上海市长宁区2020届高三数学上学期期末质量抽测(一模)试题 文 (无答案)沪教版
上海市长宁区高三数学上学期期末(暨一模)试题 理(含解析)

上海市长宁区高三数学上学期期末(暨一模)试题理(含解析)考生注意:本试卷共有23道试题,满分150分.考试时间120分钟.解答必须写在答题纸上的规定区域,写在试卷或草稿纸上的答案一律不予评分.一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸的相应编号的空格内填写结果,每题填对得4分,否则一律得零分.1.函数y=sin2xcos2x的最小正周期是___________________.[考点:二倍角的正弦;三角函数的周期性及其求法..专题:三角函数的图像与性质.分析:先利用二倍角公式化简函数,再求函数的周期.解答:解:函数y=sin2xcos2x=,∴函数y=sin2xcos2x 的最小正周期是=.故答案为:.点评:本题考查二倍角公式,考查三角函数的周期,考查学生的计算能力,正确化简函数是关键2.若集合2{|||2},{|30}M x x N x x x=≤=-≤,则M∩N=_______________.考点:交集及其运算..专题:集合.分析:利用不等式的性质和交集的定义求解.解答:解:∵集合M={x||x|≤2}={x|﹣2≤x≤2},N={x|x2﹣3x≤0}={x|0≤x≤3},∴M∩N={x|0≤x≤2}=[0,2].故答案为:[0,2].点评:本题考查交集的求法,是基础题,解题时要认真审题,注意不等式性质的合理运用.3.复数221ii+-=______________.(是虚数单位)考点:复数代数形式的乘除运算..专题:数系的扩充和复数.分析:利用复数的运算法则即可得出.解答:解:复数==2i,故答案为:2i.点评:本题考查了复数的运算法则,属于基础题.4.已知数列{}na的前n项和542nnS-=-⨯,则其通项公式为考点:数列的函数特性..专题:计算题.分析:由数列{an}的前n项和Sn=5﹣4×2﹣n ,利用公式直接求解.解答:解:a1=S1=5﹣4×2﹣1=3,an=Sn﹣Sn﹣1=(5﹣4×2﹣n)﹣(5﹣4×2﹣n﹣1)=.当n=1时,,∴.故答案为:.点评:本题考查数列的通项公式的求法,解题时要认真审题,仔细解答,注意公式的灵活运用.5. 已知()214732lim 6752na nn n→∞++++-⎡⎤⎣⎦=--,则a=考点:极限及其运算..专题:计算题.分析:由等差数列的前n项和公式,把等价转化为=6,进而得到=6,所以,由此能求出a.解答:解:∵,∴=6,=6,∴,解得a=28. 故答案为:28.点评:本题考查数列的极限的运算,角题时要认真审题,仔细解答,注意等差数列前n 项和公式的灵活运用.6. 已知{}3,2,1,1,2,3,---∈b a 且b a ≠,则复数bi a z +=对应点在第二象限的概率为._______(用最简分数表示)考点:古典概型及其概率计算公式.. 专题:计算题.分析:由已知中a ,b ∈{﹣3,﹣2,﹣1,1,2,3}且a≠b ,我们可以列举出所有(a ,b )点的个数及复数z=a+bi 对应点在第二象限的基本事件个数,代入古典概型概率计算公式,即可得到答案. 解答:解:∵a ,b ∈{﹣3,﹣2,﹣1,1,2,3}且a≠b , 则(a ,b )点共有 (﹣3,﹣2),(﹣3,﹣1),(﹣3,1),(﹣3,2),(﹣3,3), (﹣2,﹣3),(﹣2,﹣1),(﹣2,1),(﹣2,2),(﹣2,3), (﹣1,﹣3),(﹣1,﹣2),(﹣1,1),(﹣1,2),(﹣1,3), (1,﹣3),(1,﹣2),(1,﹣1),(1,2),(1,3), (2,﹣3),(2,﹣2),(2,﹣1),(2,1),(3,1), (3,﹣3),(3,﹣2),(3,﹣1),(3,1),(3,2),共30种情况 其中a <0,b >0,即复数z=a+bi 对应点在第二象限共有: (﹣3,1),(﹣3,2),(﹣3,3),(﹣2,1),(﹣2,2), (﹣2,3),(﹣1,1),(﹣1,2),(﹣1,3),共9种情况 故复数z=a+bi 对应点在第二象限的概率P==故答案为:点评:本题考查的知识点是古典概型及其概率计算公式,其中分别计算出基本事件的总数及满足条件的基本事件个数是解答本题的关键.7.已知函数()1log a f x x =+,1()y f x -=是函数()y f x =的反函数,若1()y f x -=的图象过点(2,4),则a 的值为._________开始 是否 A <35A ←1 A ←2A +1 打印考点:反函数..专题:函数的性质及应用.分析:由y=f ﹣1(x )的图象过点(2,4)得函数y=f (x )的图象过点(4,2),把点(4,2)代入y=f (x )的解析式求得a 的值. 解答:解:∵y=f ﹣1(x )的图象过点(2,4), ∴函数y=f (x )的图象过点(4,2), 又f (x )=1+logax , ∴2=1+log a4,即a=4. 故答案为:4.点评:本题考查了互为反函数的两个函数图象间的关系,是基础的计算题. 8.如图,圆锥的侧面展开图恰好是一个半圆,则该圆锥的 母线与底面所成的角的大小是 .考点:直线与平面所成的角.. 专题:空间角.分析:设出圆锥的半径与母线长,利用圆锥的底面周长等于侧面展开图的弧长得到圆锥的半径与母线长,进而表示出圆锥的母线与底面所成角的余弦值,也就求出了夹角的度数. 解答:解:设圆锥的母线长为R ,底面半径为r , 则:πR=2πr , ∴R=2r ,∴母线与底面所成角的余弦值==, ∴母线与底面所成角是60°. 故答案为:60°.点评:本题用到的知识点为:圆锥的侧面展开图的弧长等于圆锥的底面周长;注意利用一个角相应的三角函数值求得角的度数.9.根据右面的框图,打印的最后一个数据是 . 考点:程序框图..专题:算法和程序框图.分析:执行程序框图,写出每次循环得到的A 的值,当A=63,不满足条件A <35,结束. 解答:解:执行程序框图,有A=1,A=3,输出A 的值为3,满足条件A <35,A=7,输出A 的值为7, 满足条件A <35,A=15,输出A 的值为15, 满足条件A <35,A=31,输出A 的值为31, 满足条件A <35,A=63,输出A 的值为63, 不满足条件A <35,结束. 故打印的最后一个数据是63. 故答案为:63.点评:本题主要考查了程序框图和算法,属于基本知识的考查.10.已知数列{}n a 是以2-为公差的等差数列,nS 是其前n 项和,若7S 是数列{}n S 中的唯一最大项,则数列{}n a 的首项1a 的取值范围是 .考点:等差数列的性质;等差数列的前n 项和.. 专题:计算题.分析:因为S7是数列{Sn}中的唯一最大项 所以a7大于0 而a8小于0.由此可导出首项a1的取值范围.解答:解:∵S 7是数列{Sn}中的唯一最大项 所以a7大于0,而a8小于0, a1+6d >0,a1+7d <0, 即 a1﹣12>0,a1﹣14<0 得到a1的范围 12<a1<14. 故答案:(12,14).点评:本题考查等差数列的性质和应用,解题时要认真审题,注意公式的灵活运用.11.五位同学各自制作了一张贺卡,分别装入5个空白信封内,这五位同学每人随机地抽取一封,则恰好有两人抽取到的贺卡是其本人制作的概率是 考点:等可能事件的概率.. 专题:计算题.分析:根据题意,首先由排列数公式分析可得5位同学每人随机地抽取1张卡片的情况;进而分两步分析5人中恰好有2人抽取到的贺卡是其本人制作的情况数目,①先在5人中抽出2人,使其抽取到的贺卡是其本人制作的,②分析抽到的都不是其本人制作的3人,由分步计数原理可得其情况数目,由等可能事件的概率公式,计算可得答案. 解答:解:根据题意,共5张贺卡,5位同学每人随机地抽取1张,有A55=120种情况, 要满足5人中恰好有2人抽取到的贺卡是其本人制作,可以先在5人中抽出2人,使其抽取到的贺卡是其本人制作的,有C52=10种情况, 则剩余的3人,抽到的都不是其本人制作的,有2种情况,则5人中恰好有2人抽取到的贺卡是其本人制作的情况有10×2=20种, 其概率P==;故答案为.点评:本题考查等可能事件概率计算,关键是正确理解“恰好有两人抽取到的贺卡是其本人制作的”的含义.12. 已知△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且2226tan 5b c a acB -+=, 则sin B的值是 。
上海市长宁、金山区2020年高三第一学期期末(高考一模)学科质量检测数学试卷(word解析版)

支付方式
大于2000
使用
18人
29人
23人
使用
10人
24人
21人
依据以上数据估算:若从该公司随机抽取1名员工,则该员工在该月 、 两种支付方式都使用过的概率为______.
【答案】
【解析】
【分析】
根据题意,计算出两种支付方式都使用过的人数,即可得到该员工在该月A、B两种支付方式都使用过的概率.
又因为 ,所以直线 平面 ,
所以 即直线 与平面 的所成角
由题意 , ,所以
所以直线 与平面 的所成角 .
(2)记点 到平面 的距离为 ,三角形 的面积为 ,则
,
由已知 , ,
所以 为定值.
【点睛】本题考查几何体的体积的求法,直线与平面所成角的求法,考查空间想象能力以及计算能力,是中档题.
18.在复平面内复数 、 所对应的点为 、 , 为坐标原点, 是虚数单位.
【答案】1078
【解析】
【分析】
根据数列的递推关系,求出数列的前四项的最大,最小值,得出何时和最大,何时和最小,进而求得结论.
【详解】解:因为数列{an}满足: , ,
即 解得 ;
或
或 ;
或 , ,
所以 最小为4, 最大为8;
所以,数列 的最大值为 时,是首项为1,公比为2的等比数列的前 项和: ;
故选:A.
【点睛】本题考查常见函数的值域,属于简单题.
