第2章 模糊集及其运算
第2章 数学基础-模糊集合与模糊关系

2 模糊集合与模糊关系2.1 经典集合的特征函数定义:经典集合的特征函数记为f A (x ),定义为1()0()A x A f x x A x A ∈⎧⎨∉∉⎩当当或 2.2模糊集合与隶属函数定义:论域U 上的模糊集合A 是用一个从U 到实区间[0,1]上的函数Αμ 来刻画的,Αμ 叫做模糊集合A 的隶属函数,函数值Αμ (x )代表元素x 对集合A 的隶属度。
定义(严格的):论域U 到实区间[0,1]的任一映射 Αμ:U →[0,1] ∀x ∈U ,x →Αμ (x ) 都确定U 上的一个模糊集合A ,Αμ 叫做A 的隶属函数,Αμ (x )叫做x 对A 的隶属度。
2.3模糊关系:普通关系讨论的是每对元素是否存在关系R ,模糊关系讨论的是每对元素具有关系R 的程度。
定义:所谓从集合U 到集合V 的模糊关系R ,系指直积U*V 上的一个模糊集合R ,由隶属函数R μ 来刻画,函数值R μ (x ,y )代表有序偶(x ,y )具有关系R 的程度。
例 设V={v 1,v 2,v 3,v 4 } U={u 1,u 2,u 3 }Vμ v 1 v 2 v 3 v 4Uu 1 0.86 0.84 0 0u 20 0 0.95 0u 3 0.78 0 0 0.66则可用模糊矩阵表示如下:0.860.8400000.9500.78000.66R ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦2.4 模糊矩阵与布尔矩阵一般关系的关系矩阵是布尔矩阵只取1,0两个值,例如110000111001R ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦定义:一个矩阵是模糊矩阵,当且仅当矩阵的所有元素r ij 都满足条件:0 ≤ r ij ≤ 1,i=1,2,……n ;j= 1,2,……m 。
特别的,当r ij 只取0和1两种数值时称为布尔矩阵。
2.5 模糊矩阵的运算2.5.1 相等:当且仅当两个模糊矩阵的一切元素两两相等时称两个模糊矩阵相等。
A =B 〈=〉 a ij =b ij i=1,2,……n ;j= 1,2,……m 。
二、模糊计算

§2.3 模糊集合的运算 2.3.1 模糊集合的基本运算 一、模糊集合并、交、补运算定义2.3.1 模糊集合的包含、相等设A ~、B ~为论域X 上的两个模糊集合,对于X 中每一个元素x ,都有)()(~~x x BAμμ≥,则称A ~包含B ~,记作B A ~~⊇。
如果B A ~~⊇,且A B ~~⊇,则说A ~与B ~相等,记作B A ~~=。
由于模糊集合是通过隶属函数来表征的,模糊集合相等也可用隶属函数来定义。
若对于X 上的所有元素x ,都有)()(~~x x BAμμ=,模糊集合A ~与B ~相等。
定义2.3.2 模糊空集设A ~为论域X 上的模糊集合,对于X 中每一个元素x ,都有0)(~=x Aμ,则称A ~为模糊空集,记作φ=A ~。
定义2.3.3 模糊集合并、交、补基本运算设A ~、B ~为论域X 上的两个模糊集合,令B A ~~ 、B A ~~ 、C A ~分别表示模糊集合A ~与B ~的并集、交集、补集,对应的隶属函数分别为B A~~ μ、B A ~~ μ、C A~μ,对于X 的任一元素x ,定义: )(V )()(B ~A ~B ~A~x x x μμμ∆ (2.3.1) )()()(B ~A~B ~A~x x x μμμΛ∆ (2.3.2)补算子 (2.3.3) 式中“V ”表示取大运算,“Λ”表示取小运算,称其为Zadeh 算子。
在此定义下,两个模糊集合的并、交实质是在做下面的运算①)](,)(max[B ~A ~B ~A~x x μμμ= 并算子 (2.3.4) )](,)(min[B ~A~B ~A~x x μμμ= 交算子 (2.3.5) 为了加深对模糊集合并、交、补基本运算的理解,现在给出模糊集合A ~和B ~,见图2.3.1(a)。
其中A ~为高斯分布,B ~为三角分布,二者的并、交运算结果如图2.3.1(b)的图2.3.1(c)所示,当然模糊集合的并、交运算可以推广到任意个模糊集合。
模糊数学第二章

(A∩B)∩C=A∩(B∩C); (4)吸收律:A∩(A∪B)= A, A∪(A∩B)=A; (5)分配律: (A∪B)∩C=( A∩C)∪(B∩C), (A∩B)∪C= ( A∪C)∩(B∪C);
模糊集合运算性质
(6)0-1律:A∪Φ=A, A∩Φ=Φ;
