳树是杨树的32,求柳树有多少棵? 2、杨树是柳树的32,求柳树有多少棵?3、柳树比杨树多41,求柳树有多少棵? 4、杨树比柳树少41,求柳树有多少棵?二、提高题型:5、杨树有150棵,柳树棵数占杨树棵数的43,榆树棵数占柳树棵数的54,求榆树有多少棵?6、杨树有180棵,杨树棵数占柳树棵数的43,柳树棵树占榆树棵数的54,求榆树有多少棵?7、杨树有160棵,柳树棵数占杨树棵数的43,柳树棵树占榆树棵数的54,求榆树有多少棵?8、杨树有300棵,杨树棵树占柳树棵树的43,榆树棵树占柳树棵树的54,求榆树有多少棵?三、综合题型:9、杨树有240棵,柳树棵数比杨树棵数的32多3棵,求柳树有多少棵?10、杨树有240棵,柳树棵数占杨树棵数的43少4棵,求柳树有多少棵?四、思维拓展:11、杨树有245棵,杨树棵数是柳树棵数的54多5棵,求柳树有多少棵?12、杨树有244棵,杨树棵数相当于柳树棵数的65少6棵,求柳树有多少棵?五、潜能开发:13、杨树有240棵,柳树棵数是杨树棵数的32,榆树棵数比柳树棵数的43多4棵,求榆树有多少棵?14、杨树有235棵,杨树棵树比柳树棵数的54少5棵,柳树棵数是榆树棵树的43,求榆树有多少棵?。
六年级数学上册第二单元分数混合运算知识点总结北师大版

一线教师精心整理,word 可编辑1 / 1 第二单元 分数混合运算1、分数混合运算的运算顺序与整数混合运算的运算顺序完全相同,都是先算乘除,再算加减,有括号的先算括号里的。
①如果是同一级运算,按照从左到右的顺序依次计算。
②如果是分数连乘,可先进行约分,再进行计算;③如果是分数乘除混合运算时,要先把除法转换成乘法,然后按乘法运算。
2、解决问题 (1)用分数运算解决“求比已知量多(或少)几分之几的量是多少”的实际问题,方法是: 第①种方法:可以先求出多或少的具体量,再用单位“1”的量加或减去多或少的部分,求出要求的问题。
第②种方法:也可以用单位“1”加或减去多或少的几分之几,求出未知数占单位“1”的几分之几,再用单位“1”的量乘这个分数。
(2)“已知甲与乙的和,其中甲占和的几分之几,求乙数是多少?” 第①种方法:首先明确谁占单位“1”的几分之几,求出甲数,再用单位“1”减去甲数,求出乙数。
第②种方法:先用单位“1”减去已知甲数所占和的几分之几,即得未知乙数所占和的几分之几,再求出乙数。
(3)用方程解决稍复杂的分数应用题的步骤:①要找准单位“1”。
②确定好其他量和单位“1”的量有什么关系,画出关系图,写出等量关系式。
③设未知量为X ,根据等量关系式,列出方程。
④解答方程。
(4)要记住以下几种算术解法解应用题:①对应数量÷对应分率=单位“1” 的量②求一个数的几分之几是多少,用乘法计算。
③已知一个数的几分之几是多少,求这个数,用除法计算,还可以用列方程解答。
3、要记住以下的解方程定律:加数 +加数 = 和 ; 加数 = 和–另一个加数。
被减数–减数 = 差; 被减数=差+减数;减数=被减数–差。
因数×因数 = 积; 因数 = 积÷另一个因数。
被除数÷除数 = 商; 被除数=商×除数;除数=被除数÷商。
4、方程形如:(1)X ﹢a=b X=b -a (2)X -a=b X=b+a(3)a -X=b X=a -b (4)aX=b X=b ÷a(5)X ÷a=b X=a ×b (6)a ÷X=b X=a ÷b (7)aX ﹢b=c X=(c -b)÷a (8)aX -b=c X=(c ﹢b )÷a (9)a —bX=c X=(a —c)÷b (10)aX +bX=c X=c ÷(a +b) (11)aX —bX=c X=c ÷(a —b) (12)aX +b=cX +d X=(d —b)÷(a —c) 5、绘制简单线段图的方法: 分数应用题,分两种类型,一种是知道单位“1”的量用乘法,另一种是求单位“1”的量,用除法。
分数四则混合运算知识点及例题拓展应用