15.已知正方体 ,点 是棱 的中点,设直线 为 ,直线 为 .对于下列两个命题:①过点 有且只有一条直线 与 、 都相交;②过点 有且只有一条直线 与 、 都成 角.以下判断正确的是()
A.①为真命题,②为真命题B.①为真命题,②为假命题
上海市2020届高三数学上学期期末教学质量监测试题

第一学期期末高三年级数学学科教学质量监测试卷(120分钟,150分)考生注意:1.本试卷包括试题卷和答题纸两部分,答题纸另页,正反面;2.在本试题卷上答题无效,必须在答题纸上的规定位置按照要求答题; 3.可使用符合规定的计算器答题.一、填空题(本题满分54分)本大题共有12题,1-6每题4分,7-12每题5分,要求在答题纸相应题序的空格内直接填写结果,每个空格填对得分,否则一律得零分. 1.函数()sin(2)f x x =-的最小正周期为 .2.集合U R =,集合{|30},{|10}A x x B x x =->=+>,则U BC A = .3.若复数z 满足()12i z i +=(i 是虚数单位),则z = . 4.方程ln(931)0xx+-=的根为 .5.从某校4个班级的学生中选出7名学生参加进博会志愿者服务,若每一个班级至少有一名代表,则各班的代表数有______种不同的选法.(用数字作答) 6.关于,x y 的二元一次方程组的增广矩阵为12-3015⎛⎫⎪⎝⎭,则x y += .7.如果无穷等比数列{}n a 所有奇数项的和等于所有项和的3倍,则公比q = . 8.函数()y f x =与ln y x =的图像关于直线y x =-对称,则()f x = .9.已知1(2,3),(1,4),(sin ,cos )2A B AB x y =且,,,22x y ππ⎛⎫∈- ⎪⎝⎭,则x y += .10.将函数y =y 轴旋转一周所得的几何容器的容积是 . 11.张老师整理旧资料时发现一题部分字迹模糊不清,只能看到:在ABC ∆中,,,a b c 分别是角,,A B C的对边,已知45b A =∠=,求边c 。
显然缺少条件,若他打算补充a 的大小,并使得c 只有一解.那么,a 的可能取值是 .(只需填写一个适合的答案) 12.如果等差数列{}{},n n a b 的公差都为()0d d ≠,若满足对于任意*,n N ∈都有n n b a kd -=,其中k 为常数,k N *∈,则称它们互为“同宗”数列.已知等差数列{}n a 中,首项11a =,公差2d =,数列{}n b 为数列{}n a 的“同宗”数列,若11221111lim 3n n n a b a b a b →∞⎛⎫+++= ⎪⎝⎭,则k = . 二、选择题(本题满分20分)本大题共有4题,每题都给出四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应题序内的正确结论代号涂黑,选对得5分,否则一律得零分.13.若等式232301231(1)(1)(1)x x x a a x a x a x +++=+-+-+-对一切R x ∈都成立,其中0a ,1a ,2a ,3a 为实常数,则0123a a a a +++=( ) (A )2. (B )1-. (C )4. (D )1. 14.“,22x ππ⎡⎤∈-⎢⎥⎣⎦”是“sin(arcsin )x x =”的( )条件. (A )充分非必要. (B )必要非充分. (C )充要. (D )既非充分又非必要. 15.关于函数23()2f x x =-的下列判断,其中正确的是( ) (A )函数的图像是轴对称图形. (B )函数的图像是中心对称图形. (C )函数有最大值. (D )当0x >时,()y f x =是减函数.16.设点M 、N 均在双曲线22:143x y C -=上运动,12F F 、是双曲线C 的左、右焦点,则122MF MF MN +-的最小值为( )(A ) (B )4 . (C ) (D )以上都不对. 三、解答题(本题满分76分)本大题共有5题,解答下列各题必须在答题纸的规定区域(对应的题号)内写出必要的步骤. 17.(满分14分)本题有2小题,第1小题6分,第2小题8分.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,正方形ABCD 的边长为2,4PA =,设E 为侧棱PC 的中点.(1)求正四棱锥E ABCD -的体积V ;2)求直线BE 与平面PCD 所成角θ的大小.18.(满分14分)本题有2小题,第1小题7分,第2小题7分.已知函数()sin 21cos 2201x f x x -=,将()f x 的图像向左移()0αα>个单位得函数()y g x =的图像.(1)若4πα=,求()y g x =的单调递增区间;(2)若0,2πα⎛⎫∈ ⎪⎝⎭,()y g x =的一条对称轴为12x π=,求()y g x =,0,2x π⎡⎤∈⎢⎥⎣⎦的值域.19.(满分14分)本题有2小题,第1小题6分,第2小题8分.某温室大棚规定:一天中,从中午12点到第二天上午8点为保温时段,其余4小时为工人作业时段.从中午12点连续测量20小时,得出此温室大棚的温度y (单位:度)与时间t (单位:小时,[0,20]t ∈)近似地满足函数13+2by t t =-+关系,其中,b 为大棚内一天中保温时段的通风量.(1)若一天中保温时段的通风量保持100个单位不变,求大棚一天中保温时段的最低温度(精确到00.1C );(2)若要保持大棚一天中保温时段的最低温度不小于017C ,求大棚一天中保温时段通风量的最小值.20.(满分16分)本题有3小题,第1小题4分,第2小题6分,第3小题6分.已知椭圆Γ:2214x y +=的左、右焦点为12F F 、. (1)求以1F 为焦点,原点为顶点的抛物线方程; (2)若椭圆Γ上点M 满足123F MF π∠=,求M 的纵坐标M y ;(3)设(0,1N ),若椭圆Γ上存在两个不同点,P Q 满足90PNQ ∠=,证明直线PQ 过定点,并求该定点的坐标. 21.(满分18分)本题有3小题,第1小题4分,第2小题7分,第3小题7分.如果数列{}n a 对于任意*n N ∈,都有2n n a a d +-=,其中d 为常数,则称数列{}n a 是“间等差数列”,d 为“间公差”.若数列{}n a 满足1235n n a a n ++=-,*n N ∈,()1a a a R =∈.(1)求证:数列{}n a 是“间等差数列”,并求间公差d ;(2)设n S 为数列{}n a 的前n 项和,若n S 的最小值为153-,求实数a 的取值范围; (3)类似地:非零..数列{}n b 对于任意*n N ∈,都有2n nb q b +=,其中q 为常数,则称数列{}n b 是“间等比数列”,q 为“间公比”。
上海市2020届高三数学上学期期末教学质量监测试题

第一学期期末高三年级数学学科教学质量监测试卷(120分钟,150分)考生注意:1.本试卷包括试题卷和答题纸两部分,答题纸另页,正反面;2.在本试题卷上答题无效,必须在答题纸上的规定位置按照要求答题; 3.可使用符合规定的计算器答题.一、填空题(本题满分54分)本大题共有12题,1-6每题4分,7-12每题5分,要求在答题纸相应题序的空格内直接填写结果,每个空格填对得分,否则一律得零分. 1.函数()sin(2)f x x =-的最小正周期为 .2.集合U R =,集合{|30},{|10}A x x B x x =->=+>,则U BC A = .3.若复数z 满足()12i z i +=(i 是虚数单位),则z = . 4.方程ln(931)0xx+-=的根为 .5.从某校4个班级的学生中选出7名学生参加进博会志愿者服务,若每一个班级至少有一名代表,则各班的代表数有______种不同的选法.(用数字作答)6.关于,x y 的二元一次方程组的增广矩阵为12-3015⎛⎫ ⎪⎝⎭,则x y += .7.如果无穷等比数列{}n a 所有奇数项的和等于所有项和的3倍,则公比q = . 8.函数()y f x =与ln y x =的图像关于直线y x =-对称,则()f x = .9.已知1(2,3),(1,4),(sin ,cos )2A B AB x y =且,,,22x y ππ⎛⎫∈- ⎪⎝⎭,则x y += .10.将函数y =y 轴旋转一周所得的几何容器的容积是 . 11.张老师整理旧资料时发现一题部分字迹模糊不清,只能看到:在ABC ∆中,,,a b c 分别是角,,A B C 的对边,已知45b A =∠=,求边c 。
显然缺少条件,若他打算补充a的大小,并使得c 只有一解.那么,a 的可能取值是 .(只需填写一个适合的答案) 12.如果等差数列{}{},n n a b 的公差都为()0d d ≠,若满足对于任意*,n N ∈都有n n b a kd -=,其中k 为常数,k N *∈,则称它们互为“同宗”数列.已知等差数列{}n a 中,首项11a =,公差2d =,数列{}n b 为数列{}n a 的“同宗”数列,若11221111lim 3n n n a b a b a b →∞⎛⎫+++= ⎪⎝⎭,则k = . 二、选择题(本题满分20分)本大题共有4题,每题都给出四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应题序内的正确结论代号涂黑,选对得5分,否则一律得零分.13.若等式232301231(1)(1)(1)x x x a a x a x a x +++=+-+-+-对一切R x ∈都成立,其中0a ,1a ,2a ,3a 为实常数,则0123a a a a +++=( ) (A )2. (B )1-. (C )4. (D )1. 14.“,22x ππ⎡⎤∈-⎢⎥⎣⎦”是“sin(arcsin )x x =”的( )条件. (A )充分非必要. (B )必要非充分. (C )充要. (D )既非充分又非必要. 15.关于函数23()2f x x =-的下列判断,其中正确的是( ) (A )函数的图像是轴对称图形. (B )函数的图像是中心对称图形. (C )函数有最大值. (D )当0x >时,()y f x =是减函数.16.设点M 、N 均在双曲线22:143x y C -=上运动,12F F 、是双曲线C的左、右焦点,则122MF MF MN +-的最小值为( )(A ) (B )4 . (C ) (D )以上都不对.三、解答题(本题满分76分)本大题共有5题,解答下列各题必须在答题纸的规定区域(对应的题号)内写出必要的步骤.17.(满分14分)本题有2小题,第1小题6分,第2小题8分.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,正方形ABCD 的边长为2,4PA =,设E 为侧棱PC 的中点.(1)求正四棱锥E ABCD -的体积V ; 2)求直线BE 与平面PCD 所成角θ的大小.18.(满分14分)本题有2小题,第1小题7分,第2小题7分.已知函数()sin 21cos 2201x f x x -=,将()f x 的图像向左移()0αα>个单位得函数()y g x =的图像.