行程问题(追及问题)专题训练
六年级数学行程问题、追及问题专项练习(含知识点,可打印)

知识点一、追及问题常用的公式:追及时间=追及路程÷(快的速度-慢的速度)追及路程=(快的速度-慢的速度)×追及时间追及时间=两者距离差÷两者速度差两者距离差=两者速度差×追及时间两者速度差=两者距离差÷追及时间快的速度=两者速度差+慢的速度慢的速度=快的速度-两者速度差二、简单的追及问题的解决方法:(1) 根据问题的类型,找到问题适合的方法公式。
(2) 除了未知数外,要梳理清楚追及问题里的其余两个条件。
(3)代入已知的路程公式,从而进行求解。
练习题1、放学后,贺礼和刘超同时从学校出发去往公车站,两人同向而行,贺礼行走的速度是85米/分,刘超的行走速度是70米/分,10分钟后他们两人相距多少米?2、秦叔叔刚好看到前方有一个跑步者掉落了东西,他距离秦叔叔大概135米远。
跑步者正在以每秒2.3米的速度跑步,秦叔叔此时赶紧以每秒3.2米的速度朝他追去,请问秦叔叔多少秒后可以追上跑步者?3、学校有一条长800米的环形跑道,李俊和石林同时从起点出发,朝同一方向比赛跑步。
李俊每分钟跑240米,石林每分钟跑200米。
当李俊追上石林的时候,李俊一共跑了多少米?4、爸爸以每分钟50米的速度步行去公司上班,6钟后,吴雅发现爸爸忘记带一份文件了,赶紧以每分钟75米的速度从家里出发去给爸爸送文件。
请问吴雅出发后,经过多少分钟可以追上爸爸?5、一辆小汽车和一辆大客车在相距96千米的甲、乙两地同时出发,同向而行。
小汽车每小时行驶90千米,大客车每小时速度是小汽车的图片,几小时后小汽车可以追上大客车?6、李欣和何佳同时从学校出发去往艺术中心,李欣以每分钟走75米的速度步行前往,何佳则是以每分钟195米的速度骑自行车前往艺术中心,她们二人相背而行5分钟后,何佳立即调头来追李欣,再经过多少分钟何佳可追上李欣?7、卢叔叔和刘叔叔两人同时以每小时12千米的速度从长菁镇骑车出发去东吴镇,1小时后卢叔叔发现手机忘带了立即掉头以每小时18千米的速度返回长菁镇取手机,刘叔叔保持每小时骑行12千米继续前行。
小学数学30道“行程问题”专题归纳,公式+例题+解析!

小学数学30道“行程问题”专题归纳,公式+例题+解析!“行程问题”作为小学数学常用知识点之一,想必大家并不陌生。
然而面对各种古怪的命题陷阱,不少考生还是心内发苦,看不出解题思路,频频出错。
解答“行程问题”时,究竟该怎么做呢?“行程问题”离不开三个基本要素:路程、速度和时间。
这也是解题的关键所在!今天为大家分享一份行程问题资料,包含公式、例题和解析,有需要的为孩子收藏一下,希望对学习行程问题有帮助~题型公式行程问题核心公式:S=V×T,因此总结如下:当路程一定时,速度和时间成反比当速度一定时,路程和时间成正比当时间一定时,路程和速度成正比从上述总结衍伸出来的很多总结如下:追击问题:路程差÷速度差=时间相遇问题:路程和÷速度和=时间流水问题:顺水速度=船速+水流速度;逆水速度=船速-水流速度水流速度=(顺水速度-逆水速度)÷2船速=(顺水速度-逆水速度)×2两岸问题:S=3A-B,两次相遇相隔距离=2×(A-B)电梯问题:S=(人与电梯的合速度)×时间平均速度:V平=2(V1×V2)÷(V1+V2)5.列车过桥问题①火车过桥(隧道)火车过桥(隧道)时间=(桥长+车长)÷火车速度②火车过树(电线杆、路标)火车过树(电线杆、路标)时间=车长÷火车速度③火车经过迎面行走的人迎面错过的时间=车长÷(火车速度+人的速度)④火车经过同向行走的人追及的时间=车长÷(火车速度-人的速度)⑤火车过火车(错车问题)错车时间=(快车车长+慢车车长)÷(快车速度+慢车速度)⑥火车过火车(超车问题)错车时间=(快车车长+慢车车长)÷(快车速度-慢车速度)考点精讲分析1、邮递员早晨7时出发送一份邮件到对面的山坳里,从邮局开始要走12千米的上坡路,8千米的下坡路。
