第二十二章二次函数教学目标

合集下载

初中数学九年级上册第二十二章 二次函数二次函数的概念教案

初中数学九年级上册第二十二章 二次函数二次函数的概念教案

二次函数的概念柏树中心校:陈锡教学目标1.理解掌握二次函数的概念和一般形式.2.会利用二次函数的概念解决问题.3.会列二次函数表达式解决实际问题.教学重点:掌握二次函数的概念和一般形式教学难点:会列二次函数表达式解决实际问题教学过程:一、情境引入:雨后天空的彩虹,公园里的喷泉,跳绳等都会形成一条曲线.这些曲线能否用函数关系式表示?1.什么叫函数?2.什么是一次函数?正比例函数?3.一元二次方程的一般形式是什么?二、讲授新课:1探究:二次函数的定义问题1:正方体六个面是全等的正方形,设正方体棱长为x,表面积为y,则y 关于x 的关系式为。

问题2:n个球队参加比赛,每两个队之间进行一场比赛,比赛的场次数m与球队数n有什么关系?问题3:某工厂一种产品现在的年产量是20件,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,y与x之间的关系怎样表示?想一想:问题1-3中函数关系式有什么共同点?y=6x2y=20x2+40x+20m=12n2-12n2、归纳总结:形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的函数叫做二次函数.其中x是自变量,a,b,c分别是二次项系数、一次项系数和常数项.注意:(1)等号左边是变量y,右边是关于自变量x的整式;(2)a,b,c为常数,且a≠ 0;(3)等式的右边最高次数为2,可以没有一次项和常数项,但不能没有二次项.例题:例1下列函数中哪些是二次函数?为什么?(x是自变量)①y=ax2+bx+c②s=3-2t² ③y=x2④y=1x2⑤y=x²+x³+25 ⑥y=(x+3)²-x²方法总结:判断一个函数是不是二次函数,先看原函数和整理化简后的形式再作判断.除此之外,二次函数除有一般形式y=ax2+bx+c(a≠0)外,还有其特殊形式如y=ax2,y=ax2+bx, y=ax2+c等想一想:二次函数的一般式y=ax2+bx+c(a≠0)与一元二次方程ax2+bx+c=0(a≠0)有什么联系和区别?3、二次函数概念的应用例2 :y=(m+3)x m2-7(1)m取什么值时,此函数是正比例函数?(2)m取什么值时,此函数是二次函数?变式训练:1、已知: y=(k+2) x|k| ,k取什么值时,y是x的二次函数?2、若函数y=(m2−9)x2+(m+2)x+4是二次函数,求m的取值范围3、若函数y=(m−1)x m2−2m−1+ (m-3)x+4是二次函数,求m的取值范围例3:某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润6元.每提高一个档次,每件利润增加2元,但一天产量减少5件.(1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x的函数关系式;(2)若生产第x档次的产品一天的总利润为1120元,求该产品的质量档次.三、课堂练习:1.把y=(2-3x)(6+x)变成一般式,二次项为_____,一次项系数为______,常数项为2.函数y=(m-n)x2+ mx+n是二次函数的条件是( )A . m,n是常数,且m≠0B . m,n是常数,且n≠0C. m,n是常数,且m≠n D . m,n为任何实数3.下列函数是二次函数的是( )A.y=2x+1 B.y=1xC.y=3x2+1 D.y= √x+14. 已知函数y=3x2m-1-5①当m=__时,y是关于x的一次函数;②当m=__时,y是关于x的反比例函数;③当m=__时,y是关于x的二次函数 .6.写出下列各函数关系,并判断它们是什么类型的函数(1)写出正方体的表面积S(cm2)与正方体棱长a(cm)之间的函数关系;(2)写出圆的面积y(cm2)与它的周长x(cm)之间的函数关系;(3)菱形的两条对角线的和为26cm,求菱形的面积S(cm2)与一对角线长x(cm)之间的函数关系.7.某商店经销一种销售成本为每千克40元的商品,根据市场分析,若按每千克50元销售,一个月能售出500kg,销售单价每涨1元,月销售量就减少10kg,针对这种商品的销售情况,请解答下列问题:(1)当销售单价为每千克55元时,计算月销售量和销售利润分别为多少?(2)设销售单价为每千克x元,月销售利润为y元,求y与x的函数关系式(不必写出自变量x的取值范围)8.矩形的周长为16cm,它的一边长为x(cm),面积为y(cm2).求(1)y与x之间的函数解析式及自变量x的取值范围;(2)当x=3时矩形的面积.四、课堂小结:形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的函数叫做二次函数.其中x是自变量,a,b,c分别是二次项系数、一次项系数和常数项.注意:(1)等号左边是变量y,右边是关于自变量x的整式;(2)a,b,c为常数,且a≠ 0;(3)等式的右边最高次数为2,可以没有一次项和常数项,但不能没有二次项.。