(1)若4πα=,求()y g x =的单调递增区间;(2)若0,2πα⎛⎫∈ ⎪⎝⎭,()y g x =的一条对称轴为12x π=,求()y g x =,0,2x π⎡⎤∈⎢⎥⎣⎦的值域.19.(满分14分)本题有2小题,第1小题6分,第2小题8分.某温室大棚规定:一天中,从中午12点到第二天上午8点为保温时段,其余4小时为工人作业时段.从中午12点连续测量20小时,得出此温室大棚的温度y (单位:度)与时间t (单位:小时,[0,20]t ∈)近似地满足函数13+2by t t =-+关系,其中,b 为大棚内一天中保温时段的通风量.(1)若一天中保温时段的通风量保持100个单位不变,求大棚一天中保温时段的最低温度(精确到00.1C );(2)若要保持大棚一天中保温时段的最低温度不小于017C ,求大棚一天中保温时段通风量的最小值.20.(满分16分)本题有3小题,第1小题4分,第2小题6分,第3小题6分.已知椭圆Γ:2214x y +=的左、右焦点为12F F 、. (1)求以1F 为焦点,原点为顶点的抛物线方程; (2)若椭圆Γ上点M 满足123F MF π∠=,求M 的纵坐标M y ;(3)设(0,1N ),若椭圆Γ上存在两个不同点,P Q 满足90PNQ ∠=,证明直线PQ 过定点,并求该定点的坐标.21.(满分18分)本题有3小题,第1小题4分,第2小题7分,第3小题7分.如果数列{}n a 对于任意*n N ∈,都有2n n a a d +-=,其中d 为常数,则称数列{}n a 是“间等差数列”,d 为“间公差”.若数列{}n a 满足1235n n a a n ++=-,*n N ∈,()1a a a R =∈.(1)求证:数列{}n a 是“间等差数列”,并求间公差d ;(2)设n S 为数列{}n a 的前n 项和,若n S 的最小值为153-,求实数a 的取值范围; (3)类似地:非零..数列{}n b 对于任意*n N ∈,都有2n nb q b +=,其中q 为常数,则称数列{}n b 是“间等比数列”,q 为“间公比”。
【精校】2020年上海市长宁区高考一模数学

2020年上海市长宁区高考一模数学一、填空题(共12小题,1-6每题4分,7-12每题5分,共54分) 1.设集合A={x||x-2|<1,x ∈R},集合B=Z ,则A ∩B=____. 解析:|x-2|<1,即-1<x-2<1,解得1<x <3,即A=(1,3), 集合B=Z , 则A ∩B={2}. 答案:{2}2.函数sin()3y x πω=-(ω>0)的最小正周期是π,则ω=____.解析:∵sin()3y x πω=-(ω>0),∴||2T ππω==, ∴ω=2. 答案:23.设i 为虚数单位,在复平面上,复数()232i -对应的点到原点的距离为____.解析:复数()()()()233433912343434252i i i i i i ++===--+-对应的点9125()225,到原点的距离=35=. 答案:354.若函数f(x)=log 2(x+1)+a 的反函数的图象经过点(4,1),则实数a=____. 解析:函数f(x)=log 2(x+1)+a 的反函数的图象经过点(4,1), 即函数f(x)=log 2(x+1)+a 的图象经过点(1,4), ∴4=log 2(1+1)+a ∴4=1+a , a=3. 答案:35.已知(a+3b)n展开式中,各项系数的和与各项二项式系数的和之比为64,则n=____.解析:令二项式中的a=b=1得到展开式中的各项系数的和4n又各项二项式系数的和为2n据题意得4642nn =,解得n=6.答案:66.甲、乙两人从5门不同的选修课中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有____种.解析:根据题意,采用间接法:①由题意可得,所有两人各选修2门的种数2255100C C =,②两人所选两门都相同的有为2510C =种,都不同的种数为225330C C =,故只恰好有1门相同的选法有100-10-30=60种. 答案:607.若圆锥的侧面展开图是半径为2cm ,圆心角为270°的扇形,则这个圆锥的体积为____cm 3.解析:设此圆锥的底面半径为r ,由题意,得:3222r ππ=⨯,解得32r =.故圆锥的高2h ==∴圆锥的体积2313V r h cm π==..8.若数列{a n }23n n =+(n ∈N*),则1221limn n a a a n n →∞++⋯++()=______.23n n=+(n∈N*),∴n=14=,解得a 1=16. n ≥22(1)3(1)n n =-+-22n =+,∴a n =4(n+1)2.4(1)1na n n =++. ∴1222(21)412lim()lim 2231n n n n n a a a n n n→∞→∞++⨯++⋯+==+. 答案:2.9.如图,在△ABC 中,∠B=45°,D 是BC 边上的一点,AD=5,AC=7,DC=3,则AB 的长为______.解析:在△ADC 中,AD=5,AC=7,DC=3,由余弦定理得2221cos 22AD DC AC ADC AD DC +-∠==-⋅, ∴∠ADC=120°,∠ADB=60°在△ABD 中,AD=5,∠B=45°,∠ADB=60°, 由正弦定理得sin sin AB ADADB B∠=,∴2AB =10.有以下命题:①若函数f(x)既是奇函数又是偶函数,则f(x)的值域为{0}; ②若函数f(x)是偶函数,则f(|x|)=f(x);③若函数f(x)在其定义域内不是单调函数,则f(x)不存在反函数;④若函数f(x)存在反函数f -1(x),且f -1(x)与f(x)不完全相同,则f(x)与f -1(x)图象的公共点必在直线y=x 上;其中真命题的序号是______.(写出所有真命题的序号)解析:①若函数f(x)既是奇函数又是偶函数,则f(x)=0,为常数函数,所以f(x)的值域是{0}, 所以①正确.②若函数为偶函数,则f(-x)=f(x),所以f(|x|)=f(x)成立,所以②正确. ③因为函数1()f x x=在定义域上不单调,但函数f(x)存在反函数,所以③错误. ④原函数图象与其反函数图象的交点关于直线y=x 对称,但不一定在直线y=x 上,比如函数y =y=x 2-1(x ≤0)的交点坐标有(-1,0),(0,1), 显然交点不在直线y=x 上,所以④错误. 答案:①②.11.设向量OA u u u r =(1,-2),OB uuu r =(a ,-1),OC u u u r=(-b ,0),其中O 为坐标原点,a >0,b >0,若A 、B 、C 三点共线,则12a b +的最小值为______.解析:向量OA u u u r =(1,-2),OB uuu r =(a ,-1),OC u u u r=(-b ,0),其中O 为坐标原点,a >0,b >0,∴1()1AB OB OA a =-=-u u u r u u u r u u u r ,,1()2AC OC OA b =-=--u u u r u u u r u u u r,, ∵A 、B 、C 三点共线,∴AB AC λ=u u u r u u u r, ∴()1112a b λλ⎧⎪⎨⎪-⎩--==, 解得2a+b=1, ∴()1212422248b a a b a b a b a b +=++=+++⎛⎫ ⎪⎝+⎭≥=,当且仅当a=14,b=12,取等号, 故12a b+的最小值为8. 答案:812.如图,已知正三棱柱ABC-A 1B 1C 1的底面边长为2cm ,高为5cm ,一质点自A 点出发,沿着三棱柱的侧面绕行两周到达A 1点的最短路线的长为______cm.解析:将正三棱柱ABC-A 1B 1C 1沿侧棱展开,再拼接一次,其侧面展开图如图所示,在展开图中,最短距离是六个矩形对角线的连线的长度,也即为三棱柱的侧面上所求距离的最小值.由已知求得矩形的长等于6×2=12,宽等于5,由勾股定理13d ==. 答案:13二、选择题(共4小题,每小题5分,满分20分)13.“x <2”是“x 2<4”的( ) A.充分非必要条件 B.必要非充分条件 C.充要条件D.既非充分也非必要条件解析:由x 2<4,解得:-2<x <2,故x <2是x 2<4的必要不充分条件. 答案:B.14.若无穷等差数列{a n }的首项a 1<0,公差d >0,{a n }的前n 项和为S n ,则以下结论中一定正确的是( ) A.S n 单调递增 B.S n 单调递减 C.S n 有最小值 D.S n 有最大值 解析:()2111222n n n d d S na d n a n -=+=+⎛⎫ ⎪⎝⎭-, ∵2d>0,∴S n 有最小值. 答案:C.15.给出下列命题:(1)存在实数α使3sin cos 2αα+=. (2)直线2x π-=是函数y=sinx 图象的一条对称轴.(3)y=cos(cosx)(x ∈R)的值域是[cos1,1].(4)若α,β都是第一象限角,且α>β,则tan α>tan β. 其中正确命题的题号为( ) A.(1)(2) B.(2)(3) C.(3)(4) D.(1)(4)解析:(1)∵3sin cos (4)in 2πααα++<,∴(1)错误; (2)∵y=sinx 图象的对称轴方程为2()x k k Z ππ+∈=,k=-1,2x π-=,∴(2)正确;(3)根据余弦函数的性质可得y=cos(cosx)的最大值为y max =cos0=1,y min =cos(cos1),其值域是[cos1,1],(3)正确; (4)不妨令94απ=,3πβ=,满足α,β都是第一象限角,且α>β,但tan α<tanβ,(4)错误. 答案:B.16.如果对一切实数x 、y ,不等式29cos sin 4y x a x y-≥-恒成立,则实数a 的取值范围是( ) A.(-∞,43] B.[3,+∞)C.[-D.[-3,3]解析:∀实数x 、y ,不等式29cos sin 4y x a x y-≥-恒成立⇔29sin 1sin 4y a x x y+≥+-恒成立, 令9()4y f y y=+,则asinx+1-sin 2x ≤f(y)min ,当y >0时,9()34y f y y =+≥=(当且仅当y=6时取“=”),f(y)min =3;当y <0时,9()34y f y y =+≤-=-(当且仅当y=-6时取“=”),f(y)max =-3,f(y)min 不存在;综上所述,f(y)min =3.所以,asinx+1-sin 2x ≤3,即asinx-sin 2x ≤2恒成立.①若sinx >0,2sin sin a x x ≤+恒成立,令sinx=t ,则0<t ≤1,再令2()g t t t=+(0<t ≤1),则a ≤g(t)min.由于22()10g t t '=-<, 所以,2()g t t t=+在区间(0,1]上单调递减,因此,g(t)min =g(1)=3, 所以a ≤3;②若sinx <0,则2sin sin a x x≥+恒成立,同理可得a ≥-3; ③若sinx=0,0≤2恒成立,故a ∈R ; 综合①②③,-3≤a ≤3. 答案:D.三、解答题(共5小题,满分76分)17.