他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地后停留1小时,又从原路返回,邮递员什么时候可以回到邮局?【解析】核心公式:时间=路程÷速度去时:T=12/4+8/5=4.6小时返回:T’=8/4+12/5=4.4小时T总=4.6+4.4+1=10小时7:00+10:00=17:00整体思考:全程共计:12+8=20千米去时的上坡变成返回时的下坡,去时的下坡变成返回时的上坡因此来回走的时间为:20/4+20/5=9小时所以总的时间为:9+1=10小时7:00+10:00=17:002、小明从甲地到乙地,去时每小时走6千米,回时每小时走9千米,来回共用5小时。
小升初数学思维拓展专项训练 专题2追及问题

专题2-追及问题小升初数学思维拓展行程问题专项训练(知识梳理+典题精讲+专项训练)1、追击问题的概念。
追及问题的地点可以相同(如环形跑道上的追及问题),也可以不同,但方向一般是相同的.由于速度不同,就发生快的追及慢的问题.2、追及问题公式。
根据速度差、距离差和追及时间三者之间的关系,常用下面的公式:距离差=速度差×追及时间追及时间=距离差÷速度差速度差=距离差÷追及时间速度差=快速-慢速3、解题的关键是在互相关联、互相对应的距离差、速度差、追及时间三者之中,找出两者,然后运用公式求出第三者来达到解题目的.【典例一】学校组织四年级同学前往农场参观,租用两辆车,并分批出发.大客车每小时行60千米,早上7:00出发.面包车每小时行80千米,晚1小时出发,结果两车同时到达目的地.学校离目的地有多远?【分析】把学校离目的地的距离看作单位“1”,那么大客车到达目的地用的时间为160,面包车用的时间为180,假设同时出发,根据题意,大客车要比面包车多用1小时才能到达,根据速度差与时间差,即可求出路程.列式为111()6080÷-,解决问题.【解答】解:111()6080÷-,11240=÷,240=(千米);答:学校离目的地有240千米.【点评】此题运用了工程问题的解法,把路程看作单位“1”,表示出两车各自的速度,根据速度差与时间差,解决问题.【典例二】如果导火线的燃烧速度是每秒0.8厘米,人跑的速度是每秒5米,先点燃第一根导火线往回跑20米,用1秒钟点燃第二根导火线,再继续跑到100米以外的安全地带,两个火药包同时爆炸,问两根导火线至少各长多少米?【分析】根据题意,点燃第二根导火线跑到100米人所用的时间是100520÷=秒,也即是第二根导火线至少燃烧的时间20秒,乘上导火线的燃烧速度是每秒0.8厘米即可求出第二根的长度;要使两个火药包同时爆炸,人在点燃第二根导火线时,它们的长度是相等的,也就是第一根还剩下第二根的长度,这时第一根燃烧的时间是人跑20米的时间加上点燃第二根的时间1秒,即2051÷+,然后再进一步解答即可.【解答】解:点燃第二根导火线跑到100米人所用的时间是100520÷=(秒);第二根导火线的长度是:200.816⨯=(厘米)0.16=(米);第一根导火线的长度是:16(1205)0.820++÷⨯=(厘米)0.2=(米).答:两个火药包同时爆炸,至少第一条导火线长0.2米,第二条导火线长0.16米.【点评】本题的关键是求出人点燃第二根,第一根剩余的长度与第二根相等,然后求出第一根燃烧的时间,然后再进一步解答即可.【典例三】一辆汽车4小时行驶了240千米,照此速度汽车在多少分钟后能追上提前两小时出发且速度为15千米/小时的自行车?【分析】由题意可知,汽车出发时,两车相距15230⨯=千米,由于汽车的速度为240460÷=千米/小时,则两车的速度差为601545-=千米,则根据路程差÷速度差=追及时间可知,汽车追上自行车需要230453÷=小时,即260403⨯=分钟.【解答】解:152(240415)60⨯÷÷-⨯30(6015)60=÷-⨯,304560=÷⨯,40=(分钟).答:照此速度汽车在40分钟后能追上提前两小时出发且速度为15千米/小时的自行车.【点评】完成本题要注意最后的时间单位是分钟.一.选择题(共5小题)1.