人教版九年级数学上册第二十二章二次函数大单元教学设计

人教版九年级数学上册第二十二章二次函数大单元教学设计
1.基础知识巩固:
(1)完成课本第22章练习题1、2、3,要求学生熟练掌握二次函数的定义、图像性质、顶点式与标准式的转换。
(2)利用图形计算器或计算机软件,绘制几个典型二次函数的图像,观察并分析开口方向、顶点、对称轴、最值等性质。
2.实际问题应用:
(3)结合生活实际,编写一道关于二次函数的应用题,要求学生将实际问题抽象为二次函数模型,并求解。
人教版九年级数学上册第二十二章二次函数大单元教学设计
一、教学目标
(一)知识与技能
1.让学生掌握二次函数的定义,能够准确地识别和描述二次函数的一般形式,即f(x) = ax^2 + bx + c(a≠0)。
2.使学生理解二次函数图像的基本性质,包括开口方向、对称轴、顶点、最小(大)值等,并能够利用这些性质解决相关问题。
2.教学方法:采用情境导入法,通过生活实例激发学生的兴趣,引导学生从实际问题中发现数学规律。
3.教学步骤:
a.展示生活中抛物线运动的图片或视频,让学生观察并描述其运动轨迹。
b.学生分享观察到的运动轨迹特点,教师引导总结出抛物线的一般形式。
c.提问:“这些运动轨迹都可以用一个数学模型来描述,你们知道是什么吗?”由此引出二次函数的定义。
(三)情感态度与价值观
1.培养学生对数学的兴趣和热情,使他们认识到数学在现实生活中的广泛应用和价值。
2.通过二次函数的学习,让学生感受到数学的对称美和秩序美,培养他们的审美情趣。
3.引导学生树立正确的价值观,认识到数学知识的学习不仅是为了应对考试,更重要的是为了解决实际问题,为我国的社会发展做出贡献。
3.教学步骤:
a.将学生分成若干小组,每组分配一个讨论题目,如二次函数的性质、图像特点等。

初中数学教材解读人教九年级上册第二十二章 二次函数二次函数教学设计

初中数学教材解读人教九年级上册第二十二章 二次函数二次函数教学设计

二次函数教学设计一、教材分析《二次函数》是人教版《数学》九年级上册中的第22章第一节,是《义务教育课程标准》“数与代数”领域的内容。

二次函数是九年级的第一节函数课,初中涉及到的“一元一次方程”,“二元一次方程组”,“一次函数”,“一元二次方程”,这几章代数的学习都为接下来的函数的进一步学习奠定了基础。

“二次函数”的学习,使得学生在思想上认识到函数的一般性以及函数与生活中实际问题的联系。

二、学情分析九年级的学生有一定的逻辑思考能力,也有主动思考的意识,相对比较活跃,可以多让学生参与到课堂中来,让学生主动思考,多与学生互动,引导学生自主学习。

三、教学目标1、理解并掌握二次函数的概念,能够判别二次函数;2、会求一些简单的实际问题中二次函数的解析式和自变量的取值范围;3、在从问题出发到列二次函数解析式的过程中,体验用函数思想去描述、研究变量之间变化规律的意义。

四、教学重难点教学重点:对二次函数概念的理解教学难点:由实际问题确定函数解析式,以及自变量的取值范围。

教学过程:一、知识回顾:1、前面我们学过什么函数?2、一次函数的一般形式?在表达式中自变量是什么?3、什么是函数?二、自主探索,讲授新知问题1:正方体六个面是全等的正方形,设正方体棱长为 x,表面积为 y,则 y 关于x 的关系式为①问题2:n个球队参加比赛,每两个队之间进行一场比赛,比赛的场次数m与球队数n的关系表示为②问题3:某种产品现在的年产量是20t,计划今后两年增加产量。

如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,y与x 之间的关系怎样表示?析:这种产品的现在产量是20t, 一年后的产量_____________ t,再经过一年后的产量是______________t ,即两年后的产量y=____________________ ③1、思考:函数式①②③有什么共同点?(1)从形式上看:等号两边都是什么式?(2)自变量的最高次数分别是多少?2、定义:一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的函数叫做二次函数,其中x 是自变量,自变量x的取值范围是一切实数。

2022年人教版九年级数学上册第二十二章二次函数教案 二次函数的图象和性质 (第1课时)

2022年人教版九年级数学上册第二十二章二次函数教案  二次函数的图象和性质 (第1课时)

22.1 二次函数的图象和性质22.1.3 二次函数y=a(x-h)²+k的图象和性质(第1课时)一、教学目标【知识与技能】1.能画出二次函数y=ax2+k的图象;2.掌握二次函数y=ax2与y=ax2+k图象之间的联系;3.掌握二次函数y=ax2+k的图象及其性质.【过程与方法】通过画二次函数y=2x2+1与y=2x2-1的图象,感受它们与y=2x2的联系,并由此得到y=ax2与y=ax2+k的图象及性质的联系和区别.【情感态度与价值观】在通过类比的方法获取二次函数y=ax2+k的图象及其性质过程中,进一步增强学生的数形结合意识,体会通过探究获得知识的乐趣.二、课型新授课三、课时第1课时,共3课时。