如图,已知AB ⊥平面BCD ,BC ⊥CD ,AD 与平面BCD 所成的角为30°,且AB=BC=2; (1)求三棱锥A-BCD 的体积;(2)设M 为BD 的中点,求异面直线AD 与CM 所成角的大小(结果用反三角函数值表示).解析:(1)由AB ⊥平面BCD ,得CD ⊥平面ABC ,由此能求出三棱锥A-BCD 的体积.(2)以C 为原点,CD 为x 轴,CB 为y 轴,过C 作平面BCD 的垂线为z 轴,建立空间直角坐标系,由此能求出异面直线AD 与CM 所成角的大小. 答案:(1)如图,因为AB ⊥平面BCD ,所以AB ⊥CD ,又BC ⊥CD ,所以CD ⊥平面ABC ,因为AB ⊥平面BCD ,AD 与平面BCD 所成的角为30°,故∠ADB=30°,由AB=BC=2,得AD=4,AC =∴BD ==CD ==则11122366A BCD BCD V S AB BC CD AB -=⨯⨯=⨯⨯⨯=⨯⨯=V .(2)以C 为原点,CD 为x 轴,CB 为y 轴,过C 作平面BCD 的垂线为z 轴, 建立空间直角坐标系,则A(0,2,2),D(,0,0),C(0,0,0),B(0,2,0),,1,0),22)AD =--u u u r ,,0)CM =u u u u r ,,设异面直线AD 与CM 所成角为θ,则cos 6AD CM AD CM θ⋅===⋅u u u r u u u u ru u u r u u u u r. arccos6θ=. ∴异面直线AD 与CM所成角的大小为18.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且28sin 2cos 272B CA +-=. (I)求角A 的大小;(II)若b+c=3,求b 和c 的值.解析:(I)在△ABC 中有B+C=π-A ,由条件可得:4[1-cos(B+C)]-4cos 2A+2=7,解方程求得cosA 的值,即可得到A 的值.(II)由余弦定理2221cos 22b c a A bc +-==及,b+c=3,解方程组求得b 和c 的值. 答案:(I)在△ABC 中有B+C=π-A ,由条件可得:4[1-cos(B+C)]-4cos 2A+2=7, 又∵cos(B+C)=-cosA ,∴4cos 2A-4cosA+1=0.解得cosA =12,又A ∈(0,π),∴3A π=. (II)由cosA =12知222122b c a bc +-=,即(b+c)2-a 2=3bc. 又ab+c =3,代入得bc =2.由312 2b c b bc c ⎧⎧⇒⎨+⎨⎩⎩====或21b c ⎧⎨⎩==.19.某地要建造一个边长为2(单位:km)的正方形市民休闲公园OABC ,将其中的区域ODC 开挖成一个池塘,如图建立平面直角坐标系后,点D 的坐标为(1,2),曲线OD 是函数y=ax2图象的一部分,对边OA 上一点M 在区域OABD 内作一次函数y=kx+b(k >0)的图象,与线段DB 交于点N(点N 不与点D 重合),且线段MN 与曲线OD 有且只有一个公共点P ,四边形MABN 为绿化风景区:(1)求证:28k b =-;(2)设点P 的横坐标为t ,①用t 表示M 、N 两点坐标;②将四边形MABN 的面积S 表示成关于t 的函数S=S(t),并求S 的最大值.解析:(1)根据函数y=ax 2过点D ,求出解析式y=2x 2;由22y kx b y x⎩+⎧⎨== 消去y ,利用△=0证明结论成立;(2)①写出点P 的坐标(t ,2t 2),代入直线MN 的方程,用t 表示出直线方程, 利用直线方程求出M 、N 的坐标;②将四边形MABN 的面积S 表示成关于t 的函数S(t), 利用基本不等式即可求出S 的最大值.答案:(1)证明:函数y=ax 2过点D(1,2), 代入计算得a=2,∴y=2x 2;由22y kx b y x⎩+⎧⎨==,消去y 得2x 2-kx-b=0, 由线段MN 与曲线OD 有且只有一个公共点P ,得△=(-k)2-4×2×b=0,解得28k b =-;(2)解:设点P 的横坐标为t ,则0<t <1,∴点P(t ,2t 2);①直线MN 的方程为y=kx+b ,即28k y kx =-过点P ,∴2228k kt t -=, 解得k=4t ;y=4tx-2t 2令y=0,解得x=2t ,∴M(2t,0); 令y=2,解得122t x t =+,∴N(122t t+,2);②将四边形MABN 的面积S 表示成关于t 的函数为[111222()4()22]222t t S S t t t t==⨯-⨯⨯++=-+(),其中0<t <1;由122t t +≥=12t t =,即t ==”成立,所以4S ≤-S的最大值是4-20.已知函数()9233xxf x a =-⋅+:(1)若a=1,x ∈[0,1]时,求f(x)的值域; (2)当x ∈[-1,1]时,求f(x)的最小值h(a);(3)是否存在实数m 、n ,同时满足下列条件:①n >m >3;②当h(a)的定义域为[m ,n]时,其值域为[m 2,n 2],若存在,求出m 、n 的值,若不存在,请说明理由.解析:(1)设t=3x ,则φ(t)=t 2-2at+3=(t-a)2+3-a 2,φ(t)的对称轴为t=a ,当a=1时,即可求出f(x)的值域;(2)由函数φ(t)的对称轴为t=a ,分类讨论当a <13时,当13≤a ≤3时,当a >3时,求出最小值,则h(a)的表达式可求;(3)假设满足题意的m ,n 存在,函数h(a)在(3,+∞)上是减函数,求出h(a)的定义域,值域,然后列出不等式组,求解与已知矛盾,即可得到结论. 答案:(1)∵函数()9233xxf x a =-⋅+,设t=3x,t ∈[1,3],则φ(t)=t 2-2at+3=(t-a)2+3-a 2,对称轴为t=a.当a=1时,φ(t)=(t-1)2+2在[1,3]递增, ∴φ(t)∈[φ(1),φ(3)], ∴函数f(x)的值域是:[2,6]; (Ⅱ)∵函数φ(t)的对称轴为t=a , 当x ∈[-1,1]时,t ∈[13,3], 当a <13时,min 1282()393ay h a ϕ===-(); 当13≤a ≤3时,y min =h(a)=φ(a)=3-a 2; 当a >3时,y min =h(a)=φ(3)=12-6a.故228219331()3331263aa h a a a a a -=-≤≤-⎧⎪⎪⎪⎨⎪⎪⎪⎩,<,,>;(Ⅲ)假设满足题意的m ,n 存在,∵n >m >3,∴h(a)=12-6a , ∴函数h(a)在(3,+∞)上是减函数.又∵h(a)的定义域为[m ,n],值域为[m 2,n 2],则22126126m n n m--⎧⎪⎨⎪⎩==,两式相减得6(n-m)=(n-m)·(m+n),又∵n >m >3,∴m-n ≠0,∴m+n=6,与n >m >3矛盾. ∴满足题意的m ,n 不存在.21.已知无穷数列{a n }的各项都是正数,其前n 项和为S n ,且满足:a 1=a ,rS n =a n a n+1-1,其中a ≠1,常数r ∈N ;(1)求证:a n+2-a n 是一个定值;(2)若数列{a n }是一个周期数列(存在正整数T ,使得对任意n ∈N*,都有a n+T =a n 成立,则称{a n }为周期数列,T 为它的一个周期,求该数列的最小周期;(3)若数列{a n }是各项均为有理数的等差数列,c n =2·3n-1(n ∈N*),问:数列{c n }中的所有项是否都是数列{a n }中的项?若是,请说明理由,若不是,请举出反例.解析:(1)由rS n =a n a n+1-1,利用迭代法得:ra n+1=a n+1(a n+2-a n ),由此能够证明a n+2-a n 为定值. (2)当n=1时,ra=aa 2-1,故21raa a+=,根据数列是隔项成等差,写出数列的前几项,再由r >0和r=0两种情况进行讨论,能够求出该数列的周期. (3)因为数列{a n }是一个有理等差数列,所以12a a r r a +==+⎛⎫ ⎪⎝⎭,化简2a 2-ar-2=0,解得a 是有理数,由此入手进行合理猜想,能够求出S n . 答案:(1)证明:∵rS n =a n a n+1-1,① ∴rS n+1=a n+1a n+2-1,②②-①,得:ra n+1=a n+1(a n+2-a n ), ∵a n >0,∴a n+2-a n =r.(2)解:当n=1时,ra=aa 2-1,∴21raa a+=, 根据数列是隔项成等差,写出数列的前几项:a ,r+1a ,a+r ,2r+1a ,a+2r ,3r+1a,…. 当r >0时,奇数项和偶数项都是单调递增的,所以不可能是周期数列, ∴r=0时,数列写出数列的前几项:a ,1a ,a ,1a,…. 所以当a >0且a ≠1时,该数列的周期是2,(3)解:因为数列{an}是一个有理等差数列,a+a+r=2(r+1a), 化简2a 2-ar-2=0,a =是有理数.,是一个完全平方数,则r 2+16=k 2,r ,k 均是非负整数r=0时,a=1,a n =1,S n =n. r ≠0时(k-r)(k+r)=16=2×8=4×4可以分解成8组, 其中只有35r k ⎧⎨⎩==,符合要求, 此时a=2,312n n a +=,()354n n n S +=,∵123n n c -=⋅(n ∈N*),a n =1时,不符合,舍去.312n n a +=时,若131232n k -+⋅=,则:3k=4×3n-1-1,n=2时,113k =,不是整数, 因此数列{c n }中的所有项不都是数列{a n }中的项.考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。
2020 学年第一学期长宁区学习能力诊断卷高三数学试卷 (解析版)

………………4 分
在 Rt△PNM 中, PN =
h2 + ( r )2 = 2
13 , MN
=
1 OB = 1 2
…………6 分
所以 PMN 的正切值为 13
即直线 PM 与直线 OB 所成的角正切值为 13
………………8 分
高三数学试卷 共 4 页 第5页
18.(本题满分 14 分,第 1 小题满分 7 分,第 2 小题满分 7 分)
高三数学试卷 共 4 页 第2页
再由
AB AD
AD AC
= =
1 5 3
x x+
y x+
y y
2
AB
2
AC
+ +
x x
y + x +
y y
AB AB
AC AC
= =
1
5 3
得
AB
AC
=
−3
11. 设 O 为坐标原点,从集合1,2,3,4,5,6,7,8,9 中任取两个不同的元素 x、y ,组成 A 、B
15. 设 m 、 n 为两条直线, 、 为两个平面,则下列命题中假命题是( ).
A.若 m ⊥ n ,m ⊥ ,n ⊥ ,则 ⊥ ; B.若 m / /n ,m ⊥ ,n / / ,则 ⊥ ;
C.若 m ⊥ n ,m / / ,n / / ,则 / / ; D.若 m / /n ,m ⊥ ,n ⊥ ,则 / / .
设抛物线 : y2 = 4x 的焦点为 F ,直线 l : x − my − n = 0 经过 F 且与 交于 A 、B 两点.