铁路线旁边有一条沿铁路方向的公路,公路上一辆汽车正以每小时40千米的速度行驶,这时一列长375米的火车以每小时67千米的速度从后面开过来,问:火车从车头到车尾经过汽车旁边需要()秒.A.65B.60C.55D.502.一只猎狗发现在离它18米远的前方有一只狐狸在跑,马上紧追上去.猎狗跑2步的路程狐狸要跑3步,而猎狗跑5步的时间,狐狸可跑7步.猎狗跑()米能追上狐狸?A.277B.270C.320D.1563.上午九点钟的时候,时针与分针成直角,那么下一次时针与分针成直角的时间是()A.9时30分B.10时5分C.10时5511分D.9时83211分4.如图,甲、乙两人在一个周长400米的圆形大道上跑步,甲的平均速度为300米/分,乙的平均速度为280米/分,现在两人分别在直径两端,向同一方向出发,几分钟后甲能追上乙?解:设x 分钟后甲能追上乙。
行程问题之追及问题练习题

追及问题1.小偷在警察前面50米处,警察每秒跑的比小偷快2米,多少秒后警察可以抓住小偷?2。
笨笨在光头强前面200米处,笨笨每秒跑的比光头强慢4米,多少秒后光头强可以抓住笨笨?3。
A、B两地相距260米,甲、乙两人分别从A、B两地同时出发,同向而行,已知甲每秒钟走5米,乙每秒钟走3米,那么甲出发多少秒后可以追上乙?4.甲、乙两人相距150米,甲在前乙在后,甲每分钟走60米,乙每分钟走75米,两人同时向南出发,多少分钟后乙追上甲?5。
兔子在狼狗前面几百米处,同时出发同向而行,兔子每分钟跑500米,狼狗每分跑650米,5分钟后狼狗追上了兔子,开始时狼狗距兔子多少米?6.小蒙、小坤两人分别从A、B两城同时出发,同向而行,小坤在小蒙的前面,小蒙每小时行15千米,小坤每小时行6千米,5小时后小蒙追上了小坤,问A、B两城相距多少千米?7。
甲乙两辆列车同时从相距150千米的A、B两城向C城驶出,乙车在前,甲车在后,行驶10小时后甲车追上乙车,甲车每小时行60千米,乙车每小时行多少千米?8.甲乙两辆列车同时从相距150千米的A、B两城向C城驶出,乙车在前,甲车在后,行驶10小时后甲车追上乙车,乙车每小时行45千米,甲车每小时行多少千米?9。
鸡在狗的前方400米处,窝点在鸡的前方, 同时同向出发,狗追鸡.狗到窝点时,鸡离窝点150米,求狗比鸡多走多少米?10.小吕家和小杨家住在同一个胡同里相距900米,小杨家离学校近,一天两人同时出发去学校,当小吕到达学校时,小杨离学校还有300米,求小吕比小杨多走多少米?11.甲乙两车相距45千米,同时向东城出发,甲在前乙在后,已知甲每小时行35千米,乙每小时行60千米,当乙到东城时,甲距东城还有5千米,求乙到达东城用了几个小时?12。
一只狼和狗从相距600米的两地同时出发,同向而行,狗在前,每分钟行120米;狼在后,每分钟行140米.经过多少分钟它们第一次相距120米?13.熊大和熊二从相距800米的两地同时出发,同向而行,熊大在前,每分钟行90米;熊二在后,每分钟行100米.经过多少分钟它们第一次相距200米?14。
行程问题训练题

行程问题训练题一、复习相遇问题:1、甲、乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。
求两人几小时后相遇?2、甲车每小时行6千米,乙车每小时行驶5千米,两车于相隔10千米的两地同时相背而行,几小时后两车相隔65千米?3、甲、乙两人从A、B两地步行相向而行,甲每小时走3千米,乙每小时走2千米,两人相遇时距离中点还有3千米。
A、B两地相距多远?二、复习追及问题:1、甲、乙两人分别从相距24千米的两地同时向东而行,甲骑自行车每小时行13千米,乙步行每小时走5千米。
几小时后甲可以追上乙?2、一辆每小时行60千米的汽车去追一辆先行96千米的汽车,已知行了480千米后追上。
那么,先行的汽车每小时行多少千米?3、甲、乙两人沿运动场的跑道跑步,甲每分钟跑290米,乙每分钟跑270米,跑道一圈长400米,如果两人同时从起跑线上同方向跑,那么甲经过多长时间才能第一次追上乙?三、复习航行问题1、一艘船在静水中速度是60千米/小时,已知水流速度是5千米/小时,那么(1)、这艘船在顺水中的速度是______千米/小时.在逆水中的速度是______千米/小时(2)、这艘船在顺水航行120千米需要_______小时。
