结构动力学 期末复习重点
结构动力学的刚度系数柔度系数

(2)柔度法 —— 研究结构上质点的位移,建立位移协调方程, 需要用到柔度系数。
超静定结构,查表(形常数)
取决于结构的
刚度系数 柔度系数
3 E I k 3 l
i
1 k
两端固支梁侧移刚度: 12E I 12i k 3 2 l l
i
1
一固一铰支梁的侧移刚度:(同悬臂梁) 1 3EI 3i k 3 2 l l k 简支梁中点柔度、刚度:
l3 4 8 E I 4 8 E I k 3 l
δ
2. 柱的并联、串联刚度 (1)并联 总侧移刚度:
l/2
解:
l/2
1 ,先求δ m
3 l/ 16
l/2
l/2
P=1
l/2
l/2
l3 1 48EI
l/
2
7 l53l/32 2 7 6 8P=1 EI
l3 3 192 EI
1
48EI ml3
3 l 768 EI 192 EI 1 l 3 l l 5 l 7 l 2 2 ( 2 ) 3 2 3 m l 623 E I6 7 21 2 7 6 8 E I m l3
h1
k1
k1
、k2 — 楼层刚度
1 2 i2 k 2 2 h 2
总刚度:
k
P 1 1 1
k1 k 2
1 2 i 1 k 1 2 h 1
串联一般公式:
1 1 1 1 n1 k k k k j 1k 1 2 n j
结构动力学复习资料微型44

1.什么是坐标耦联,正则坐标,广义坐标,物理坐标?坐标耦联:由于坐标的选择,使得必须由联立的方程组才能求解,这就称为坐标耦联;它取决于表示运动坐标的选择方法,与体系本身的特性无关。
正则坐标:既无动力耦联,又无静力耦联的坐标,叫正则坐标。
广义坐标:能决定质点系的几何位置的彼此独立的量,称为该体系广义坐标;广义坐标可以取长度量纲的量,也可以用角度甚至面积和体积来表示。
物理坐标:即几何坐标,直接建立在体系中坐标系。
2.集中质量法:是结构分析中最常用的处理方法,把连续分布的质量集中到质点,采用真实的物理量,具有直接直观的优点。
广义坐标法:广义坐标是形函数的幅值,有时没有明确的物理意义,但是比较方便快捷。
有限元法:综合了集中质量法与广义坐标法的特点(1)与广义坐标法相似,有限元法采用了形函数的概念,但不同于广义坐标法在全部体系结构上插值,而是采用分片插值,因此形函数表达式形状可相对简单;(2)与集中质量法相比,有限元法中的广义坐标也采用了真实的物理量,具有直接直观的优点。
3.动力问题与静力问题的重要区别?结构动力特性一般指什么?(1)动力反应要计算全部时间上的一系列解,而静力问题是某一时间点上的解,主要原因是动力问题荷载是随时间变化的,但此外因并不足以产生重大不同,那样可将动力问题看成一系列静力问题;(2)考虑惯性力的影响是结构动力学和静力学的一个本质的重要区别。
结构的动力特性:自振频率、振型、阻尼4.动荷载的分类及其特点?根据荷载是否已预先确定,动荷载可以分为两类:确定性(非随机)荷载和非确定性(随机)荷载。
确定性荷载是荷载随时间的变化规律已预先确定,是完全已知的时间过程;非确定性荷载是荷载随时间变化的规律预先不可以确定,是一种随机过程。
5.什么叫静力凝聚?为简化计算,忽略惯性效应不大的方向上的动力效应,而使质量、刚度矩阵保证正定、对称,这种减少体系自由度的方法称为静力凝聚法。
6.动力自由度与静力自由度的概念及二者区别?动力自由度是指动力分析中,为确定体系任一时刻全部质量的几何位置所需要的独立参数的数目;静力自由度是使结构体系静定所需要的独立约束数目。
结构动力学 期末复习重点