第五单元 分数四则混合运算基础知识点:运算顺序:分数四则混合运算的顺序与整数相同;先算乘除法,后算加减法;有括号的先算括号里面的,后算括号外面的;运算律:加法的交换律:a+b=b+a加法的结合律:a+b+c=a+b+c乘法的交换律:a ×b=b ×a乘法的结合律:a ×b ×c=a ×b ×c乘法的分配律:a+b ×c=a ×c+b ×c分数四则混合运算的应用题:总数与部分数相比较的问题:分数乘法、减法一般解题方法:先求出未知的部分数,再用总数减部分数等于另一部分数;已知一个数量比另一个数量多或少几分之几,求这个数量是多少的问题:分数乘法、加减法 一般解题方法:先求出多或少的部分,再用加法或减法求出结果;注:对于题中出现的带单位与不带单位的分数,要注意它们的意义不一样;例1分数四则混合运算[()]2311561023⨯⨯++ 25452426254127--⨯⨯例2知识点己知总量求部分量的实际问题岭南小学六年级45个同学参加学校运动会,其中男运动员占95,女运动员有多少人归纳总结:1.已知总量及一个部分量占总量的几分之几,求另一个部分量时,可以列成形a-a ×b c 或a ×1-bc 的算式解题b ≠0 2.解决实际问题时,借助线段图理解题意,可以从条件出发思考问题,也可以从问题出发;思考问题;例3已知一个量以及另一个量比它多或少几分之几,求另一个量的解题方法林阳小学去年有24个班级,今年的班级数比去年増加了61,今年一共有多少个班级归纳总结:1.已知一个量以及另一个量比它多或少几分之几,求另一个量时,可以列成形如a 士 a ×b c 或a ×1士bc 的算式解题b ≠0 2.分析问题时,先找准单位“1”的量,再抓关键词语,弄清是哪两个量作比较,比较的结果; 是什么,最后确定解题方法;拓展部分:1.运用分数乘法剩余规律解决连续相减问题2001减去它的21,再减去余下的31,再减去余下的41,以此类推,一直减到余下的20011,最后得到多少规律总结一个不为0的数,减去它本身的n 分之一,求还剩多少,可以用分数乘法计算,即ー个 数×1-n1n ≠0:再连续减去余下的几分之ー,求还多少,仍然可以用分数乘法进行计算. 举一反三 1+21×1-21×1+31×1-31×....×1+991×1-9912.运用乘法运算解决稍复杂的分数运算 157×83+151×167+151×321 238÷238239238举一反三61×131+21×135+35×131课堂练习一、计算下面各题,怎样简便怎样算533432101⨯÷+ [()]89214365⨯-- [()]4413197⨯÷+二、解方程 1585=-χχ 1851=+χχ 238543=-χ三、用简便方法计算下面各题85715375⨯⨯+ 58111184.88116.4⨯÷⨯-+151716⨯ 140139111⨯四、解决实际问题1、一条公路长1500米,第一天修了全长的41,第二天修了全长的51,两天一共修多少米还有多少米没有修2、有一条长24千米的公路,第一天修了它的81,第二天修了52千米,两天共修共修多少千米3、一根钢材长54米,做了5个同样的零件后,还剩103米;平均每个零件用钢材多少米 4、4、一条绳子,第一次用去51米,相当于第二次用去长度的32;两次共用去多少米 5、课后作业:1. 计算[()]41531582⨯+-4858341÷⨯+1511983252++⨯ ()958350385503⨯⨯⨯-2. 解方程125655=-χ3497=+χχ ()75611=-χ3. 解决问题1甲乙两艘轮船从相距70千米的两地相像而行,甲每分钟行21千米,乙分钟行32千米,甲乙两船几分钟后相遇2一辆汽车从甲地开往乙地,行了全程的83,正好是12千米,如果这辆汽车行了全程的21,应该行多少千米3小佳读一本315页的故事书,第一天读了全书的72,第二天读了余下的51;第二天读了多少页4一款电脑原价7800元,国庆节期间促销降价131,国庆节后又提价241,这款电脑现价多少元5一本书共有240页,敏敏第一天看了它的61,第二天比第一天多看81;剩下的5天看完,平均每天看多少页6一座寺庙里,3个和尚合吃一碗饭,4个和尚合分一碗汤,一共用了364只碗;寺庙里一共有多少个和尚用方程解。
分数的混合运算

【例1】妈妈种了40盆兰花,兰花的盆数比茉莉花多 。妈妈种了多少盆茉莉花?
【变式1-1】育才小学五⑴班男生人数占全班人数的 ,女生有36人。这个班有多少人?