在逆水中航行120千米又需要_____小时2、两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50千米/小时,水流速度是a千米/小时。
(1)、甲船在顺水中的速度是多少(2)、乙船在逆水中的速度是多少(3)、 2小时后两船相距多远(4)、 2小时后甲船比乙船多航行多少千米。
3、某船来往于相距360 千米的两港口之间。
上行(逆水)需用18 小时,下行要用15 小时。
这只船在静水中速度和水流速度各是多少?4、轮船在两个码头之间航行,顺水航行需要4小时,逆水航行需要5小时,水流速度是2千米/小时。
求轮船在静水中航行的速度。
5、一架飞机在两城之间飞行,风速为24千米/小时,顺风飞行需要2小时50分,逆风飞行需要3小时,求无风时的飞机航行速度和两城之间的距离。
行程问题之多次相遇与追及问题 非常完整版题型训练+答案解析

行程体系之多次相遇与追及问题知识点总结:1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………,………………;第N次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。
即甲第1次如果走了N米,以后每次都走2N米。
2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………,………………;第N次相遇,共走2N个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差例题训练:【例1】甲、乙两车分别同时从A、B两地相对开出,第一次在离A地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B地25千米处相遇.求A、B两地间的距离是多少千米?解答:画线段示意图(实线表示甲车行进的路线,虚线表示乙车行进的路线):可以发现第一次相遇意味着两车行了一个A、B两地间距离,第二次相遇意味着两车共行了三个A、B两地间的距离.当甲、乙两车共行了一个A、B两地间的距离时,甲车行了95千米,当它们共行三个A、B两地间的距离时,甲车就行了3个95千米,即95×3=285(千米),而这285千米比一个A、B两地间的距离多25千米,可得:95×3-25=285-25=260(千米).【例2】如图,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.解答:注意观察图形,当甲、乙第一次相遇时,甲乙共走完0.5圈的路程,当甲、乙第二次相遇时,甲乙共走完1+0.5=1.5圈的路程.所以从开始到第一、二次相遇所需的时间比为1:3,因而第二次相遇时乙行走的总路程为第一次相遇时行走的总路程的3倍,即100×3=300米.有甲、乙第二次相遇时,共行走(1圈-60)+300=1.5圈,解出此圆形场地的周长为480米.【例3】甲、乙两人从400米的环形跑道上一点A背向同时出发,8分钟后两人第五次相遇,已知每秒钟甲比乙多走0.1米,那么两人第五次相遇的地点与点A沿跑道上的最短路程是多少米?解答:第五次相遇时,共合走5各全程:400×5=2000(米)甲乙的速度和:2000÷8=250(米/分)甲乙的速度差:0.1×60=6(米/分)甲的速度(250+6)÷2=128(米/分)乙的速度:(250-6)÷2=122(米/分)8分钟时甲的路程跑的圈数:128×8÷400=2(周)余224米400-224=176(米)【例4】甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?