U∪A=U,U∩A=A; (7)还原律:(Ac)c=A; (8)对偶律:(A∪B)c= Ac∩Bc, (A∩B)c= Ac∪Bc. 互余律不成立!! 注意 Ac∪A≠ U, A∩Ac ≠ Φ
第二章 模糊子集
本章内容
模糊子集的定义 模糊子集的运算
分解定理扩张定理
模糊性度量
隶属函数的确定
精确数学vs模糊数学
精确数学:基础——经典集合论;一个对象和一个
集合的关系只有两种可能:属于、不属于;
模糊数学:基础——模糊集合论;一个对象和一个
模糊集合的关系:对象隶属于该模糊集合的程度 (隶属度)。
且 (b; a, b) 1 ;当 x b 时单调递增;当 x b 时单调递减。
模糊集合的表示法1-zadeh表示法
论域U是有限集{x1, x2, …, xn},U的任一模糊子集 A,其隶属函数为μi =μA(xi) 模糊子集A记作 A = ∑i=1n μi / xi 注意 ―∑i=1n μi / xi‖不是分式求和,只是一 符 号而已。
1. 模糊子集的定义
设给定论域U,U到[0, 1]的任一映射μA :U [0, 1]
都确定U的一个模糊子集A
μA叫做A的隶属函数,
μA(u) ( u∈U )表示 u隶属于模糊子集A的程度,
称之为u对A的隶属度
模糊集合的例子
设论域U=[0, 100]表示人的年龄,“年轻Y‖与“年老
模糊集合及其运算(教材)

第1章 模糊集合及其运算(教材第2章)1.1 模糊集合创立背景1. 不兼容原理:一个系统的复杂性增大时,我们使它精确化的能力将减小,在达到一定阀值时复杂性与精确性相排斥,即高复杂性与高精度不兼容。
2. Zadeh 研究大系统遇到的问题他经常徘徊于人脑思维-大系统-计算机三者之间,人脑对复杂大系统中许多模糊概念与模糊信息不是用是、非二值逻辑,而是用模糊逻辑。
线性的计算机是以二值逻辑{0,1}为基础,不能处理模糊信息,怎么办?为使大脑能像人脑那样处理模糊信息,必须将{0,1}扩展到[0, 1]闭区间,于是他在1965年发表了开创性论文“Fuzzy sets ”。
0 复杂性 精 确 性图1.1不兼容原理示意图图1.2人脑、电脑与大系统举例解释模糊性与随机性两个概念的差异。
1.2 经典集合及其运算 1. 复习经典集合理论定义: 基于某种属性的、确定的、彼此可区别的事物全体。
论域: 研究对象的全体称为论域(全域、全集、空间、话题) 元素与集合之间的关系: 属于与不属于 集合之间关系: 包含与相等集合的基本运算: 并、交、补运算 集合的三种基本形式如下:定义式:A B {x |x A x B }∈∈U @或(只用符合字母)描述式:(只用文字)由属于一个集合或另一个集合的元素构成的集合称为这两个集合的并文氏图:(只用图)集合的直积(叉积,笛卡尔积):两个集合A,B 的直积:A B {(x,)|x A y B }y ∆⨯=∈∈且注意几点:(1) 序偶不能颠倒顺序(x, y )≠ (y, x), 因此A ×B ≠ B ×A ; (2) 直积可推广到n 个集合; (3) 当R 为实数集,即R={x|-∞<x < +∞},R×R={(x, y)| -∞<x<+∞,-∞<y<+∞}称R×R=R 2为二维欧氏空间。
2. 映射与关系(1) 映射f :x→y ; (2) 关系:集合X×Y 直积的一个子集R 称为X 到Y 的二元关系,简称关系; (3) 映射是关系的特例,因为f :x→y 显然{(x, y)|y=f(x)}⊂X×Y 。
模糊集合之运算

0 ≤ A c ( x) ≤ 1
(4.2)
認 Fuzzy
一般常用的模糊集合之補集定義除 (4.1a) 外尚有: (1) 門檻式:
1, 當 z ≤ l c( z ) = 0, 當 z > l
(4.3)
其中 z ∈[0, 1] 及 l ∈[0, 1) , l 稱為門檻 (Threshold)
c(z) 1
(4.1b) 只是 t-基準之一種。其它之 t-基準運算定義仍有許 多。在此用 t ( p, q ) 代表 p 與 q 之 t-基準或 p ∩ q,其中 p
及 q 為某個模糊集合之歸屬函 (如 A(x),B(x) ),因此
0 ≤ p, q ≤ 1 是必然的。
10
認 Fuzzy
常用的模糊交集運算定義: 標準交集 (Standard Intersection):
p, 當 q = 1 t ( p , q ) = q , 當 p = 1 0, 其 他
(4.10)
其中 (4.7)~(4.10) 之大小關係:
( 4.10) ≤ ( 4.9) ≤ ( 4.8) ≤ ( 4.7)
其他學者提出的交集公式 page 4-7 and 4.3.