【变式1-2】一桶油第一天用去 ,第二天用去10千克,这时还剩一半。这桶油原来有多少千克?
【例2】一杯糖水,糖占糖水的 ,再加入10g糖后,糖占糖水的 。原来糖水有多少克?
【解析】“已知两个量的和与其中一个量占总数量的几分之几,求另一个量”的问题的解法有两种。可以先求出一个量,再用总数量减去第一个量,便可以求出另一个量。也可以先用单位“1”减去一个量占总数量的几分之几,求出另一个量占总数量的几分之几,再根据分数乘法的意义求出结果。
【变式2-3】一根电线长40米,先用去 ,又用去 米,还剩下多少米?
【解析】“已知一个数比另一个数少几分之几,求这个数”的问题的解法有两种。可以先求出少的几分之几的数量是多少,再根据“已知量一少的部分”就可以求出结果。也可以先用单位“1”减去比已知数少的儿分之儿,就可以求出未知量是已知量的几分之几,再根据分数乘法的意义求出结果。
【变式2-2】张大爷养了60只鸡,其中母鸡占鸡的总只数的 ,公鸡有多少只?
【点拨】变化的数量不能作为统一的单位“1”。在解答此类应用题时,要找出一个不变的量作为单位“1”,其他数量分别转化为相当于这个单位“1”的几分之几,进而求出要求的问题。
【变式2-1】同学们参加野炊活动,要求一人一个饭碗,两人一个菜碗,三人一个汤碗,共用了55个碗。你知道有多少人参加这次野炊活动吗?
【点拨】此题要根据已知条件求出每人用碗的个数,然后根据除法的意义,直接用除法求出参加野炊的人数。
【解析】解答较复杂的分数应用题,可以先通过画线段图来理解题意,再列式计算。
分数的四则混合运算知识点

分数的四则混合运算知识点分数是数学中常见的一种数形式,它由一个整数部分和一个分数部分组成。
分数可以表示部分整数,常见的分数形式包括真分数和假分数。
在数学中,我们经常需要对分数进行四则混合运算,即加法、减法、乘法和除法。
本文将介绍分数的四则混合运算的知识点和相关的运算规则。
一、分数的加法分数的加法是指两个分数相加的运算。
要将两个分数相加,首先要确保两个分数的分母相同,然后将分子相加,分母保持不变。
例如,计算1/4 + 1/3的结果,首先需要将两个分数的分母统一为12,然后相加分子,得到7/12。
如果两个分数的分母不相同,我们需要找到它们的最小公倍数,然后通过改变分数的形式,使它们的分母相同。
例如,计算1/4 + 2/3的结果,最小公倍数为12,我们可以将1/4改写为3/12,然后进行分数的加法,得到5/12。
二、分数的减法分数的减法是指两个分数相减的运算。
要将两个分数相减,和分数的加法类似,首先要确保两个分数的分母相同,然后将分子相减,分母保持不变。
例如,计算2/3 - 1/4的结果,首先需要将两个分数的分母统一为12,然后相减分子,得到5/12。
如果两个分数的分母不相同,我们需要找到它们的最小公倍数,然后通过改变分数的形式,使它们的分母相同。
例如,计算2/3 - 1/5的结果,最小公倍数为15,我们可以将2/3改写为10/15,然后进行分数的减法,得到7/15。
三、分数的乘法分数的乘法是指两个分数相乘的运算。
要将两个分数相乘,只需要将它们的分子相乘,分母相乘。
例如,计算3/4 * 2/5的结果,分子相乘得到6,分母相乘得到20,所以答案是6/20,可以进一步简化为3/10。
四、分数的除法分数的除法是指两个分数相除的运算。
要将一个分数除以另一个分数,只需要将它们的分子相除,分母相除。
例如,计算3/4 ÷ 1/2的结果,分子相除得到3,分母相除得到2,所以答案是3/2,可以进一步简化为1整又1/2。
六年级分数混合运算及应用题讲义

分数问题辅导讲义分数问题辅导讲义课 题分数混合运算 教学目标1、体会分数混合运算的运算顺序和整数是一样的,会计算分数混合运算2、利用分数加、减、乘、除法解决日常生活中的实际问题3、掌握分数应用题的相关知识及解题方法教学内容(包括知识点、典型例题、课后作业) 分数知识点1.分数乘整数的计算方法:分子和整数相乘,分母不变。
2.分数乘分数的计算方法:分子乘分子,分母乘分母。
3.小数乘分数的计算方法:可以把小数化成分数,也可以把分数化成小数。
计算技巧:能约分的,先约分再算。