解答:从开始到两人第十次相遇的这段时间内,甲、乙两人共跑的路程是操场周长的10倍,为300×10=3000米,因为甲的速度为每秒钟跑3.5米,乙的速度为每秒钟跑4米,所以这段时间内甲共行了3000÷(3.5+4)×3.5=1400米,也就是甲最后一次离开出发点继续行了200米,可知甲还需行300-200=100米才能回到出发点【例5】上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分?解答:画一张简单的示意图:图上可以看出,从爸爸第一次追上到第二次追上,小明走了8-4=4(千米).而爸爸骑的距离是 4+ 8= 12(千米).这就知道,爸爸骑摩托车的速度是小明骑自行车速度的 12÷4=3(倍).按照这个倍数计算,小明骑8千米,爸爸可以骑行8×3=24(千米).但事实上,爸爸少用了8分钟,骑行了4+12=16(千米).少骑行24-16=8(千米).摩托车的速度是8÷8=1(千米/分)爸爸骑行16千米需要16分钟,8+8+16=32.所以这时是8点32分。
应用题专项训练之行程问题(含答案)

应用题专项训练三知识回顾1.行程问题速度×时间=路程时间相同时,路程比等于速度比路程相同时时间比等于速度比的反比2.相遇问题速度和×相遇时间=相遇路程3.追及问题速度差×追及时间=相差路程4.火车过桥桥长+车长=路程速度×过桥时间=路程5.流水行船船速:在静水中的速度水速:河流中水流动的速度顺水船速:船在顺水航行时的速度逆水速度:船在逆水航行时的速度顺水船速=船速+水速=逆水船速+水速×2行程问题常用的解题方法有⑴公式法⑵图示法⑶比例法⑷分段法⑸方程法典型应用题例1、甲、乙两辆汽车从两地相向而行,甲车每小时行85千米,乙车每小时行76千米,甲车开出2小时,乙车才开出,又过了4小时两车相遇,两地间的距离是多少千米?例2、甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
两车在距中点32千米处相遇。
东西两地相距多少千米?甲乙所行的路程比=甲乙的速度比=56:48=7:6 东西两地相距多少千米?(32+32)÷(7-6)×(7+6)=832千米解:设东西两地相距X千米。
(X÷2+32)÷56=(X÷2-32)÷48 (+32)÷56=()÷48 56=48+32) 7=6+32) =3X+192 =192+224 =416 X=832 答:东西两地相距832千米。
例3、汽车从甲地开往乙地,每小时行32千米,4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到乙地?设全程X千米。
1/2X-8=X-4×32 1/2X-8=X-128 1/2X=X-128+8 1/2X=X-120 120=1/2 X x=240240-32×4=112(千米)112÷56=2(小时)2+4=6(小时)例4、小狗和小猴参加的100米预赛.结果,当小狗跑到终点时,小猴才跑到90米处,决赛时,自作聪明的小猴突然提出:小狗天生跑得快,我们站在同一起跑线上不公平,我提议把小狗的起跑线往后挪10米.小狗同意了,小猴乐滋滋的想:“这样我和小狗就同时到达终点了!”亲爱的小朋友,你说小猴会如愿以偿吗?【解析】小猴不会如愿以偿.第一次,小狗跑了100米,小猴跑了90米,所以它们的速度比为100:9010:9=;那么把小狗的起跑线往后挪10米后,小狗要跑110米,当小狗跑到终点时,小猴跑了91109910⨯=米,离终点还差1米,所以它还是比小狗晚到达终点.例5、甲、乙二人分别从A、B 两地同时出发,相向而行,甲、乙的速度之比是4 : 3,二人相遇后继续行进,甲到达B 地和乙到达A地后都立即沿原路返回,已知二人第二次相遇的地点距第一次相遇的地点30千米,则A、B 两地相距多少千米?【解析】两个人同时出发相向而行,相遇时时间相等,路程比等于速度之比,即两个人相遇时所走过的路程比为4 : 3.第一次相遇时甲走了全程的4/7;第二次相遇时甲、乙两个人共走了3个全程,三个全程中甲走了453177⨯=个全程,与第一次相遇地点的距离为542(1)777--=个全程.