一1、结构动力学计算的特点?(对比静力问题)○1动力反应要计算全部时间点上的一系列的解,比静力问题复杂要消耗更多的计算时间。
○2与静力问题相比,由于动力反应中结构的位置随时间迅速变化,从而产生惯性力,惯性力对结构的反应又产生重要的影响。
2、结构动力学是研究什么的?包含什么内容?结构动力学:是研究结构体系的动力特性及其在动力荷载作用下的动力反应分析原理和 方法的一门理论和技术学科。
目的:在于为改善工程结构体系在动力环境中的安全性和可靠性提供坚实的理论基础。
二、1、动力系数(有阻尼、无阻尼。
简谐、半功率点法、位移计……)2、动力系数和哪些因素有关动力放大系数受阻尼比控制,Rd 曲线形状可以反映出阻尼比的影响。
主要有两点:其一是峰值大小;其二是曲线的胖瘦。
3、动力系数在工程(隔震、调频减震)的应用4、如何用动力系数测阻尼比三、1、阻尼 阻尼也称阻尼力,是引起结构能量的耗散,使结构振幅逐渐变小的作用。
阻尼的来源:1固体材料变形时的内摩擦,或材料快速反应引起的热耗散;2结构连接部位的摩擦;3结构周围外部介质引起的阻尼。
2.阻尼比常用的测量方法及其优缺点:(1)对数衰减率法:相邻振动峰值比的自然对数值称为对数衰减率。
采用自由振动试验,测一阶振型的阻尼比较容易。
测量高阶振型阻尼比的关键是能激发出按相应振型的自由振动。
(2) 共振放大法:采用强迫振动试验,通过共振得到(Rd )max 由于静荷载下的位移较难确定,应用上存在一定的技术困难,但通过一定数学上的处理还是可以用的。
(Ust 是零频时的静位移,不容易测得。
)(3) 半功率点(带宽)法:采用强迫振动试验,测出Rd-w/wn 图上振幅值等于倍最大振幅的点,对应的长度的1/2即为阻尼比。
不但能用于单自由度体系,也可以用于多自由度体系,对多自由度体系要求共振频率稀疏,即多个自振频率应相隔较远,保证在确定相应于某一自振频率的半功率点时不受相邻自振频率的影响。
3、等效粘滞阻尼比○1、粘性阻尼是一种理想化的阻尼,具有简单和便于分析计算的优点。
结构动力学的刚度系数柔度系数汇总.

三、自由振动微分方程的解
y(t ) Asin( t )
四、结构的自振周期和频率
k 1 m m
T
2
五、例题
m
l /2 1 EI l /2
[例1] 计算图示结构的频率和周期。 (柔度法) 解:
1 m
l 48EI
ml 3 T 2 48EI
3
48 EI ml 3
1
k22 k2
k12 k2
k2
EI∞
k11 k1 k2
1
k1
k1 、k2 —— 楼层刚度(本楼层单位侧移所需的侧向力) k11 、k12 、k21 、k22 —— 位移法的刚度系数 kij
kij
—— 第j 个结点位移发生单位位移(其它结点位移均锁固)时, 在第i 个结点位移处产生的反力。
h EI EI
3EI 3EI 6EI k k左柱 k右柱 3 3 3 h h h
总侧移刚度:
h2
h1
i1
i2
k k左柱 k右柱
3 i1 3 i2 2 2 h1 h2
∞ h
总侧移刚度:
i1
i2
12 i1 12 i2 k k左柱 k右柱 2 2 h h
(刚度并联,两者叠加)
k
k11 k
EI
1
l
3EI l3
k11 m
3 EI
l3
k m
[例7]计算图示刚架的频率和周期。
1
m EI1= I I h
k
解: (刚度法)
由柱刚度并联 得:
12 EI 24 EI k 2 3 3 h h
k 24 EI m mh3
结构动力学复习资料

目录
第二章 单自由度系统的振动......................................................................................................... 1 2.1 单自由度系统的自由振动( F (t ) = 0 )........................................................................ 1 1)无阻尼自由振动......................................................................................................... 1 2)有阻尼自由振动......................................................................................................... 2 2.2 单自由度系统的强迫振动................................................................................................ 4 1)系统对于简谐激励的响应......................................................................................... 4 2)系统对周期激励的响应............................................................................................. 7 3)非周期激励的响应..................................................................................................... 8 第三章 二自由度系统的振动....................................................................................................... 10 3.1 无阻尼自由振动.............................................................................................................. 10 3.2 二自由度系统的强迫振动(简谐激励)...................................................................... 12 第四章 分析动力学基础............................................................................................................... 13 4.1 虚位移原理...................................................................................................................... 13 4.2 拉格朗日方程.................................................................................................................. 13 4.3 汉密尔顿原理.................................................................................................................. 14 第五章 多自由度系统的振动....................................................................................................... 14 5.1 运动方程的建立.............................................................................................................. 14 5.2 无阻尼自由振动.............................................................................................................. 15 5.3 主振型的正交性.............................................................................................................. 17 5.4 正规化与正规坐标.......................................................................................................... 18 5.5 半正定系统...................................................................................................................... 19 5.6 系统对初始条件的响应................................................................................................... 20 5.7 瑞雷—李兹法.................................................................................................................. 20 第六章 连续弹性体系统的振动................................................................................................... 22 6.1 弦的振动.......................................................................................................................... 22 6.2 杆的纵向振动.................................................................................................................. 23 6.3 轴的扭转转动.................................................................................................................. 25 6.4 梁的弯曲振动.................................................................................................................. 26 6.5 振型函数的正交性.......................................................................................................... 29 6.6 主振型叠加法.................................................................................................................. 29
结构动力学复习 新