四、教学重难点【教学重点】1.二次函数y=ax2与y=ax2+k的图象之间的联系;2.二次函数y=ax2+k的图象及其性质.【教学难点】二次函数y=ax2+k的性质的基本应用.五、课前准备课件、三角尺、铅笔等六、教学过程(一)导入新课这个函数的图象是如何画出来呢?(出示课件2)(二)探索新知探究一二次函数y=ax2+k图象的画法在同一直角坐标系中,画出二次函数y=x2 ,y=x2+1,y=x2-1的图象.(出示课件4)学生自主操作,画图,教师加以巡视,纠正画图过程中可能出现的失误,并引导他们进行分析,发现规律,获得感性认识.1.列表:2.描点,连线:(出示课件5)教师问:抛物线y=x2、y=x2+1、y=x2-1的开口方向、对称轴、顶点各是什么?(出示课件6)学生独立思考并整理.出示课件7:例在同一直角坐标系中,画出二次函数y=2x2+1,y=2x2-1的图象.学生自主操作,画图,教师加以巡视.解:先列表:然后描点画图:(出示课件8)教师问:抛物线y=2x2+1 , y=2x2-1的开口方向、对称轴和顶点各是什么?(出示课件9)学生独立思考并整理.探究二二次函数y=ax2+k的性质教师归纳:(出示课件10)二次函数y=ax2+k(a>0)的性质:开口方向:向上.对称轴:x=0.顶点坐标:(0,k).最值:当x=0时,有最小值,y=k.增减性:当x <0时,y 随x 的增大而减小; 当x >0时,y 随x 的增大而增大.出示课件11:在同一坐标系中,画出二次函数212y x =-,2122y x =-+,2122y x =--的图像,并分别指出它们的开口方向,对称轴和顶点坐标.学生自主操作,画图,并整理. 解:如图所示.出示课件12:在同一坐标系内画出下列二次函数的图象:;;. 学生自主操作,画图,教师巡视加以指导.231x y -=23121--=x y 23122+-=x y出示课件13,14:根据图象回答下列问题:(1)图象的形状都是;(2)三条抛物线的开口方向_______;(3)对称轴都是__________;(4)从上而下顶点坐标分别是_____________________;(5)顶点都是最____点,函数都有最____值,从上而下最大值分别为_______、_______﹑________;(6) 函数的增减性都相同:____________________________.学生独立思考并口答.⑴抛物线;⑵向下;⑶直线x=0;⑷( 0,2),(0,0),( 0,-2);⑸高;大;y=2,y=0,y=-2;⑹对称轴左侧y随x增大而增大,对称轴右侧y随x增大而减小师生共同归纳:二次函数y=ax2+k(a≠0)的性质(出示课件15)出示课件16:已知二次函数y=ax2+c,当x取x1,x2(x1≠x2)时,函数值相等,则当x=x1+x2时,其函数值为________.学生独立思考后,师生共同解答.解:由二次函数y=ax2+c图象的性质可知,x1,x2关于y轴对称,即x1+x2=0.把x =0代入二次函数表达式求出纵坐标为c.教师归纳:方法总结:二次函数y=ax2+c的图象关于y轴对称,因此左右两部分折叠可以重合,函数值相等的两点的对应横坐标互为相反数.出示课件17:抛物线y=−2x2+3的顶点坐标是________,对称轴是________,在________侧,y随着x的增大而增大;在________侧,y随着x的增大而减小.学生口答:(0,3);y轴;对称轴左;对称轴右探究三二次函数y=ax2+k的图象及平移出示课件18:从数的角度探究:出示课件19:从形的角度探究:观察图象可以发现,把抛物线y=2x2向_____平移1个单位长度,就得到抛物线_____;把抛物线y=2x2向_____平移1个单位长度,就得到抛物线y=2x2-1.学生观察图象并解答:上;y=2x2+1;下师生共同归纳:二次函数y=ax2与y=ax2+k(a≠0)的图象的关系(出示课件20)二次函数y=ax2+k的图象可以由y=ax2的图象平移得到:当k>0时,向上平移k个单位长度得到.当k<0时,向下平移k个单位长度得到.教师强调:上下平移规律:平方项不变,常数项上加下减.出示课件21:二次函数y=-3x2+1的图象是将( )A.抛物线y=-3x2向左平移3个单位得到B.抛物线y=-3x2向左平移1个单位得到C.抛物线y=3x2向上平移1个单位得到D.抛物线y=-3x2向上平移1个单位得到学生独立思考并口答:D出示课件22:想一想:教师问1.二次函数y=ax2+k图象的画法分几步?学生答:第一种方法:平移法,分两步,即第一步画y=ax2的图象;第二步把y=ax2的图象向上(或向下)平移︱k︱单位.第二种方法:描点法,分三步即列表、描点和连线.教师问2.抛物线y=ax2+k 中的a决定什么?怎样决定的?k决定什么?它的对称轴是什么?顶点坐标怎样表示?学生答:a决定开口方向和大小;k决定顶点的纵坐标.(三)课堂练习(出示课件23-27)1.将二次函数y=x2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是.2.抛物线y=2x2向下平移4个单位,就得到抛物线.3.填表:4.已知点(m,n)在y=ax2+a(a不为0)的图象上,点(-m,n)___(填“在”或“不在”)y=ax2+a(a不为0)的图象上.5.若y=x2+(k-2)的顶点是原点,则k____;若顶点位于x轴上方,则k____;若顶点位于x轴下方,则k____.6.不画函数y=-x2和y=-x2+1的图象回答下面的问题:⑴抛物线y=-x2+1经过怎样的平移才能得到抛物线y=-x2.(2)函数y=-x2+1,当x_____时,y随x的增大而减小;当x_____时,函数y有最大值,最大值y是_____,其图象与y轴的交点坐标是_____,与x轴的交点坐标是_____.(3)试说出抛物线y=x2-3的开口方向、对称轴和顶点坐标.7.对于二次函数y=(m+1)x m2-m+3,当x>0时y随x的增大而增大,则m=____.8.已知二次函数y=(a-2)x2+a2-2的最高点为(0,2), 则a=____.9.抛物线y=ax2+c与x轴交于A(-2,0)﹑B两点,与y轴交于点C(0,-4),则三角形ABC的面积是_______.参考答案:1.y=x2+22.y=2x2-43.4.在5.=2;>2;<26.⑴向下平移1个单位.⑵>0;=0;1;(0,1);(-1,0),(1,0)⑶开口方向向上,对称轴是y轴,顶点坐标(0,-3).7.28.-29.8(四)课堂小结通过这节课的学习,你有哪些收获和体会?说说看. (五)课前预习预习下节课(22.1.3第2课时)的相关内容. 七、课后作业配套练习册内容八、板书设计:九、教学反思:本课时教学重点在于培养学生的比较能力,旨在希望学生通过对比发现函数图象的性质,从而进一步增强学生的数形结合意识,体会通过探究获得知识的乐趣.。