分数的意义: 把单位“1”平均分成若干份,表示这样的一份或者几份的数,叫做分数。
在分数里,表示把单位“1”平均分成多少份的数,叫做分母; 表示这样多少份的数,叫做分子;其中的一份,叫做分数单位。
分数混合运算顺序1.含有同级运算的按从左到右的顺序计算;2.含有两级运算的先算乘除,后算加减;3.有括号的先算括号里的运算。
一个数(0除外)乘比1大的数,得数就比它本身大;乘比1小的数,得数就比它本身小。
分数简便运算常见题型第一种:连乘——乘法交换律的应用例题:1)1474135⨯⨯ 2)56153⨯⨯ 3)266831413⨯⨯涉及定律:乘法交换律 b c a c b a ⋅⋅=⋅⋅基本方法:将分数相乘的因数互相交换,先行运算。
第二种:乘法分配律的应用例题:1)27)27498(⨯+ 2)4)41101(⨯+ 3)16)2143(⨯+涉及定律:乘法分配律 bc ac c b a ±=⨯±)(基本方法:将括号中相加减的两项分别与括号外的分数相乘,符号保持不变。
第三种:乘法分配律的逆运算例题:1)213115121⨯+⨯ 2)61959565⨯+⨯ 3)751754⨯+⨯涉及定律:乘法分配律逆向定律 )(c b a c a b a ±=⨯±⨯基本方法:提取两个乘式中共有的因数,将剩余的因数用加减相连,同时添加括号,先行运算。
分数应用题及混合运算知识整理

“分数混合运算”知识整理一、分数混合运算1、分数混合运算顺序与整数混合运算顺序相同,没有括号的先算(乘除),再算(加减);有括号的先算(括号里面的),再算(括号外面的)。
2、整数的运算律在分数运算中同样适用。
加法运算定律:加法交换律:a+b=b+a 加法结合律:a+b+c=a+(b+c)乘法定律:乘法交换律:a×b=b×a 乘法结合律:a×b×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c减法定律:减法的性质a-b-c=a-(b+c)或a-(b+c) =a-b-c除法的特性:a÷b÷c=a÷(b×c)或a÷(b×c)= a÷b÷c3、用方程解决有关分数混合运算的实际问题,关键是找出(单位1),并把它设为未知数,再找出等量关系计算。
4、分数基本性质:分数的分子和分母同时乘以或除以相同的数(0除外)分数的大小不变。
5、分数加减法同分母分数相加减,分母不变,分子相加减,异分母分数相加减,要先通分为同分母分数再相加减。
二、分数混合运算的应用1、打折计算方法:现价÷原价=折扣2、一件商品打几折,求现价。
计算方法:原价×折数3、一件商品打几折,求原价。
计算方法:现价÷折数4、分数混合运算的应用题解答方法解答方法:1、找准单位1——并在题目的文字下面标注①总数量是单位“1”例如:小红看完整本书的 2/5,那么单位“1”是整本书的页码。
②原价就是单位“1”例如:笔记本电脑原价是300元,现在降价了 1/6,那么单位“1”是原价3000元。
③分数比率之前的“的”字前面的量是单位“1”例如:全校男生的人数是女生人数的4/5 ,那么单位“1”是女生人数。
六年级分数混合运算及应用题讲义

分数问题辅导讲义分数问题辅导讲义课 题分数混合运算 教学目标1、体会分数混合运算的运算顺序和整数是一样的,会计算分数混合运算2、利用分数加、减、乘、除法解决日常生活中的实际问题3、掌握分数应用题的相关知识及解题方法教学内容(包括知识点、典型例题、课后作业) 分数知识点1.分数乘整数的计算方法:分子和整数相乘,分母不变。
2.分数乘分数的计算方法:分子乘分子,分母乘分母。
3.小数乘分数的计算方法:可以把小数化成分数,也可以把分数化成小数。
计算技巧:能约分的,先约分再算。
分数的意义: 把单位“1”平均分成若干份,表示这样的一份或者几份的数,叫做分数。
在分数里,表示把单位“1”平均分成多少份的数,叫做分母; 表示这样多少份的数,叫做分子;其中的一份,叫做分数单位。
分数混合运算顺序1.含有同级运算的按从左到右的顺序计算;2.含有两级运算的先算乘除,后算加减;3.有括号的先算括号里的运算。
一个数(0除外)乘比1大的数,得数就比它本身大;乘比1小的数,得数就比它本身小。