12
認 Fuzzy
4.4 模糊集 (t-反基,s-norms 或 t-conorms)
認 Fuzzy
第 四 章
模 糊 集 合 之 運 算
1
認 Fuzzy
4.1 模糊集合運算之種
三種模糊集合運算:集 (Union)、補集 (Complement)、 及交集 (Intersection)。 標準運算: A ( x ) = 1 A( x )
( A ∩ B )( x ) = min( A( x ), B ( x ))
模糊数学讲义第二章

常见的t-模:
(1)Tmin ( x, y ) min( x, y ) x y; (2) TL ( x, y) max(0, x y 1);
x (3) T0 ( x, y ) y 0
(4) T ( x, y ) xy.
y 1 x 1 其它
随着x增加,Y (x)减小
Y (25) 1, Y (30) 0.5 Y (60) 0.02
1
0 .5 25 30 60
注记:
• 普通集合是模糊集的特例,特征函数即为隶属函数
• 空集 的隶属函数为 ( x) 0 • 全集 X 的隶属函数为 X ( x) 1 • 模糊集的定义与上下文有关 • 表示法 (i) 论域无限时由隶属函数表出; (ii) 论域有限时表出方法如下:
不小 Ac , 不大 Bc , 不小也不大 Ac Bc c c c c A (1) 1 A(1) 0, A (2) 0.2, A (3) 0.4, A (4) 0.6 Ac (5) 0.8, Ac (6) Ac (7) Ac (8) Ac (9) Ac (10) 1
(5) 分配律(distributivity)
A ( B C ) ( A B) ( A C ) A ( B C ) ( A B) ( A C )
(6) 存在 0-1元 A A
A
A X X A X A
(7) 复原律(involution) c c (A ) A
若A B且A , A B, 则称A真包含 于B, 记为A B.
A 时, A B x X , A( x) B( x)且 x源自 X , A( x) B( x).
模糊集合的运算以及合成

模糊集合的运算以及合成标题:模糊集合的运算与合成概述:模糊集合是一种用于处理不确定性和模糊性问题的数学工具。
它能够更好地描述现实世界中的不确定性和模糊性情况。
本文将讨论模糊集合的运算及其合成方法,并通过人类视角的叙述,使读者更好地理解和感受这一概念。
引言:在现实生活中,我们常常遇到一些模糊的问题,比如说“这个人高吗?”、“这个饭菜辣吗?”等等。
这些问题往往没有一个确定的答案,而是具有一定的不确定性。
为了更好地处理这种不确定性,人们提出了模糊集合的概念。
1. 模糊集合的运算模糊集合的运算包括交集、并集和补集。
通过这些运算,我们可以对模糊集合进行综合和分析。
1.1 交集运算交集运算是指将两个模糊集合的元素逐个比较,取其中相对较小的隶属度作为交集结果的隶属度。
例如,对于模糊集合A和B,其交集记为A∩B,其隶属度的计算公式为:μ(A∩B) = min{μA(x), μB(x)}1.2 并集运算并集运算是指将两个模糊集合的元素逐个比较,取其中相对较大的隶属度作为并集结果的隶属度。
例如,对于模糊集合A和B,其并集记为A∪B,其隶属度的计算公式为:μ(A∪B) = max{μA(x), μB(x)}1.3 补集运算补集运算是指将一个模糊集合的元素的隶属度取反,得到其补集。
例如,对于模糊集合A,其补集记为A',其隶属度的计算公式为:μ(A') = 1 - μA(x)2. 模糊集合的合成模糊集合的合成是指将多个模糊集合综合起来,得到一个新的模糊集合。
合成方法包括合取、析取和修正。
2.1 合取合成合取合成是指将多个模糊集合的隶属度进行逐个相乘,得到新的模糊集合。
例如,对于模糊集合A和B,其合取合成记为A⊗B,其隶属度的计算公式为:μ(A⊗B) = μA(x)* μB(x)2.2 析取合成析取合成是指将多个模糊集合的隶属度进行逐个相加,得到新的模糊集合。
例如,对于模糊集合A和B,其析取合成记为A⊕B,其隶属度的计算公式为:μ(A⊕B) = μA(x) + μB(x) - μA(x) * μB(x)2.3 修正合成修正合成是指将一个模糊集合的隶属度与另一个模糊集合的隶属度进行修正,得到新的模糊集合。
模糊数学第二讲 模糊集合及其运算

实际生活中有些概念并非清晰概念, 例如鲜美的食品、美丽 的景色、魁梧的身材、漂亮的服装、高个子…等等.对于这些 概念,普通集合就无能为力.