新听课记录2024秋季九年级人教版数学上册第二十二章二次函数《二次函数的图像和性质:二次函数》

新听课记录2024秋季九年级人教版数学上册第二十二章二次函数《二次函数的图像和性质:二次函数》

教学设计:新2024秋季九年级人教版数学上册第二十二章二次函数《二次函数的图像和性质:二次函数》教学目标(核心素养)1.数学抽象:学生能够理解并掌握二次函数的一般形式y = ax² + bx + c,以及系数a, b, c 对函数图像形状和位置的影响。

2.逻辑推理:通过观察、分析不同系数的二次函数图像,推导出图像的开口方向、对称轴、顶点位置等性质,并能运用这些性质解决问题。

3.直观想象:通过绘制和观察二次函数图像,培养学生的空间想象能力和数形结合的思想,能够准确描述图像特征。

4.数学建模:能够将实际问题转化为二次函数模型,利用函数图像和性质进行分析和求解。

5.数学运算:能够准确计算二次函数的顶点坐标、对称轴方程,以及解决与图像相关的数学问题。

教学重点•理解并掌握二次函数y = ax² + bx + c 的图像特征,包括开口方向、对称轴、顶点位置等。

•学会绘制给定系数的二次函数图像。

教学难点•如何通过改变系数a, b, c 来控制二次函数图像的形状和位置。

•运用二次函数图像和性质解决实际问题时,如何准确设定函数表达式并进行分析。

教学资源•多媒体课件(包含动态函数图像演示)•黑板与粉笔•学生练习册•几何画板软件(或类似工具,用于学生自主探究)教学方法•讲授法:介绍二次函数的基本概念和性质。

•演示法:利用多媒体展示不同系数的二次函数图像变化。

•探究法:引导学生通过小组讨论和自主探究,发现二次函数图像的特征和规律。

•练习法:通过例题和习题巩固所学知识,提高解题能力。

教学过程导入新课•生活实例引入:展示一些与二次函数相关的生活实例,如投篮轨迹、拱桥形状等,引导学生思考这些现象背后的数学规律。

•复习旧知:回顾一次函数和简单的二次函数(如y = ax²)的图像特征,为学习更复杂的二次函数做准备。

新课教学1.引入新知:介绍二次函数y = ax² + bx + c 的一般形式,解释各系数的意义及其对图像的影响。

初中九年级数学上册《第二十二章 二次函数》大单元整体课时教学设计

初中九年级数学上册《第二十二章 二次函数》大单元整体课时教学设计

初中九年级数学上册《第二十二章二次函数》大单元跨学科教学课时教学设计[2022课标]一、教学目标1.会用数学的眼光观察现实世界:通过本章《第二十二章二次函数》的学习,学生能够运用二次函数的知识观察体育与物理现象中的运动轨迹和变化规律,如铅球投掷的抛物线轨迹、竖直上抛运动中小球的高度变化等,从而发现数学与现实生活及学科的紧密联系。