所以A、B两地相距2301057÷=(千米).例6、甲、乙两人同时从A地出发到B地,经过3小时,甲先到B地,乙还需要1小时到达B地,此时甲、乙共行了35千米.求A,B两地间的距离.【分析】甲用3小时行完全程,而乙需要4小时,说明两人的速度之比为4:3,那么在3小时内的路程之比也是4:3;又两人路程之和为35千米,所以甲所走的路程为4352034⨯=+千米,即A,B两地间的距离为20千米.例7、甲乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。
小升初行程问题专项训练之相遇问题追及问题

小升初行程问题专项训练之相遇问题追及问题一、基本公式:1、路程=速度×时间2、相遇问题:相遇路程=速度和×相遇时间3、追及问题:相差路程=速度差×追及时间二、行程问题(一)-----相遇问题例题:1.XXX和XXX同时从两地相对出发,XXX步行每分钟走8米,XXX骑自行车的速度是XXX步行的3倍,经过5分钟后两人相遇,问这两地相距多少米?2.在一条笔直的公路上,XXX和XXX骑车从相距900米的A、B两地同时出发,XXX每分钟行200米,XXX每分钟行250米,经过多少时间两人相距2700米?(分析各种情况)3.客货两车同时从甲、乙两地相对开出,客车每小时行44千米,货车每小时行52千米,两车相遇后继续以原速度前进,到达乙、甲两地后立即返回,第二次相遇时,货车比客车多行60千米。
问甲、乙两地相距多千米?4.XXX从甲地向乙地走,XXX同时从乙地向甲地走,当各自到达终点后,又迅速返回,各自速度不变,两人第一次相遇在距甲地40米处,第二次相遇在距乙地15米处,问甲、乙两地相距多少米?5.甲村、乙村相距6千米,XXX与XXX分别从甲、乙两村出发,在两村之间往返行走(到达另一村后就马上返回)。
在出发后40分钟两人第一次相遇。
小王到达甲村后返回,在离甲村2千米的地方两人第二次相遇。
问XXX和XXX两人的速度各是多少?6.XXX与XXX划分从甲、乙两村动身,在两村之间往返行走(抵达另一村后就马上返回)。
他们离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇。
问他们两人第四次相遇的地址离乙村有多远?(相遇指迎面相遇)7.甲、乙两辆汽车同时从东西两地相向开出,甲每小时行56千米,乙每小时行48千米,两车在离两地中点32千米处相遇。
问:东西两地间的距离是多少千米?8.甲、乙两地相距15千米,小聪和XXX划分从甲、乙两地同时相向而行,2小时后在离中点0.5千米处相遇,求小聪和XXX的速率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
行程问题(追及问题)专题训练
知识梳理:
1、两物体在同一直线上运动所涉及
的追及、相遇、相撞的问题,通常
归为追及问题。
2、追及路程=速度差X追及时间
速度差=追及路程+追及时间追及时
间=追及路程+速度差
3、“追及路程”是指在相同的时间内两个运动物体速度快的比速度慢的多行的路程;“追及时间”是指速度快的物体从出发到追上速度慢的物体所经历的时间。
例题精讲:
1、哥哥以每分钟50米的速度从学校步行回家,12分钟后弟弟从学校岀来骑车追哥哥,结
果在距学校800米处追上哥哥。
求弟弟骑车的速度。
分析:当弟弟追上哥哥时,距学校800米。
这800米是哥哥两次所行路程的和,一次是12分钟内行的路程,另一次是弟弟从岀发到追上哥哥所用时间内(追及时间)哥哥行的路程。
解:解答:弟弟追上哥哥的时间(追及时间)
(800 —12X 50)- 50
=(800 —600)- 50
=200 - 50
=4 (分)弟弟的速度
800 - 4=200 (米)
答:弟弟骑车每分钟行200米
2、两辆汽车从甲地运送货物到乙地。
大货车以每小时行36千米的速度先岀发2小时后,小
货车以每小时48千米的速度追赶。
当小货车追上大货车时,大货车已开岀多远?