(1)若 AB = 8 ,求 m 的值;
(2)设 O 为坐标原点,直线 AO 与 的准线交于点 C ,求证:直线 BC 平行于 x 轴. 【答案】(1) m = 1(2)见解析
上海市长宁区高三第一学期期末(一模)学科质量检测数学试题及答案(word版)
长宁区-第一学期高三级质量调研考试 数学试卷 .12考生注意:1.本场考试时间120分钟.试卷共4页,满分150分.2.作答前,在试卷与答题纸正面填写学校、班级、考生号、姓名等.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分. 4.用2B 铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 已知集合{1,2,3,4}A =,{2,4,6}B =,则A B =U 2. 已知1312x -=,则x =3. 在61()x x+的二项展开式中,常数项为 (结果用数值表示)4. 已知向量(3,)a m =r ,(1,2)b =-r,若向量a r ∥b r ,则实数m =5. 若圆锥的侧面面积为2π,底面面积为π,则该圆锥的体积为6. 已知幂函数()a f x x =的图像过点2(2,)2,则()f x 的定义域为 7. 已知(,)2a ππ∈,且tan 2a =-,则sin()a π-=8. 已知函数()log a f x x =和g()(2)x k x =-的图像如图所示,则不等式()0()f xg x ≥的解集是9. 如图,某学生社团在校园内测量远处某栋楼CD 的高度,D 为楼顶,线段AB 的长度为600m ,在A 处测得30DAB ∠=︒,在B 处测得105DBA ∠=︒,且此时看楼顶D 的仰角 30DBC ∠=︒,已知楼底C 和A 、B 在同一水平面上,则此楼高度CD = m(精确到1m )10. 若甲、乙两位同学随机地从6门课程中选修3门,则两人选修的课程中恰有1门相同的 概率为11. 已知数列{}n a 的前n 项和为n S ,且112n n n a a ++=,若数列{}n S 收敛于常数A ,则首项1a 取值的集合为12. 已知1a 、2a 、3a 与1b 、2b 、3b 是6个不同的实数,若关于x 的方程123123||||||||||||x a x a x a x b x b x b -+-+-=-+-+-的解集A 是有限集,则集合A 中最多有 个元素二. 选择题(本大题共4题,每题5分,共20分) 13. 已知x ∈R ,则“0x ≥”是“3x >”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件14. 有一批种子,对于一颗种子来说,它可能1天发芽,也可能2天发芽,⋅⋅⋅⋅⋅⋅⋅,下表是 不同发芽天数的种子数的记录:发芽天数 1 2 3 4 5 6 7 8≥种子数82622241242统计每颗种子发芽天数得到一组数据,则这组数据的中位数是( ) A. 2 B. 3 C. 3.5 D. 415. 已知向量a r 和b r 夹角为3π,且||2a =r ,||3b =r ,则(2)(2)a b a b -⋅+=r r r r ( )A. 10-B. 7-C. 4-D. 1- 16. 某位喜欢思考的同学在学习函数的性质时提出了如下两个命题: 已知函数()y f x =的定义域为D ,12,x x D ∈,① 若当12()()0f x f x +=时,都有120x x +=,则函数()y f x =是D 上的奇函数; ② 若当12()()f x f x <时,都有12x x <,则函数()y f x =是D 上的增函数. 下列判断正确的是( )A. ①和②都是真命题B. ①是真命题,②是假命题C. ①和②都是假命题D. ①是假命题,②是真命题三. 解答题(本大题共5题,共14+14+14+16+18=76分) 17. 求下列不等式的解集: (1)|23|5x -<; (2)442120x x -⋅->18. 《九章算术》中,将底面为长方形且有一条侧棱与地面垂直的四棱锥称之为阳马,将四 个面都为直角三角形的四面体称之为鳖臑,首届中国国际进口博览会的某展馆棚顶一角的钢 结构可以抽象为空间图形阳马,如图所示,在阳马P ABCD -中,PD ⊥底面ABCD . (1)已知4AD CD m ==,斜梁PB 与底面ABCD 所成角为15︒,求立柱PD 的长; (精确到0.01m )(2)求证:四面体PDBC 为鳖臑.19. 已知△ABC 的三个内角A 、B 、C 所对应的边分别为a 、b 、c ,复数1i z a b =+,2cos icos z A B =+,(其中i 是虚数单位),且123i z z ⋅=.(1)求证:cos cos a B b A c +=,并求边长c 的值; (2)判断△ABC 的形状,并求当3b =时,角A 的大小.20. 已知函数2()1f x x mx =-++,()2sin()6g x x πω=+.(1)若函数()2y f x x =+为偶函数,求实数m 的值;(2)若0ω>,2()()3g x g π≤,且函数()g x 在[0,]2π上是单调函数,求实数ω的值; (3)若1ω=,若当1[1,2]x ∈时,总有2[0,]x π∈,使得21()()g x f x =,求实数m 的取值 范围.21. 已知数列{}n a 的前n 项和为n S ,且11a =,2a a =. (1)若数列{}n a 是等差数列,且815a =,求实数a 的值;(2)若数列{}n a 满足22n n a a +-=(n *∈N ),且191019S a =,求证:{}n a 是等差数列;(3)设数列{}n a 是等比数列,试探究当正实数a 满足什么条件时,数列{}n a 具有如下性质M :对于任意的2n ≥(n *∈N ),都存在m *∈N ,使得1()()0m n m n S a S a +--<,写出你的探究过程,并求出满足条件的正实数a 的集合.长宁区-第一学期高三级质量调研考试数学试卷参考答案与评分标准一.填空题(本大题共有12题,满分54分,第1—6题每题4分,第7---12题每题5分)考生应在答题纸的相应位置直接填写结果.1.}6,4,3,2,1{ 2.1 3.20 4.6-5.π33 6.),0(+∞ 7.552 8.)2,1[ 9.212 10.209 11.⎭⎬⎫⎩⎨⎧31 12.3二.选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.B 14.B 15.D 16.C三、解答题(本大题共有5题,满分76分) 解答下列各题必须在答题纸的相应位置写出必须的步骤. 17.(本题满分14分,第1小题满分6分,第2小题满分8分)解:(1)由5|32|<-x 得 5325<-<-x ,……………………4分 解得 41<<-x .所以原不等式的解集是 )4,1(-.…………………………………6分 (2)原不等式可化为()()22260x x +->, ……………………4分 因为220x+>,所以62>x, ……………………………………5分 解得 6log 2>x . ………………………………………7分所以原不等式的解集是()2log 6,+∞. ……………………………8分 18.(本题满分14分,第1小题满分6分,第2小题满分8分)(1)解:因为侧棱⊥PD 底面ABCD ,则侧棱PB 在底面ABCD 上的射影是DB ,所以PBD ∠就是侧棱PB 与底面ABCD 所成的角,即︒=∠15PBD .……2分 在PDB ∆中,)(24,9022m CD AD DB PDB =+=︒=∠, ………3分由DB PDPBD =∠tan 得 2415tan PD =︒,解得 )(52.1m PD =. ………5分 所以立柱PD 的长约为 m 52.1. ………………………………6分(2)由题意知底面ABCD 是长方形,所以BCD ∆是直角三角形. ………………………2分 因为侧棱⊥PD 底面ABCD , 得BC PD DB PD DC PD ⊥⊥⊥,,,所以PDC ∆、PDB ∆是直角三角形. …………………………4分因为DC BC ⊥,PD BC ⊥,又D DC PD =I ,PD DC ,≠⊂平面PDC , 所以⊥BC 平面PDC . …………………………………………6分 又因为PC ≠⊂平面PDC ,所以PC BC ⊥,所以PBC ∆ 为直角三角形. …………………………………7分 由鳖臑的定义知,四面体PDBC 为鳖臑. ………………………8分 19.(本题满分14分,第1小题满分6分,第2小题满分8分)(1)证明:由余弦定理得 bc a c b A ac b c a B 2cos ,2cos 222222-+=-+=,则 bca cb b ac b c a a A b B a 22cos cos 222222-+⋅+-+⋅=+ca cbc b c a 22222222-++-+=c = 所以 c A b B a =+cos cos . ……………………………3分 由题意得 (i)(cos icos )3i a b A B +⋅+=, 即 3i )i cos cos ()cos -cos (=++A b B a B b A a ,由复数相等的定义可得0cos -cos =B b A a ,且3cos cos =+A b B a ,………………………5分 即 3=c . ………………………………………………6分(2)由(1)得 0cos -cos =B b A a . ………………………1分 由正弦定理得 0cos sin cos sin =⋅-⋅B B A A ,即 B A 2sin 2sin =. ……………………………………………………2分 因为 ),0(π∈A 、),0(π∈B , 所以 B A 22= 或 π=+B A 22, 即 B A =或2π=+B A ,即B A =或2π=C .所以 ABC ∆知等腰三角形或直角三角形.………………………………4分当B A =时,32cos 2cA b == ,所以6A π=; ……………………6分当2π=C 时,3sin 3b A c ==,所以3arcsin 3A = . ……………8分20.(本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)解:(1)设()()2h x f x x =+,则()()221h x x m x =-+++ 由于()h x 是偶函数,所以对任意R ∈x ,()()h x h x -=成立.……2分 即 1)2(1))(2()(22+++-=+-++--x m x x m x 恒成立. 即 0)2(2=+x m 恒成立, …………………………………3分 所以 02=+m ,解得 2-=m .所以所求实数m 的值是 2-=m . …………………………………4分 (2)由()2()3g x g π≤, 得22,362k k Z πππωπ⋅+=+∈ ,即132k ω=+()k Z ∈ ………2分 当[0,]2x π∈时,[,]6626x ππωππω+∈+()0ω>,因为sin y x =在区间[,]62ππ的单调递增, 所以262ωπππ+≤,再由题设得203ω<< …………………………5分所以12ω=. ……………………………………6分(3)设函数()f x 在[]1,2上的值域为A ,()g x 在[]0,π上的值域为B , 由题意和子集的定义,得A B ⊆.………………………………………2分 当],0[π∈x 时,]67,6[6πππ∈+x ,]2,1[)(-∈x g . ………………3分 所以当[]1,2x ∈时,不等式2112x mx -≤-++≤恒成立,由[]1,1,2m x x x ≤+∈恒成立,得2m ≤, 由[]2,1,2m x x x≥-∈恒成立,得1m ≥,综上,实数m 的取值范围为[]1,2 . ………………6分 其它做法,对应给分。