2.会用数学的思维思考现实世界:学生能够运用二次函数的性质(如开口方向、顶点坐标、对称轴等)和解析式,分析体育和物理问题中的量化关系,如通过调整参数来优化运动效果或模拟实验现象,培养逻辑思维和问题解决能力。

3.会用数学的语言表达现实世界:学生能够将体育和物理中的问题抽象成二次函数模型,建立相应的数学表达式,并通过计算、推导和论证,用准确的数学语言描述和解释这些现象,最终得出科学结论。

二、教学内容分析本章主要探讨二次函数的定义、图象、性质以及应用,是初中数学知识体系中的重要组成部分。

从学科内部来看,二次函数的学习是在一次函数基础上的深化和拓展,通过本章的学习,学生能够理解并掌握二次函数的基本概念、图象特征以及增减性,为后续学习一元二次方程、二次不等式等内容打下坚实基础。

从跨学科角度来看,二次函数在体育、物理等领域有着广泛的应用。

在体育项目中,如投掷、跳跃等,运动员的运动轨迹往往可以抽象为二次函数图象,通过二次函数的解析式可以精确描述运动员的运动状态,为训练提供科学依据。

在物理学中,二次函数模型被广泛应用于描述抛体运动、振动等自然现象,有助于学生理解自然界中复杂运动的本质规律。

在本章的教学过程中,教师应注重引导学生将二次函数知识与实际问题相结合,通过跨学科的教学活动,激发学生的学习兴趣,培养学生的应用意识和实践能力。

结合体育、物理等学科的实例,让学生深刻体会到数学知识在解决实际问题中的重要作用,提升数学学习的价值和意义。

三、教学重点1.理解并掌握二次函数的定义、图像及基本性质。

初中数学人教九年级上册(2023年新编)第二十二章 二次函数二次函数y3

初中数学人教九年级上册(2023年新编)第二十二章 二次函数二次函数y3

第2课时 二次函数y =a(x -h)2的图象和性质01 教学目标1.进一步熟悉作函数图象的主要步骤,会作函数y =a(x -h)2的图象. 2.能正确说出y =a(x -h)2的图象的开口方向、对称轴和顶点坐标. 3.掌握抛物线y =a(x -h)2的平移规律. 02 教学重点、难点:重点: 二次函数y =a(x -h)2的图象和性质难点:把抛物线y =ax 2通过平移后得到抛物线y =a(x -h)2确定平移的方向和距离。