分析:求大货车开出多远必须先求出追及时间,再乘上小货车的速度就求出大货车开出的路
程。
解:追及时间为:(36 X 2)-(48-36)=6 (小时);
大货车开岀的路程为:48 X 6=288 (千米)。
3、一辆货车以每小时65千米的速度前进,一辆客车在它的后面1500米处,以每小时80
千米的速度同向行驶,客车在超过货车前2分钟,两车相距多少米?
分析:客车超过货车的一瞬间,也就是客车追上货车,这时两车所行的路程是相等的。
客车
超过货车前2分钟两车相距的路程即客车与货车2分钟内的路程差。
解:解答:客车与货车1小时的路程差
80 - 65=15 (千米)
客车与货车2分钟的路程差
15 X 1000 + 60 X 2=500 (米)
答:客车在超过货车前2分钟,两车相距500米
专题训练:
1、两匹马在相距50米的地方同时同向岀发,岀发时黑马在前白马在后,如果黑马每秒跑
10米,白马每秒跑12米,几秒后两马相距70米?
2、李明和张强绕周长为1200米的环形广场竞走。
李明每分钟走走125米,张强的速度是李
明的1.2倍。
现在李明在张强后面400米处,经过几分钟张强能追上李明?
3、甲、乙两人在400米长的环形跑道上跑步.甲以每分钟300米的速度从起点跑岀1分钟时,乙从起点同向跑岀,从这时起甲用5分钟赶上乙。
乙每分钟跑多少米?
4. 亮亮从家步行去学校,每小时走5千米.回家时,骑自行车,每小时走13千米.骑自行车比步行的时间少4小时,亮亮家到学校的距离是多少千米?
5、狗追狐狸,狗跳一次前进 1.8米,狐狸跳一次前进 1.1米.狗每跳两次时狐狸恰好跳3次.如果开始时狗离狐狸有30米,那么狗跑多少米才能追上狐狸.
6、在400米环形跑道上,A、B两点相距100米(如图).甲、乙两人分别从A、B两点同时岀发按逆时针方向跑步.甲每秒跑5米,乙每秒跑4米海人每跑100米,都要停10秒钟.那么,甲追上乙需要的时间是多少秒?
7、骑车人以每分钟300米的速度,从102路电车始发站岀发,沿102路电车线前进,骑车人离开岀发地2100米时,一辆102路电车开岀了始发站,这辆电车每分钟行500米,行5分钟到达一站并停车1分钟.那么需要多少分钟,电车追上骑车人?
8、兔子和狗相距56米,兔子开始逃跑时,狗同时追岀。
狗一跳前进2米,狗跳3次时间与兔子跳4次时间相同,当兔子跳岀112米时狗追上兔子,问兔子一跳前进多少米?