分数简便运算常见题型第一种:连乘——乘法交换律的应用例题:1)1474135⨯⨯ 2)56153⨯⨯ 3)266831413⨯⨯涉及定律:乘法交换律 b c a c b a ⋅⋅=⋅⋅基本方法:将分数相乘的因数互相交换,先行运算。
第二种:乘法分配律的应用例题:1)27)27498(⨯+ 2)4)41101(⨯+ 3)16)2143(⨯+涉及定律:乘法分配律 bc ac c b a ±=⨯±)(基本方法:将括号中相加减的两项分别与括号外的分数相乘,符号保持不变。
第三种:乘法分配律的逆运算例题:1)213115121⨯+⨯ 2)61959565⨯+⨯ 3)751754⨯+⨯涉及定律:乘法分配律逆向定律 )(c b a c a b a ±=⨯±⨯基本方法:提取两个乘式中共有的因数,将剩余的因数用加减相连,同时添加括号,先行运算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分数的混合运算应用题
知识点汇总
集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-
分数混合运算(应用题专题)
一、分数应用题主要讨论的是以下三者之间的关系:
分率:表示一个数是另一个数的几分之几,这几分之几通常称为分率。
标准量:解答分数应用题时,通常把题目中作为单位“1”的那个数,称为标准量。
比较量:解答分数应用题时,通常把题目中同标准量比较的那个数,称为比较量。
二、题型分类
1、求一个数的几分之几是多少。
这类问题特点是已知一个看作单位“1”的数,求它的几分之几是多少,解这类应用题用乘法。
即反映的是整体与部分之间关系的应用题,基本的数量关系是:
标准量×分率=分率的对应的比较量。
(1)求一个数的几分之几是多少:标准量×几
几(分率)=是多少 (2)求比一个数多几分之几多多少:标准量×几几
(分率)=多多少
(3)求比一个数多几分之几是多少:标准量×(1+几几
)(分率)=是多少
(4)求比一个数少几分之几少多少:标准量×几几
(分率)=少多少
(5)求比一个数少几分之几是多少:标准量×(1-几几
)(分率)=是多少
2、求一个数是另一个数的几分之几。
这类问题特点是已知两个数量,比较它们之间的倍数关系,解这类应用题用除法。
基本的数量关系是:比较量÷标准量=分率。
(1)求一个数是另一个数的几分之几:比较量÷标准量=分率(几分之几)。
(2)求一个数比另一个数多几分之几:相差量÷标准量=分率(多几分之几)。
(3)求一个数比另一个数少几分之几:相差量÷标准量=分率(少几分之几)。
3、已知一个数的几分之几是多少,求这个数。
这类问题特点是已知一个数的几分之几是多少的数量,求单位“1”的量,解这类应用题用除法。
基本的数量关系是:
分率对应的比较量÷分率=标准量。
(1)已知一个数的几分之几是多少,求这个数: 是多少(分率对应的比较量)÷几几
(分率)=标准量。
(2)已知一个数比另一个数多几分之几多多少,求这个数: 多多少(分率对应的比较量)÷几几
(分率)=标准量。
(3)已知一个数比另一个数多几分之几是多少,求这个数:
是多少(分率对应的比较量)÷(1+几几
)(分率)=标准量。
(4)已知一个数比另一个数少几分之几少多少,求这个数: 少多少(分率对应的比较量)÷几几
(分率)=标准量。
(5)已知一个数比另一个数少几分之几是多少,求这个数:
是多少(分率对应的比较量)÷(1–几几
)(分率)=标准量。
三、分数应用题的基本训练
1、正确审题能力训练
正确审题是正确解题的前提。
这里所说的审题能力,首先是根据题中的分率句,能准确分清比较量和标准量(看分率是谁的几分之几,谁就是标准量),且判断标准量已知(用乘法)或未知(用除法),为确定解题方法奠定基础。
2、画线段图的训练
线段图有直观、形象等特点。
按题中的数量比例,恰当选用实线或虚线把已知条件和问题表示出来,数形结合,有利于确定解题思路。
3、量、率对应关系训练
量、率对应关系的训练是解较复杂分数应用题的重要环节。
通过训练,能根据应用题的已知条件发挥联想,找出各种量、率间接对应关系,为正确解题铺平道路。
4、转化分率训练
在解较复杂的分数应用题时,常需要将间接分率转化为直接运用于解题的分率。
5、由分率句到数量关系式训练。