结构动力学与稳定复习1.1 结构动力计算与静力计算的主要区别是什么?答:主要区别表现在:(1) 在动力分析中要计入惯性力,静力分析中无惯性力;(2) 在动力分析中,结构的内力、位移等是时间的函数,静力分析中则是不随时间变化的量;(3) 动力分析方法常与荷载类型有关,而静力分析方法一般与荷载类型无关。
1.2 什么是动力自由度,确定体系动力自由度的目的是什么?答:确定体系在振动过程中任一时刻体系全部质量位置或变形形态所需要的独立参数的个数,称为体系的动力自由度(质点处的基本位移未知量)。
确定动力自由度的目的是:(1) 根据自由度的数目确定所需建立的方程个数(运动方程数=自由度数),自由度不同所用的分析方法也不同;(2) 因为结构的动力响应(动力内力和动位移)与结构的动力特性有密切关系,而动力特性又与质量的可能位置有关。
1.3 结构动力自由度与体系几何分析中的自由度有何区别?答:二者的区别是:几何组成分析中的自由度是确定刚体系位置所需独立参数的数目,分析的目的是要确定体系能否发生刚体运动。
结构动力分析自由度是确定结构上各质量位置所需的独立参数数目,分析的目的是要确定结构振动形状。
1.4 结构的动力特性一般指什么?答:结构的动力特性是指:频率(周期)、振型和阻尼。
动力特性是结构固有的,这是因为它们是由体系的基本参数(质量、刚度)所确定的、表征结构动力响应特性的量。
动力特性不同,在振动中的响应特点亦不同。
1.5 什么是阻尼、阻尼力,产生阻尼的原因一般有哪些?什么是等效粘滞阻尼?答:振动过程的能量耗散称为阻尼。
产生阻尼的原因主要有:材料的内摩擦、构件间接触面的摩擦、介质的阻力等等。
当然,也包括结构中安装的各种阻尼器、耗能器。
阻尼力是根据所假设的阻尼理论作用于质量上用于代替能量耗散的一种假想力。
粘滞阻尼理论假定阻尼力与质量的速度成比例。
粘滞阻尼理论的优点是便于求解,但其缺点是与往往实际不符,为扬长避短,按能量等效原则将实际的阻尼耗能换算成粘滞阻尼理论的相关参数,这种阻尼假设称为等效粘滞阻尼。
结构动力学复习 新汇总

结构动力学与稳定复习1.1 结构动力计算与静力计算的主要区别是什么?答:主要区别表现在:(1) 在动力分析中要计入惯性力,静力分析中无惯性力;(2) 在动力分析中,结构的内力、位移等是时间的函数,静力分析中则是不随时间变化的量;(3) 动力分析方法常与荷载类型有关,而静力分析方法一般与荷载类型无关。
1.2 什么是动力自由度,确定体系动力自由度的目的是什么?答:确定体系在振动过程中任一时刻体系全部质量位置或变形形态所需要的独立参数的个数,称为体系的动力自由度(质点处的基本位移未知量)。
确定动力自由度的目的是:(1) 根据自由度的数目确定所需建立的方程个数(运动方程数=自由度数),自由度不同所用的分析方法也不同;(2) 因为结构的动力响应(动力内力和动位移)与结构的动力特性有密切关系,而动力特性又与质量的可能位置有关。
1.3 结构动力自由度与体系几何分析中的自由度有何区别?答:二者的区别是:几何组成分析中的自由度是确定刚体系位置所需独立参数的数目,分析的目的是要确定体系能否发生刚体运动。
结构动力分析自由度是确定结构上各质量位置所需的独立参数数目,分析的目的是要确定结构振动形状。
1.4 结构的动力特性一般指什么?答:结构的动力特性是指:频率(周期)、振型和阻尼。
动力特性是结构固有的,这是因为它们是由体系的基本参数(质量、刚度)所确定的、表征结构动力响应特性的量。
动力特性不同,在振动中的响应特点亦不同。
1.5 什么是阻尼、阻尼力,产生阻尼的原因一般有哪些?什么是等效粘滞阻尼?答:振动过程的能量耗散称为阻尼。
产生阻尼的原因主要有:材料的内摩擦、构件间接触面的摩擦、介质的阻力等等。
当然,也包括结构中安装的各种阻尼器、耗能器。
阻尼力是根据所假设的阻尼理论作用于质量上用于代替能量耗散的一种假想力。
粘滞阻尼理论假定阻尼力与质量的速度成比例。
粘滞阻尼理论的优点是便于求解,但其缺点是与往往实际不符,为扬长避短,按能量等效原则将实际的阻尼耗能换算成粘滞阻尼理论的相关参数,这种阻尼假设称为等效粘滞阻尼。
结构动力学复习新资料