7
2014-8-15
定义1 :设U为论域,U在闭区间[0,1]上的任一映射A[0,1]称 为U上的隶属函数。 对于任意的xU,隶属函数值A(x)称为x对A的隶属度。A为论 域U上的模糊集合。
( A B) C ( A C ) ( B C )
论域:被讨论对象的全体组成的集合称为论域。
包含: AB :对于任意xA ,必有yB. 空集:若对于任意集合A,都有A,则称是任意集合A的空集.
幂集:设U是论域,U的所有子集所组成的集合称为U的幂集, 记为P(U). 例如,U={a,b,c},则
P(U)={,{a}, {b}, {c}, {a,b}, {b,c}, {a,c}, {a,b,c}}
2014-8-15
两个模糊子集的交并运算还可以推广到任意多个 模糊集合的情形。
定义3 设At F (U ), t T , T 是指标集.u U , 规定 ( ( 称
tT tT tT
At )(u ) At (u ) sup At (u );
tT tT tT
At )(u ) At (u ) inf At (u ).
A U U , A U A,
A AC A B) c Ac B c ,
2014-8-15
( A B) c Ac B c
5
特征函数
特征函数CA(u) 表示论域U中的元素u是否属于U的子集A. 若uA, 则CA(u) =1;若 uA ,则CA(u) =0. 显然,特征函数是论域U到{0,1}的一 个映射. 例如,设U自然数组成的集合,A={1,2,3},则A的特征函数为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A ( x) 是表示一个对象x隶属于集合A的程度的函数,
当 xA 1, A x 0 A x 1, 当x在 一 定 程 度 上 属 于 A 0, 当 xA
隶属度函数用精确的数学方法描述了概念的模糊性。
(ⅲ)模糊子集 ① 设集合A是集合U的一个子集,如对于任意U中的元素x, 用隶属度函数 A ( x ) 来表示 x对A的隶属程度,则称A是U的 一个模糊子集,记为
A { A ( xi ), xi }
模糊子集通常简称模糊集。
A ( x ) 唯一确定,故认为二者是等同的。 模糊集 A由隶属函数
模糊集的表示方法: 1° Zadeh表示法
A
或
A( xn ) A( x1 ) A( x2 ) x1 x2 xn
A A x1 x1 A x2 x2 A xn xn
A {(1, 0.3), (2, 0.8), (3,1), (4, 0.7), (5, 0.3)}
模糊集“对三口之家的大面积型房子”可以描述为
B {(2, 0.4), (3, 0.6), (4, 0.8), (5,1), (6,1)}
A与B的并表示“大或者舒适的房子”,为:
A B {(1, 0.3), (2, 0.8), (3,1), (4, 0.8), (5,1), (6,1)}
1)集合及其特征函数 (ⅰ)集合 论域E中具有性质P的元素组成的总体称为集合。 (ⅱ)集合的运算 集合的常用运算包括:交(∩)、并(∪)、补 (ⅲ)特征函数 对于论域E上的集合A和元素x,如有以下函数:
1, 当 x A A x 0, 当 x A
则 称 A x 为 集 合 A的 特 征 函 数
A ( x) B ( x) 并集: C A B C ( x) max A ( x), B ( x)
A ( x) B ( x)
补集: A ( x) 1 A ( x) A
例 一个房地产商想将销售给客户的商品房进行分类。房子 舒适如何的一个标志是其卧室的多少。设X={1,2,3,4,5,6}是房 子卧室数集,模糊集“对三口之家的舒适型房子”可以描述为
0.2 0 0.6 1 B x1 x2 x3 x4