9、甲乙两个同学分别在长方形围墙外的两角(如下图所示).如果他们同时开始绕着围墙反时
针方向跑,甲每秒跑5米,乙每秒跑4米,那么甲最少要跑多少秒才能看到乙.
10、甲、乙两地相距60千米.小王骑车以每小时行10千米的速度上午8点钟从甲地岀发去乙地.过了一会儿,小李骑车以每小时15千米的速度也从甲地去乙地.小李在途中M地追上小王通知小王立即返回甲地.小李继续骑车去乙地.各自分别到达甲、乙两地后都马上返回,两人再次见面时,恰好还在M地.小李是几时岀发的?
1、解:(50+70 )-(12-10)=60 (秒)
2、解:(1200-400 )-(125 X 1.2-125)=32(分钟)
3、解:甲以每分钟300米的速度从起点跑岀1分钟,这时甲离乙
400-300 X 1=100(米)
甲用5分钟比乙多跑100米,则甲每分钟比乙多跑100- 5=20(米)
所以,乙每分钟跑300-20=280(米)
4、解:此题可看成同向而行问题:
有两人从亮亮家岀发去学校.一人步行,每小时走5千米;一人骑自行车,每小时行13千米.那
么,当骑自行车的人到学校时,步行的人离学校还有(骑车人比步行人早到4小时):
5 X 4=20(千米)
又骑车比步行每小时快
13-5=8(千米)
所以,亮亮家到学校的距离是
(20 - 8)X 13=32.5(千米)
5、解:狗跳2次前进1.8 2=3.6(米),狐狸跳3次前进1.1 3=3.3(米),它们相差3.633=0.3(米), 也就是说狗每跑3.6米时追上0.3米.30 - 0.3=100,即狗跳100 2=200(次)后能追上狐狸.所以,狗跑
1.8 200=360(米)才能追上狐狸.
6、解:
假设甲乙都不停地跑,那么甲追上乙的时间是100- (5-4)=100(秒),甲、乙每跑100米停10秒,等于甲跑100- 5=20(秒)休息10秒乙跑100- 4=25(秒)休息10秒.跑100秒甲要停100 - 20-1=4(次)共用100+10 X 4=140(秒),此时甲已跑的路程为500米;在第130秒时乙已跑路程为400米他此
时已休息3次,花30秒),并在该处休息到第140秒,甲刚好在乙准备动身时赶到他们确实碰到一块
了.所以甲追上乙需要的时间是140秒.
7、解:电车追及距离为2100米.电车每分钟行500米,骑车人每分钟行300米,1分钟追上(500-300)=200 米,追上2100米要用(2100 - 200)=10.5(分钟).但电车行10.5分钟要停两站,共花(1 X 2)=2分钟,电车停2分钟骑车人又要前行(300 X 2)=600米,电车追上这600米,又要多用(600 - 200)=3分钟.所以,电车追上骑车人共要用
10.5+2+3=15.5(分钟)
8、解:根据追及问题可知,兔跳112米时,狗跳56+112=168(米).
因此,狗一共跳了168 - 2=84(次).由狗跳3次的时间与兔跳4次的时间相同的条件,可知兔跳了4X (84 - 3)=112(次)
所以,兔跳一次前进112- 112=1(米).
9、解:甲要看到乙,甲乙间的最大距离为20米,即甲最少要比乙多跑15米,这需跑15+(5-4)
=15 (秒)
实际上,甲跑15秒时跑了75米,甲需要再跑2秒即可使甲乙间的距离小于20米,所以甲最少
要跑17秒才能看到乙。
10、解:从小李追上小王到两人再次见面,共行了60 X 2=120(千米),共用了120 -
(15+10)=4.8(小时),所以,小王从乙地到M点共用了4.8 - 2=2.4(小时),
甲地到M点距离2.4 X 10=24(千米)
小李行这段距离用了24 + 15=1.6(小时)
比小王少用了2.4-1.6=0.8(小时)
所以,小李比小王晚行了0.8小时,即在8点48分岀发的。