03 预习反馈阅读教材P 33~35,自学“探究”和两个“思考”,掌握y =a(x -h)2与y =ax 2之间的关系,理解并掌握y =a(x -h)2的相关性质,完成下列内容.1.抛物线y =ax 2向左平移h 个单位长度得抛物线y =a(x +h)2(h>0),抛物线y =ax 2向右平移h 个单位长度得抛物线y =a(x -h)2(h>0).【点拨】 注意y =a(x -h)2中h 常表示非负数.2.抛物线y =a(x -h)2的顶点坐标为(h ,0),对称轴为直线x =h__.3.抛物线y =-12(x -1)2的开口向下__,顶点坐标是(1,0),对称轴是直线__x =1,通过向左平移1个单位长度后,得到抛物线y =-12x 2.4.画出二次函数y =-2(x -1)2的图象,观察图象后填空:当x<1时,y 随x 的增大而增大;当x>1时,y 随x 的增大而减小.04 例1 (教材P33探究)在同一直角坐标系中,画出二次函数y =-12(x +1)2,y =-12(x -1)2的图象,并分别指出它们的开口方向、对称轴和顶点.【解答】 先分别列表:x … -4 -3 -2 -1 0 1 2 … y =-12(x +1)2…--2---2-…x … -2 -1 0 1 2 3 4 … y =-12(x -1)2…--2---2-…然后描点、连线,得二次函数y =-12(x +1)2,y =-12(x -1)2的图象,如图.由图象可以看出,抛物线y =-12(x +1)2的开口向下,对称轴是经过点(-1,0)且与x 轴垂直的直线,把它记作直线x =-1,顶点是(-1,0);抛物线y =-12(x -1)2的开口向下,对称轴是直线x =1,顶点是(1,0).思考:例1中两条抛物线y =-12(x +1)2,y =-12(x -1)2与抛物线y =-12x 2有什么关系?【点拨】 观察图象移动过程,要特别注意特殊点(如顶点)的移动情况. 思考:抛物线y =a (x -h )2与抛物线y =ax 2有什么关系? 总结:y =ax 2――→当h >0时,向右平移|h |个单位长度当h <0时,向左平移|h |个单位长度y =a (x -h )2【跟踪训练1】 (《名校课堂》第2课时习题,教材P35练习的变式)在同一平面直角坐标系中,画出函数y =x 2,y =(x +2)2,y =(x -2)2的图象,并写出对称轴及顶点坐标.解:图象如图:抛物线y =x 2的对称轴是直线x =0,顶点坐标为(0,0).抛物线y =(x +2)2的对称轴是直线x =-2,顶点坐标为(-2,0). 抛物线y =(x -2)2的对称轴是直线x =2,顶点坐标为(2,0).例2 (补充例题)在直角坐标系中画出函数y =12(x +3)2的图象.(1)指出函数图象的对称轴和顶点坐标;(2)根据图象回答:当x 取何值时,y 随x 的增大而减小?当x 取何值时,y 随x 的增大而增大? (3)怎样平移函数y =12x 2的图象得到函数y =12(x +3)2的图象?【解答】 (1)如图所示,函数图象的对称轴是直线x =-3,顶点坐标为(-3,0). (2)当x <-3时,y 随x 的增大而减小;当x >-3时,y 随x 的增大而增大.(3)将函数y =12x 2的图象沿x 轴向左平移3个单位长度得到函数y =12(x +3)2的图象.【点拨】 二次函数的增减性以对称轴为分界,画图象取点时以顶点为分界对称取点.【跟踪训练2】 将抛物线y =-23(x -4)2向左平移2个单位长度,得到的新抛物线的解析式为y =-23(x -2)2,新抛物线的开口方向向下,对称轴为x =2__,顶点为(2,0)__,为抛物线的最__高__点;当x__<2__时,y随x 的增大而增大,当x>2时,y 随x 的增大而减小. 05 巩固训练1.若抛物线y =a(x -h)2的顶点是(-3,0),且它是由抛物线y =-2x 2通过平移而得到的,则a =-2,h =-3.2.指出下列二次函数的开口方向、对称轴和顶点坐标: (1)y =2(x -3)2-5;(2)y =-(x +1)2;(3)y =-34x 2-1;(4)y =2(x -2)2+5.解:(1)开口向上,对称轴是直线x =3,顶点坐标(3,-5). (2)开口向下,对称轴是直线x =-1,顶点坐标(-1,0). (3)开口向下,对称轴是y 轴,顶点坐标(0,-1)(4)开口向上,对称轴是直线x =2,顶点坐标(2,5).3.不画图象,回答下列问题.(1)函数y =2(x +1)2的图象可以看成是由函数y =2x 2的图象作怎样的平移得到的? (2)说出函数y =2(x +1)2的图象的开口方向,对称轴和顶点坐标; (3)函数y =2(x +1)2有哪些性质?(4)若将函数y =2(x +1)2的图象向左平移3个单位长度得到哪个函数图象? 解:(1)向左平移1个单位长度.(2)开口向上,对称轴是直线x =-1,顶点坐标为(-1,0).(3)当x>-1时,y 随x 的增大而增大;当x<-1时,y 随x 的增大而减小. (4)y =2(x +4)2. 06 课堂小结1.抛物线y =ax 2与y =ax 2+c 和抛物线y =ax 2与y =a(x -h)2有哪些共同点,又有哪些不同点? 2.将抛物线y =ax 2上下平移与左右平移所得到的表达式在形式上有何区别?。