意思是 x1, x2 , x3 , x4 对模糊集A的隶属度分别是 0.5,0.1,0.4,0.2;对模糊集B的隶属度分 别是0.2,0,0.6,1。
[例2] 设以人的岁数作为论域U=[0,120],单位是“岁”, 那么“年轻”,“年老”,都是U上的模糊子集。隶属函 数如下: 1 0 u 25
3°向量表示法
A ( A( x1 ), A( x2 ),, A( xn ))
4°若论域U为无限集,其上的模糊集可表示为:
A
xU
A( x) x
③ 模糊集与隶属度举例 [例1] 设论域
E x1, x2 , x3 , x4
0.5 0.3 ,0.4 0.2 A x1 x2 x3 x4
风的强弱
人的胖瘦
年龄大小个子高低来自集合的概念 解决精确性的集合问题可以用经典集合论。
世界上大多数事物具有模糊性。为了描述具有模糊性的事 物,引入模糊集合的概念。
经典集合: 具有某种特性的所有元素的总和。 模糊集合: 在不同程度上具有某种特性的所有元素的总和。
集合是数学中最基本的概念之一。
第一章Fuzzy 集合及运算
1. 模糊概念
为了对事物进行识别,必须对事物按不同的要求进行分类。许多事物可 以依据一定的标准进行分类。用于这种分类的数学工具就是集合论。 在普通集合中,论域中的元素(如a)与集合(如A)之间的关系是 属于(a∈A),或者不属于,它所描述的是非此即彼的清晰概念。但在 现实生活 中并不是所有的事物都能用清晰的概念来描述,如:
其中 A( xi ) 表示 xi 对模糊集A的隶属度, xi (i 1, 2,, n)
xi
称为模糊子集A的支持点,“+”叫做查德记号,不是求和。 如“将1, 2, 3, 4组成一个小数的集合”可表示为
A 1 0.8 0.2 0 1 2 3 4
2°序偶表示法
A {( x1, A( x1 )),( x2 , A( x2 )),,( xn , A( xn ))}
讨论某一概念的外延时总离不开一定的范围。 这个讨论的范围,称为“论域”,论域中的每 个对象称为“元素”。一般记论域为U,表达了 问题的总范围。 • 所谓集合,是指具有某种特定属性的对象的全体。 • 定义:给定论域 U(U、V、X、Y …… ),U中 具有某种特定属性的元素(u、v、x、 y …… ) 的全体,称为U上的一个集合(A、B、C、……)。
特征函数表达了元素x对集合A的隶属程度。 可以用集合来表达各种概念的精确数学定义和 各种事物的性质。
2)模糊集合 (ⅰ)概念的模糊性 许多概念集合具有模糊性,例如: 成绩:好、差 身高:高、矮 年龄:年轻、年老 头发:秃、不秃 (ⅱ)隶属度函数 A ( x) 如果一个集合的特征函数 A ( x) 不是{0,1}二值取值,而是在闭区间[0,1]中取值,则 称为隶属度函数。
2 1 A u "年轻( " u) = 1 u 25 5 (*) 25 u 120
0 0 u 50 2 1 B u = “年老” (**) u = u 50 50 u 120 1 5 (*)表示:不大于25岁的人,对子集“年轻”的隶属函数值是1, 即一定属于这一子集;而大于25岁的人,对子集“年轻”的隶 属函数值按 2 1
u 25 1 5
来计算,例如对40岁的人,隶属函数值 为0.1
同理,由(**)可得:
B u 55 0.5
B u 60 0.8
(ⅳ)模糊集合的基本运算: ① 相关运算的定义 相等: A B A ( x) B ( x) 包含: A B A ( x) B ( x) 交集: C A B C ( x) min A ( x), B ( x) ∨:表示取大 ∧:表示取小
A与B的交表示“又大又舒适的房子”,为:
A B {(2, 0.4), (3, 0.6), (4, 0.7), (5, 0.3)}
B的补集表示“不大的房子”,为:
B {(1,1), (2, 0.6), (3, 0.4), (4, 0.2)}