【精校】2020年上海市长宁区、嘉定区高考一模数学
2020年上海市长宁区、嘉定区高考一模数学一、填空题1.已知集合A={1,2,3,4},B={2,4,5},则A ∩B=_____. 解析:∵集合A={1,2,3,4},B={2,4,5}, ∴A ∩B={2,4}. 答案:{2,4}2.不等式1x x ≤+的解集为_____.解析:∵01x x ≤+,∴010x x ≤⎧⎨+⎩>或010x x ≥⎧⎨+⎩<, 解得:﹣1<x ≤0, 答案:(﹣1,0]3.已知4sin 5α=,则()cos 2πα+=_____.解析:∵sinα=45, ∴cos(2π+α)=﹣sinα=﹣45.答案:﹣454.131lim 31nn n +→∞-+=_____. 解析:()()1113311lim lim331133n nn nn n +→∞→∞--==++,∴1311lim 331n n n +→∞-=+.答案:135.已知球的表面积为16π,则该球的体积为_____. 解析:一个球的表面积是16π,所以球的半径为:2, 所以这个球的体积为:3432233ππ⨯=.答案:323π6.已知函数f(x)=1+log a x ,y=f ﹣1(x)是函数y=f(x)的反函数,若y=f ﹣1(x)的图象过点(2,4),则a 的值为_____.解析:∵y=f ﹣1(x)的图象过点(2,4), ∴函数y=f(x)的图象过点(4,2),又f(x)=1+log a x , ∴2=1+log a 4,即a=4. 答案:47.若数列{a n }为等比数列,且a 5=3,则2738a a a a -=_____.解析:根据题意,2738a a a a -=a 2·a 8﹣a 3·(﹣a 7)=a 2·a 8+a 3·a 7,又由数列{a n }为等比数列,且a 5=3, 则有a 2·a 8=a 3·a 7=9, 则2738a a a a -=9+9=18;答案:188.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,(a+b+c)(a ﹣b+c)=ac ,则B=_____. 解析:△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,∵(a+b+c)(a ﹣b+c)=ac ,即a 2+c 2﹣b 2=﹣ac ,又2221cos 22a cb B ac +-==-,∴B=23π.答案:23π9.若()12nx x+的二项展开式中的所有二项式系数之和等于256,则该展开式中常数项的值为_____.解析:由题意可知,2n=256,解得n=8.∴()()8112=2n x x x x ++,其展开式的通项()()8882188122rr r r rr r T C x C x x---+⋅⋅=⋅⋅=,令8﹣2r=0,得r=4.∴该展开式中常数项的值为445821120T C ⋅==.答案:112010.已知函数f(x)是定义在R 上且周期为4的偶函数,当x ∈[2,4]时,()()43log 2f x x -=,则()12f 的值为_____.解析:∵函数f(x)是定义在R 上且周期为4的偶函数, ∴()()()()111742222f f f f -==-=,又当x ∈[2,4]时,()()43log 2f x x -=,∴()()()44lg 2lg 217731log log 22222lg 42lg 22f f ==-====.答案:1211.已知数列{a n }的前n 项和为S n ,且a 1=1,2S n =a n ·a n+1(n ∈N *).若()1211nn n n n b a a ++=-⋅,则数列{b n }的前n 项和T n =_____.解析:∵2S n =a n ·a n+1(n ∈N *). 当n ≥2时,2S n ﹣1=a n ﹣1·a n , ∴2a n =2S n ﹣2S n ﹣1=a n (a n+1﹣a n ﹣1), ∵a 1=1, ∴a n ≠0∴a n+1﹣a n ﹣1=2,∴(a n+1﹣a n )+(a n ﹣a n ﹣1)=2, ∴a n ﹣a n ﹣1=1,∴数列{a n }是以1为首项,以1为公差的等差数列, ∴a n =1+(n ﹣1)=n , ∴()()()()()121211111111n n nnn n n n b a a n n n n +++=-=-=-⋅+⋅++,数列{b n }的前n 项和()()()()()111111111223341nn T nn =+++-⋅++-+⋯++﹣,当n 为偶数时,11n T n =+-1+, 当n 为奇数时,()1111111n T nnn n =-+=--++-1+,综上所述()11nn T n -=+-1+,答案:()11nn -+-1+12.若不等式x 2﹣2y 2≤cx(y ﹣x)对任意满足x >y >0的实数x 、y 恒成立,则实数c 的最大值为_____.解析:∵不等式x 2﹣2y 2≤cx(y ﹣x)对任意满足x >y >0的实数x 、y 恒成立,∴2222222x y x y c xy x x x y y ⎛⎫ --⎪⎝⎭⎛⎫=⎝--⎪⎭≤, 令1x t y=>, ∴()222t c f t t t -≤=-, ()()(()222222242t t t t f t t t t t --+-+'==--,当t>2(t)>0,函数f(t)单调递增;当1<t<2(t)<0,函数f(t)单调递减.∴当t=2f(t)取得最小值,(24f +=.∴实数c的最大值为4.答案:4二、选择题(本大题共4题,每题5分,共20分)13.设角α的始边为x轴正半轴,则“α的终边在第一、二象限”是“sinα>0”的( )A.充分非必要条件B.必要非充分条件C.充分必要条件D.既非充分又非必要条件解析:∵角α的始边为x轴正半轴,∴“α的终边在第一、二象限”⇒“sinα>0”,“sinα>0”⇒“α的终边在第一、二象限或α的终边在x轴正半轴”,∴“α的终边在第一、二象限”是“sinα>0”的充分非必要条件.答案:A14.若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是( )A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交解析:A.l与l1,l2可以相交,如图:∴该选项错误;B.l可以和l1,l2中的一个平行,如上图,∴该选项错误;C.l可以和l1,l2都相交,如下图:∴该选项错误;D.“l至少与l1,l2中的一条相交”正确,假如l和l1,l2都不相交;∵l和l1,l2都共面;∴l和l1,l2都平行;∴l1∥l2,l1和l2共面,这样便不符合已知的l1和l2异面;∴该选项正确.答案:D15.对任意两个非零的平面向量αu r和βu r,定义||||cos ααβθβ⊗u r u ru r u r =,其中θ为αu r和βu r 的夹角,若两个非零的平面向量a r 和b r 满足:①||||a b ≥r r ;②a r 和b r 的夹角()04πθ∈,;③a b ⊗r r 和b a ⊗r r 的值都在集合{}2|n x x n N ∈=,中,则a b ⊗r r 的值为( )A.52 B.32C.1D.12解析:∵|||||||cos c 2|os 2a b a b b a b n m a θθ⊗=⊗==r rr r r r r r =,,m ∈N ,由αu r 与βu r 的夹角θ∈(0,4π),知2cos 4mn θ=∈(12,1),故mn=3,m ,n ∈N ,∵||||a b ≥r r ,∴012b ma ⊗=r r <<,∴m=1,n=3,∴32a b ⊗r r =, 答案:B16.已知函数()120212212x x f x x x ⎧≤≤⎪⎨⎪-≤⎩,=,<,且f 1(x)=f(x),f n (x)=f(f n ﹣1(x)),n=1,2,3,….则满足方程f n (x)=x 的根的个数为( )A.2n 个B.2n 2个 C.2n个D.2(2n﹣1)个解析:当x ∈[0,12]时,f 1(x)=f(x)=2x=x ,解得x=0; 当x ∈(12,1]时,f 1(x)=f(x)=2﹣2x=x ,解得x=23,∴f 的1阶根的个数是2. 当x ∈[0,14]时,f 1(x)=f(x)=2x ,f 2(x)=4x=x ,解得x=0; 当x ∈(14,12]时,f 1(x)=f(x)=2x ,f 2(x)=2﹣4x=x ,解得x=25; 当x ∈(12,34]时,f 1(x)=2﹣2x ,f 2(x)=﹣2+4x=x ,解得x=23;当x ∈(34,1]时,f 1(x)=2﹣2x ,f 2(x)=4﹣4x=x ,解得x=45. ∴f 的2阶根的个数是22.依此类推∴f 的n 阶根的个数是2n. 答案:C三.解答题(本大题共5题,共14+14+14+16+18=76分) 17.如图,设长方体ABCD ﹣A 1B 1C 1D 1中,AB=BC=3,AA 1=4. (1)求四棱锥A 1﹣ABCD 的体积;(2)求异面直线A 1B 与B 1C 所成角的大小.(结果用反三角函数值表示)解析:(1)A 1到平面ABCD 的距离d=AA 1=4,S 正方体ABCD =AB ×BC=9,由此能求出四棱锥A 1﹣ABCD 的体积.(2)由A 1B ∥D 1C ,知∠D 1CB 1是异面直线A 1B 与B 1C 所成角(或所成角的补角),由此能求出异面直线A 1B 与B 1C 所成角.