2022年人教版九年级数学上册第二十二章二次函数教案 二次函数

2022年人教版九年级数学上册第二十二章二次函数教案  二次函数

22.1 二次函数的图象和性质22.1.1 二次函数一、教学目标【知识与技能】1.能结合具体情境体会二次函数的意义,理解二次函数的有关概念.2.能够表示简单变量之间的二次函数关系.【过程与方法】通过具体问题情景中的二次函数关系了解二次函数的一般表述式,在类比一次函数、反比例函数表达式时感受二次函数中二次项系数a≠0的重要特征.【情感态度与价值观】在探究二次函数的学习活动中,体会通过探究发现的乐趣.二、课型新授课三、课时1课时四、教学重难点【教学重点】结合具体情境体会二次函数的意义,掌握二次函数的有关概念.【教学难点】1.能通过生活中的实际问题情境,构建二次函数关系;2.重视二次函数y=ax2+bx+c中a≠0这一隐含条件.五、课前准备课件六、教学过程(一)导入新课如图,从喷头喷出的水珠,在空中走过一条曲线后落到池中央,在这条曲线的各个位置上,水珠的竖直高度h与它距离喷头的水平距离x之间有什么关系?(出示课件2)教师问:上面问题中变量之间的关系可以用哪一种函数来表示?这种函数与以前学习的函数、方程有哪些联系?(二)探索新知探究一二次函数的概念出示课件4:教师问:正方体的六个面是全等的正方形(如下图),设正方形的棱长为x,表面积为y,显然对于x的每一个值, y都有一个对应值,即y是x的函数,它们的具体关系可以表示为.学生答:y=6x2①.出示课件5:教师问:多边形的对角线总条数d与边数n有什么关系?如果多边形有n条边,那么它有个顶点,从一个顶点出发,可以作条对角线.学生答:n;(n-3)教师问:多边形的对角线总数为,即.学生答:d=12n(n-3);d=12n2-32n②教师强调:②式表示了多边形的对角线总条数d与边数n之间的关系,对于n 的每一个值,d都有一个对应值,即d是n的函数.出示课件6:教师问:某工厂一种产品现在的年产量是20件,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,y与x之间的关系应怎样表示?这种产品的原产量是20件, 一年后的产量是件,再经过一年后的产量是件,即两年后的产量为,即.学生答:20(1+x);20(1+x)2;y=20(1+x)2;y=20x2+40x+20③教师强调:③式表示了两年后的产量y与计划增产的倍数x之间的关系,对于x 的每一个值, y都有一个对应值,即y是x的函数.出示课件7:教师问:函数①②③有什么共同点?学生以小组形式讨论,并由每组代表总结.出示课件8:教师问:认真观察以上出现的三个函数解析式,分别说出哪些是常数、自变量和函数.学生答:x;y;n;d;x;y教师问:这些函数有什么共同点?学生答:这些函数自变量的最高次项都是二次的!出示课件9:教师归纳:二次函数的定义:一般地,形如y=ax²+bx+c(a,b,c是常数,a ≠0)的函数,叫做二次函数.教师强调:(1)等号左边是变量y,右边是关于自变量x的整式.(2)a,b,c为常数,且a≠0.(3)等式的右边最高次数为2,可以没有一次项和常数项,但不能没有二次项.(4)x的取值范围是任意实数.出示课件10:教师归纳:一般地,形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数,叫做二次函数.其中x是自变量,a、b、c分别是二次项系数,一次项系数和常数项.出示课件11:教师归纳:二次函数的形式:二次函数的一般形式:y=ax2+bx+c (其中a、b、c是常数,a≠0).二次函数的特殊形式:当b =0时,y =ax 2+c.(只含有二次项和常数项) 当c =0时,y =ax 2+bx.(只含有二次项和一次项) 当b =0,c =0时,y =ax 2.(只含有二次项)出示课件12:例1 下列函数中是二次函数的有 .222222422221211111()()=()y y x x x y x x y x xx x y x x y x +=+-=+-=+++=+①②③④⑤⑥学生自主思考后,学生口答:①⑤⑥出示课件13:师生共同完善认知:运用定义法判断一个函数是否为二次函数的步骤:(1)将函数解析式右边整理为含自变量的代数式,左边是函数(因变量)的形式;(2)判断右边含自变量的代数式是否是整式; (3)判断自变量的最高次数是否是2; (4)判断二次项系数是否不等于0. 出示课件14:下列函数中,哪些是二次函数? (1) y=3(x-1)²+1;⑵1y x x =+;(3) s=3-2t ²; ⑷21y x x =-;(5)y=(x+3)²-x ²;(6) v=10πr ²; (7) y=x ²+x ³+25;(8) y =2²+2x.学生自主思考后解答:⑴⑶⑹是,⑵⑷⑸⑺⑻不是. 出示课件15:例2 关于x 的函数()m -my =m +x 21是二次函数, 求m 的值.学生共同思考后,师生共同解答如下: 解:由二次函数的定义得m 2-m=2,m+1≠0. 解得m=2.因此当m=2时,函数为二次函数.教师强调:注意:二次函数的二次项系数不能为零. 出示课件16:11+=-()a y a x是二次函数,求常数a 的值.学生自主思考后,独立解答. 解:根据二次函数的定义,得,⎧+=⎪⎨-≠⎪⎩a a 1210.解得a=-1.