答案:(1)∵A 1到平面ABCD 的距离d=AA 1=4,长方体ABCD ﹣A 1B 1C 1D 1中,AB=BC=3, ∴S 正方体ABCD =AB ×BC=3×3=9, ∴四棱锥A 1﹣ABCD 的体积111491233ABCD V AA S =⨯⨯=⨯⨯正方体=. (2)∵A 1B ∥D 1C ,∴∠D 1CB 1是异面直线A 1B 与B 1C 所成角(或所成角的补角),∵11B D =B 1C=D 1=5,∴2221111111125251816cos 225525B C D C B D D CB B C D C +-+-∠===⨯⨯⨯⨯, ∴∠D 1CB 1=arccos 1625.∴异面直线A 1B 与B 1C 所成角为arccos 1625.18.已知复数z满足z =z 2的虚部为2.(1)求复数z ;(2)设z 、z 2、z ﹣z 2在复平面上的对应点分别为A 、B 、C ,求△ABC 的面积.解析:(1)设z=a+bi(a ,b ∈R),由已知列关于a ,b 的方程组,求解可得复数z ; (2)分类求得A 、B 、C 的坐标,再由三角形面积公式求解. 答案:(1)设z=a+bi(a ,b ∈R),由已知可得:22ab ⎪⎩=2221a b ab =⎩+⎧⎨=,解得11a b ⎧⎨⎩==或11a b ⎧⎨⎩=-=-. ∴z=1+i 或z=﹣1﹣i ;(2)当z=1+i 时,z 2=2i ,z ﹣z 2=1﹣i , ∴A(1,1),B(0,2),C(1,﹣1), 故△ABC 的面积S=12×2×1=1; 当z=﹣1﹣i 时,z 2=2i ,z ﹣z 2=﹣1﹣3i , ∴A(﹣1,﹣1),B(0,2),C(﹣1,﹣3), 故△ABC 的面积S=12×2×1=1. ∴△ABC 的面积为1.19.一根长为L 的铁棒AB 欲通过如图所示的直角走廊,已知走廊的宽AC=BD=2m. (1)设∠BOD=θ,试将L 表示为θ的函数; (2)求L 的最小值,并说明此最小值的实际意义.解析:(1)利用直角三角形中的边角关系,求得L 的解析式.(2)求导,分析导函数的符号,进而可得L 的最值,进而得到最值的含义. 答案:(1)∵走廊的宽AC=BD=2m. ∠BOD=∠BAC=θ,∴22sin cos L θθ+=;(2)∵22sin cos L θθ+=∴222cos 2sin sin cos L θθθθ-'+=.∵θ∈(0,4π),L′<0,L 为减函数; θ∈(,42ππ),L′>0,L 为增函数; ∴θ=4π时,L取最小值该最小值表示:超过.20.已知函数f(x)=2x +2﹣x.(1)求证:函数f(x)是偶函数;(2)设a ∈R ,求关于x 的函数y=22x +2﹣2x﹣2af(x)在x ∈[0,+∞)时的值域g(a)表达式;(3)若关于x 的不等式mf(x)≤2﹣x+m ﹣1在x ∈(0,+∞)时恒成立,求实数m 的取值范围. 解析:(1)利用奇偶性的定义,可得函数f(x)是偶函数;(2)令t=f(x)=2x +2﹣x .则t ≥2,22x +2﹣2x =t 2﹣2,y=22x +2﹣2x ﹣2af(x)=t 2﹣2at ﹣2,结合二次函数的性质分类讨论,可得不同情况下,函数的值域;(3)若关于x 的不等式mf(x)≤2﹣x +m ﹣1在x ∈(0,+∞)时恒成立,即21221xxxm ---≤+-在x ∈(0,+∞)时恒成立,求出21221xx x ---+-的最小值,可得答案. 答案:(1)∵函数f(x)=2x +2﹣x的定义域关于原点对称,且f(﹣x)=2﹣x +2x =2x +2﹣x=f(x), 故函数f(x)是偶函数;(2)令t=f(x)=2x +2﹣x.则t ≥2,22x +2﹣2x =t 2﹣2 y=22x +2﹣2x ﹣2af(x)=t 2﹣2at ﹣2,当a ≤2时,当t=2时,函数取最小值2﹣4a ,无最大值; 此时函数的值域为[2﹣4a ,+∞),a >2时,当t=a 时,函数取最小值﹣a 2﹣2,无最大值;此时值域为[﹣a 2﹣2,+∞);(3)若关于x 的不等式mf(x)≤2﹣x+m ﹣1在x ∈(0,+∞)时恒成立即m(2x +2﹣x )≤2﹣x+m ﹣1在x ∈(0,+∞)时恒成立即()2212111221221221x x x x x x x x m ------≤=-=-+-+--+在x ∈(0,+∞)时恒成立当x=1时,2﹣x=12,此时(2﹣x )2﹣2﹣x+1取最小值34, 故()21221xx---+取最大值43, 故()211221xx ----+取最小值13-故13m ≤-.21.已知数列{a n }满足:a 1=1,11n a +,n ∈N *. (1)求数列{a n }的通项公式;(2)设数列{b n }的前n 项和为S n ,且满足212211683n n n n S S n n a a +++--=,试确定b 1的值,使得数列{b n }为等差数列;(3)将数列21n a ⎧⎫⎨⎬⎩⎭中的部分项按原来顺序构成新数列{c n },且c 1=5,求证:存在无数个满足条件的无穷等比数列{c n }.解析:(1)由a 1=1,两边平方化简可得22111n n a a +-=4,则数列21n a ⎧⎫⎨⎬⎩⎭是以1为首项,以4为公差的等差数列,根据等差数列的通项公式即可求得21n a ,即可求得数列{a n }的通项公式;(2)由(1)可得化简整理14143n n S S n n +-+-=1,得利用等差数列的通项公式可得:43nS n -=b 1+n ﹣1,即S n =(b 1+n ﹣1)(4n ﹣3),当n ≥2时,b n =S n ﹣S n ﹣1,化为b n =4b 1+8n ﹣11,取n=1即可得出;(3)解法1:令等比数列{c n }的公比q=4m (m ∈N *),则c n =c 1q n ﹣1=5×4m(n ﹣1),设k=m(n ﹣1),可得5×4m(n ﹣1)=3[5(1+4+42+…+4k ﹣1)+2]﹣1,….因为5(1+4+42+…+4k ﹣1)+2为正整数,可得数列{c n }是数列{a n }中包含的无穷等比数列,进而证明结论. 解法2:设c 2=4k 2﹣3(k 2≥3),所以公比q=2435k -,由等比数列{c n }的各项为整数,则q 为整数,取q=4m+1,故c n =5·(4m+1)n ﹣1,利用等差数列定义可得k n 是正整数,因此以数列{c n }是数列{a n }中包含的无穷等比数列,即可证明. 答案:(1)11n a +,则22111n n a a +-=4,n ∈N * ∴数列21n a ⎧⎫⎨⎬⎩⎭是以1为首项,以4为公差的等差数列,则21n a =1+4(n ﹣1)=4n ﹣3,∴n a =,∴数列{a n }的通项公式n a =; (2)由(1)可得n a =, ∵212211683n n n n S S n n a a +++--=,∴(4n ﹣3)S n+1=(4n+1)S n +16n 2﹣8n ﹣3, ∴14143n n S Sn n +-+-=1, ∴数列43n S n ⎧-⎫⎨⎬⎩⎭是等差数列,首项为S 1,公差为1.∴43nS n -=b 1+n ﹣1, ∴S n =(b 1+n ﹣1)(4n ﹣3),当n ≥2时,b n =S n ﹣S n ﹣1=(b 1+n ﹣1)(4n ﹣3)﹣(b 1+n ﹣2)(4n ﹣7),化为b n =4b 1+8n ﹣11, 若数列{b n }为等差数列,则上式对于n=1时也成立, ∴b 1=4b 1﹣3,解得b 1=1.∴b n =8n ﹣7为等差数列. ∴b 1=1,数列{b n }为等差数列; (3)证明:由(1)可得21n a =4n ﹣3.解法1:令等比数列{c n }的公比q=4m(m ∈N *),则c n =c 1qn ﹣1=5×4m(n ﹣1),设k=m(n ﹣1),因为1+4+42+…+4k ﹣1=413k -,所以5×4m(n ﹣1)=5×[3(1+4+42+…+4k ﹣1)+1],=3[5(1+4+42+…+4k ﹣1)+2]﹣1,因为5(1+4+42+…+4k ﹣1)+2为正整数,所以数列{c n }是数列{a n }中包含的无穷等比数列,因为公比q=4m (m ∈N *)有无数个不同的取值,对应着不同的等比数列, 故无穷等比数列{c n }有无数个.解法2:设c 2=4k 2﹣3(k 2≥3),所以公比q=2435k . 因为等比数列{b n }的各项为整数,所以q 为整数,取k 2=5m+2(m ∈N*),则q=4m+1,故c n =5·(4m+1)n ﹣1, 由4k n ﹣3=5·(4m+1)n ﹣1得,k n =14[5(4m+1)n ﹣1+3](n ∈N*), 而当n ≥2时,k n ﹣k n ﹣1=54[(4m+1)n ﹣1﹣(4m+1)n ﹣2]=5m(4m+1)n ﹣2, 即k n =k n ﹣1+5m(4m+1)n ﹣2,又因为k 1=2,5m(4m+1)n ﹣2都是正整数,所以k n 也都是正整数, 所以数列{c n }是数列{a n }中包含的无穷等比数列,因为公比q=4m+1(m ∈N *)有无数个不同的取值,对应着不同的等比数列, 故无穷等比数列{c n }有无数个.考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。
【精准解析】上海市嘉定区、长宁、金山区2020届高三上学期期末考试数学试题+Word版含解析byde
1 2
,则
cos BAC
AB AC
1 2
3 1 22
3 2
3,
AB AC
11
2
BAC 6
故答案为: .
6
【点睛】本题主要考查两个向量的夹角公式,属于基础题.
7.2 位女生 3 位男生排成一排,则 2 位女生不相邻的排法共有______种.
【答案】72
【解析】
【分析】
根据题意,分 2 步进行分析:①、将 3 位男生排成一排,②、3 名男生排好后有 4 个空位可选,
在 4 个空位中,任选 2 个,安排两名女生,由分步计数原理计算可得答案.
【详解】解:根据题意,分 2 步进行分析:
①、将 3 位男生排成一排,有 A33 6 种情况,
②、3 名男生排好后有 4 个空位可选,在 4 个空位中,任选 2 个,安排两名女生,有 A42 12
种情况,
则 2 位女生不相邻的排法有 612 72 种;
-5-
高中学习讲义
x y 1 x 2y 3
故答案为: 3 .
【点睛】本题考查平面向量基本定理以及向量共线的合理运用.解题时要认真审题, 属于基 础题.
11.已知数列an 满足: a1 1, an1 an a1,a2 ,,an n N* ,记数列an 的前 n 项和 为 Sn ,若对所有满足条件的an , S10 的最大值为 M 、最小值为 m ,则 M m ______.
都使用过的概率.