探究二 根据实际问题确定二次函数解析式 师生共同完善认知:(出示课件17) 根据实际问题建立二次函数模型的一般步骤:①审题:仔细审题,分析数量之间的关系,将文字语言转化为符号语言; ②列式:根据实际问题中的等量关系,列二次函数关系式,并化成一般形式; ③取值:联系实际,确定自变量的取值范围.出示课件18:例一农民用40m长的篱笆围成一个一边靠墙的长方形菜园,和墙垂直的一边长为xm,菜园的面积为ym2,求y与x之间的函数关系式,并说出自变量的取值范围.当x=12m时,计算菜园的面积.师生共同分析后,共同解答.解:由题意得:y=x(40-2x).即y=-2x2+40x.(0<x<20)当x=12m时,菜园的面积为y=-2x2+40x=-2×122+40×12=192(m2).教师点拨:确定实际问题中的二次函数关系式时,常常用到生活中的经验及数学公式(例长方形和圆的面积、周长公式)等.出示课件19:做一做:①已知圆的面积y(cm2)与圆的半径x(cm),写出y与x之间的函数关系式;②王先生存入银行2万元,先存一个一年定期,一年后银行将本息自动转存为又一个一年定期,设一年定期的存款年利率为x,两年后王先生共得本息和y万元,写出y与x之间的函数关系式;③一个圆柱的高等于底面半径,写出它的表面积S与半径r之间的关系式.学生自主思考后,口答: ①y=πx 2(x>0); ②y=2(1+x)2(x>0); ③S=4πr 2(r>0).说一说以上二次函数解析式的各项系数. (三)课堂练习(出示课件20-24)1.下列函数解析式中,一定为二次函数的是( ) A.y=3x-1 B.y=ax 2+bx+c C.s=2t 2-2t+1 D.y=x 2+21x2.已知函数 y=(m ²﹣m )x ²+(m ﹣1)x+m+1. (1)若这个函数是一次函数,求m 的值; (2)若这个函数是二次函数,则m 的值应怎样?3.下列函数中,(x 是自变量),是二次函数的为( ) A.y=ax 2+bx+c B.y 2=x 2-4x+1 C.y=x 2 D.y=22+x+14.函数y=(m-n)x 2+mx+n 是二次函数的条件是( ) A.m,n 是常数,且m ≠0 B.m,n 是常数,且n ≠0 C.m,n 是常数,且m ≠n D.m,n 为任何实数5.一个圆柱的高等于底面半径,写出它的表面积 s 与半径 r 之间的关系式.6.n 支球队参加比赛,每两队之间进行一场比赛,写出比赛的场次数m 与球队数n 之间的关系式.7.当m 为何值时,函数y=(m-4)x m ²-5m+6+mx 是关于x 的二次函数.参考答案: 1.C2.解:(1)根据一次函数的定义,得m 2﹣m=0, 解得m=0或m=1,又∵m ﹣1≠0即m ≠1, ∴当m=0时,这个函数是一次函数; (2)根据二次函数的定义, 得:m 2﹣m ≠0,解得m 1≠0,m 2≠1,∴当m 1≠0,m 2≠1时,这个函数是二次函数. 3.C 4.C 5.S=4πr 2. 6.m=12n(n-1),即m=12n 2-12n. 7.解:由二次函数的定义,得256240,,m m m ⎧-+=⎨-≠⎩解得m=1.∴当m=1时,函数y=(m-4)x m ²-5m+6+mx 是关于x 的二次函数. (四)课堂小结通过这节课的学习,你有哪些收获和体会?说说看. (五)课前预习预习下节课(22.1.2)的相关内容. 七、课后作业1.教材习题22.1第1、2、8题;2.配套练习册内容八、板书设计:九、教学反思:本课时的内容涉及到初中第二个函数内容,由于前面有了学习一次函数的经验,因此教师教学时可在学生以往经验的基础上,创设丰富的现实情境,使学生初步感知二次函数的意义,进而能从具体事物中抽象出数学模型,并列出二次函数的解析式.教学时应注重引导学生探究新知,在观察、分析后归纳、概括,注重学生的过程经历和体验,让学生领悟到现实生活中的数学问题,提高研究与应用能力.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十二章二次函数
一、教学目标:
知识目标:
1、通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义;
2、会用描点法画出二次函数的图象,能从图象上认识二次函数的性质;
3、会用配方法确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题;
4、会利用二次函数的图象求一元二次方程的近似解。

能力目标:
1、通过对实际问题情境的分析确定二次函数的表达式;
2、能从图象上认识二次函数的性质;
3、会用配方法或公式法确定图像的开口方向、顶点和对称轴;
4、会利用二次函数的图像求一元二次方程的近似解。

情感目标:
经历探究二次函数图像、性质的过程,体会辩证法在数学中的应用,渗透数学思想方法,发展学生个性品质,从而达到提高学生整体数学素养的目的。

二、教学重点:
1. 了解二次函数的含义
2. 理解二次函数的图象及其性质,
3. 抛物线图象的平移问题.
4. 体会一元二次方程与二次函数的关系
5. 能用二次函数解决实际问题。

三、教学难点:
1. 二次函数图象特征及其性质.
2. 对二次函数与一元二次方程的关系理解与应用.
3. 应用二次函数解决实际问题.能解决与其他函数结合的问题
四、课时划分:约15 课时
22、1二次函数的图象与性质8 课时
22、2二次函数与一元二次方程 2 课时
22、3实际问题与二次函数 3 课时
小结与复习 2 课时。

相关文档
最新文档