【详解】解:依题意,使用过 A 种支付方式的人数为:18 29 23 70 , 使用过 B 种支付方式的人数为:10 24 21 55 ,
又两种支付方式都没用过的有 5 人,
所以两种支付方式都用过的有 70 55 100 5 30 ,
上海市长宁区2019-2020学年高考数学一模考试卷含解析
上海市长宁区2019-2020学年高考数学一模考试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.袋中装有标号为1,2,3,4,5,6且大小相同的6个小球,从袋子中一次性摸出两个球,记下号码并放回,如果两个号码的和是3的倍数,则获奖,若有5人参与摸球,则恰好2人获奖的概率是( ) A .40243B .70243C .80243D .38243【答案】C 【解析】 【分析】先确定摸一次中奖的概率,5个人摸奖,相当于发生5次试验,根据每一次发生的概率,利用独立重复试验的公式得到结果. 【详解】从6个球中摸出2个,共有2615C =种结果,两个球的号码之和是3的倍数,共有(1,2),(1,5),(2,4),(3,6),(4,5)∴摸一次中奖的概率是51153=, 5个人摸奖,相当于发生5次试验,且每一次发生的概率是13, ∴有5人参与摸奖,恰好有2人获奖的概率是35222180()()33243C ⋅⋅=, 故选:C . 【点睛】本题主要考查了n 次独立重复试验中恰好发生k 次的概率,考查独立重复试验的概率,解题时主要是看清摸奖5次,相当于做了5次独立重复试验,利用公式做出结果,属于中档题.22,SA 是一条母线,P 点是底面圆周上一点,则P 点到SA 所在直线的距离的最大值是( )A .3B .3C .3D .4【答案】C 【解析】分析:作出图形,判断轴截面的三角形的形状,然后转化求解P 的位置,推出结果即可.2,SA 是一条母线,P 点是底面圆周上一点,P 在底面的射影为O ;90ASQ ∠>︒,过Q 作QT SA ⊥于T ,则QT QS <,在底面圆周,选择P ,使得90PSA ∠=︒,则P 到SA 的距离的最大值为3,故选:C点睛:本题考查空间点线面距离的求法,考查空间想象能力以及计算能力,解题的关键是作出轴截面图形,属中档题.3.已知数列{}n a 的前n 项和为n S ,且()()()212*111N ()n n n S S S n ++++=+∈,121,2a a ==,则n S =( )A .()12n n + B .12n + C .21n - D .121n ++【答案】C 【解析】 【分析】根据已知条件判断出数列{}1n S +是等比数列,求得其通项公式,由此求得n S . 【详解】由于()()()212*111N ()n n n S S S n ++++=+∈,所以数列{}1n S +是等比数列,其首项为11112S a +=+=,第二项为212114S a a +=++=,所以公比为422=.所以12n n S +=,所以21n n S =-. 故选:C 【点睛】本小题主要考查等比数列的证明,考查等比数列通项公式,属于基础题. 4.已知数列{}n a 对任意的*n N ∈有111(1)n n a a n n +=-++成立,若11a =,则10a 等于( )A .10110B .9110C .11111D .12211【答案】B 【解析】观察已知条件,对111(1)n n a a n n +=-++进行化简,运用累加法和裂项法求出结果.【详解】 已知111(1)n n a a n n +=-++,则1111111()11()(1)11n n a a n n n n n n +--+=--+=--+++=,所以有21111()12a a ---=,32111()23a a ---=,43111()34a a ---=,L109111()910a a ---=,两边同时相加得10119(1)10a a ---=,又因为11a =,所以101919(11)1010a --==+.故选:B 【点睛】本题考查了求数列某一项的值,运用了累加法和裂项法,遇到形如1n(n 1)+时就可以采用裂项法进行求和,需要掌握数列中的方法,并能熟练运用对应方法求解.5.已知等比数列{}n a 的各项均为正数,设其前n 项和n S ,若14+=nn n a a (n *∈N ),则5S =( )A .30 B.C.D .62【答案】B 【解析】 【分析】根据14+=nn n a a ,分别令1,2n =,结合等比数列的通项公式,得到关于首项和公比的方程组,解方程组求出首项和公式,最后利用等比数列前n 项和公式进行求解即可. 【详解】设等比数列{}n a 的公比为q ,由题意可知中:10,0a q >>.由14+=nn n a a ,分别令1,2n =,可得124a a =、2316a a =,由等比数列的通项公式可得:1112114162a a q a a q a q q ⎧⋅⋅=⎧=⎪⇒⎨⎨⋅⋅⋅==⎪⎩⎩因此552)12S -==-故选:B 【点睛】本题考查了等比数列的通项公式和前n 项和公式的应用,考查了数学运算能力.A .-2B .2C .4D .7【答案】B 【解析】 【分析】在等差数列中由等差数列公式与下标和的性质求得3a ,再由等差数列通项公式求得公差. 【详解】在等差数列{}n a 的前n 项和为n S ,则()155********a a S a a +===⇒=则3123272a a d d d =+=+=⇒= 故选:B 【点睛】本题考查等差数列中求由已知关系求公差,属于基础题.7.已知直线22+=mx ny ()0,0m n >>过圆()()22125x y -+-=的圆心,则11m n+的最小值为( ) A .1 B .2 C .3 D .4【答案】D 【解析】 【分析】圆心坐标为(1,2),代入直线方程,再由乘1法和基本不等式,展开计算即可得到所求最小值. 【详解】圆22(1)(2)5x y -+-=的圆心为(1,2),由题意可得222m n +=,即1m n +=,m ,0n >, 则1111()()24n m m n m n m n m n +=++=++…,当且仅当n mm n =且1m n +=即12m n ==时取等号, 故选:D . 【点睛】本题考查最值的求法,注意运用乘1法和基本不等式,注意满足的条件:一正二定三等,同时考查直线与圆的关系,考查运算能力,属于基础题.8.已知集合{|A x y ==,2{|}10B x x x =-+≤,则A B I =( )A .[12]-, B .[1-C .(1-D .⎡⎣【答案】C计算2,2A ⎡⎤=-⎣⎦,(]1,2B =-,再计算交集得到答案.【详解】{}22|2,2A x y x ⎡⎤=-=-⎣=⎦,(]2{|},1012x x B x -=-+=≤,故1(]2A B -=I ,. 故选:C . 【点睛】本题考查了交集运算,意在考查学生的计算能力.9.我国南北朝时的数学著作《张邱建算经》有一道题为:“今有十等人,每等一人,宫赐金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中间四人未到者,亦依次更给,问各得金几何?”则在该问题中,等级较高的二等人所得黄金比等级较低的九等人所得黄金( ) A .多1斤 B .少1斤C .多13斤 D .少13斤 【答案】C 【解析】设这十等人所得黄金的重量从大到小依次组成等差数列{}n a , 则123891043a a a a a a ++=++=,, 由等差数列的性质得2929441,1,1333a a a a =∴-=-== , 故选C 10.函数2sin 1x xy x +=+的部分图象大致为( )A .B .C .D .【答案】B 【解析】 【分析】图像分析采用排除法,利用奇偶性判断函数为奇函数,再利用特值确定函数的正负情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海市长宁区2020学年第一学期高三数学质量抽测试卷(文)
一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸的相应编号空格内填写结果,每题填写对得4分,否则一律得零分. 1. 不等式
1021
x
x -≥-的解集是__________. 2. 行列式1
01
2
1
313
1
---中3-的代数余子式的值为__________. 3. 从总体中抽取一个样本是5,6,7,8,9,则该样本的方差是__________.
4. 等比数列{}n a 的首项与公比分别是复数123
i +(i 是虚数单位)的实部与虚部,则数列
{}n a 的各项和的值为__________.
5. 随机抽取10个同学中至少有2个同学在同一月份生日的概率为__________(精确到0.001). 6. ABC ∆中,,,a b c 为,,A B C ∠∠∠所对的边,且222
,b c a bc +-=则A ∠=__________. 7. 某程序框图如图所示,该程序运行后输出的n 值是8,则从集合{}0,1,2,3中取所有满足条件的0S 的值为__________.
8. 已知{}n a 是等差数列,1010,a =其前10项和1070,S = 则其公差d =__________.
9. 圆锥和圆柱的底面半径和高都是R ,则圆锥的全面积与圆柱的全面积之比为__________.
10.
若(
)
10
12
x +的展开式中的第3项为90,则(
)12lim n
n x x x
→∞
+++=L __________.
11.
已知()y f x =是偶函数,()y g x =是奇函数,他们的定义域
均为[]3,3-,且它们在[]0,3x ∈上的图像如图所示,则不等式
()
()
0f x g x <的解集是__________. 12.
右数表为一组等式,如果能够猜测
()()22121n S n an bn c -=-++,则3a b +=____.
13.
1
0,0,23
x y x y >>+=,则11x y +的最小值是__________.
14.
已知函数
()f x 的定义域为R ,且对任意x Z ∈,都有
()()()11f x f x f x =-++.
若
()()12,13
f f -==,则
()()20122012f f +-=__________.
二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答
题纸的相应编号上,将代表答案的小方格涂黑,每题选对得5分,否则一律得零分. 15. 下列命题正确的是 ( )
A .若x A
B ∈⋃,则x A ∈且x B ∈
B .AB
C ∆中,sin sin A B >是A B >的充要条件
C. 若a b a c ⋅=⋅r r r r ,则b c =r r
D. 命题“若2
20x x -=,则2x =”的否命题是“若2x ≠,则2
20x x -≠”
16.
已知平面向量()()1,3,4,2a b =-=-r r ,a b λ+r r 与a r
垂直,则λ是 ( )
A . 1 B. 2 C. -2 D. -1
17. 下列命题中
① 三点确定一个平面;
② 若一条直线垂直与平面内的无数条直线,则该直线与平面垂直; ③ 同时垂直与一条直线的两条直线平行;
④ 底面边长为2,侧棱长为5的正四棱锥的全面积为12
1n n =+
x
y
1
2
3 y=f(x)
y=g(x)
第11题(文)
正确的个数为 ( ) A . 0 B. 1 C. 2 D. 3
18.
已知()()0,1x f x a a a =>≠,()g x 为()f x 的反函数,若()()220f g -⋅<,那
么()f x 与()g x 在同一坐标系内的图像可能是 ( )
三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸的相应编号规定区域内写出必须的步骤. 19. (本题满分12分)
设
1i i
+(其中i 是虚数单位)是实系数方程2
20x mx n -+=的一个根,求m ni +的值. 20. (本大题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分.
在正四棱柱1111ABCD A B C D -中,一直底面ABCD 的边长为2,点P 是1CC 的中
点,直线AP 与平面11BCC B 成30︒角.
(1)求1CC 的长;
(2)求异面直线1BC 和AP 所成角的大小. (结果用反三角函数值表示);
P
D1
B1
B
D
21.
(本大题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.
已知α
为锐角,且tan 1α=.
(1)设(),1,2tan ,sin(2)4m x n παα⎛⎫
==+ ⎪⎝
⎭u r r ,若m n ⊥u r r ,求x 的值;
(2)在ABC ∆中,若2,,23
A C BC π
α∠=∠=
=,求ABC ∆的面积.
22. (本小题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
设函数()()()101x x f x a k a a a -=-->≠且是定义域为R 的奇函数. (1)求k 值;
(2)当01a <<时,试判断函数单调性并求使不等式()
()2240f x x f x ++->的解集; (3)若()3
12
f =,且()()222x x
g x a a mf x -=+-,在[)1,+∞上的最小值为2-,求m 的值.
23. (本小题满分18分)本题共有3个小题,第1小题满分6分,第2小题满分6分,第3小题满分6分.
已知数列{}n a 中,()
*111,2n n n a a a n N +==∈ (1)求证数列{}n a 不是等比数列,并求该数列的通项公式; (2)求数列{}n a 的前n 项和n S ;
(3)设数列{}n a 的前2n 项和2n S ,若()22231n n n ka S a -≤⋅对任意*
n N ∈恒成立,求k
的最小值.。