结构动力学与稳定复习1.1 结构动力计算与静力计算的主要区别是什么?答:主要区别表现在:(1) 在动力分析中要计入惯性力,静力分析中无惯性力;(2) 在动力分析中,结构的内力、位移等是时间的函数,静力分析中则是不随时间变化的量;(3) 动力分析方法常与荷载类型有关,而静力分析方法一般与荷载类型无关。
1.2 什么是动力自由度,确定体系动力自由度的目的是什么?答:确定体系在振动过程中任一时刻体系全部质量位置或变形形态所需要的独立参数的个数,称为体系的动力自由度(质点处的基本位移未知量)。
确定动力自由度的目的是:(1) 根据自由度的数目确定所需建立的方程个数(运动方程数=自由度数),自由度不同所用的分析方法也不同;(2) 因为结构的动力响应(动力内力和动位移)与结构的动力特性有密切关系,而动力特性又与质量的可能位置有关。
1.3 结构动力自由度与体系几何分析中的自由度有何区别?答:二者的区别是:几何组成分析中的自由度是确定刚体系位置所需独立参数的数目,分析的目的是要确定体系能否发生刚体运动。
结构动力分析自由度是确定结构上各质量位置所需的独立参数数目,分析的目的是要确定结构振动形状。
1.4 结构的动力特性一般指什么?答:结构的动力特性是指:频率(周期)、振型和阻尼。
动力特性是结构固有的,这是因为它们是由体系的基本参数(质量、刚度)所确定的、表征结构动力响应特性的量。
动力特性不同,在振动中的响应特点亦不同。
1.5 什么是阻尼、阻尼力,产生阻尼的原因一般有哪些?什么是等效粘滞阻尼?答:振动过程的能量耗散称为阻尼。
产生阻尼的原因主要有:材料的内摩擦、构件间接触面的摩擦、介质的阻力等等。
当然,也包括结构中安装的各种阻尼器、耗能器。
阻尼力是根据所假设的阻尼理论作用于质量上用于代替能量耗散的一种假想力。
粘滞阻尼理论假定阻尼力与质量的速度成比例。
粘滞阻尼理论的优点是便于求解,但其缺点是与往往实际不符,为扬长避短,按能量等效原则将实际的阻尼耗能换算成粘滞阻尼理论的相关参数,这种阻尼假设称为等效粘滞阻尼。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一
1、结构动力学计算的特点?
(对比静力问题)○
1动力反应要计算全部时间点上的一系列的解,比静力问题复杂要消耗更多的计算时间。
○
2与静力问题相比,由于动力反应中结构的位置随时间迅速变化,从而产生惯性力,惯性力对结构的反应又产生重要的影响。
2、结构动力学是研究什么的?包含什么内容?
结构动力学:是研究结构体系的动力特性及其在动力荷载作用下的动力反应分析原理和 方法的一门理论和技术学科。
目的:在于为改善工程结构体系在动力环境中的安全性和可靠性提供坚实的理论基础。
二、
1、动力系数(有阻尼、无阻尼。
简谐、半功率点法、位移计……)
2、动力系数和哪些因素有关
动力放大系数受阻尼比控制,Rd 曲线形状可以反映出阻尼比的影响。
主要有两点:其一是峰值大小;其二是曲线的胖瘦。
3、动力系数在工程(隔震、调频减震)的应用
4、如何用动力系数测阻尼比
三、
1、阻尼 阻尼也称阻尼力,是引起结构能量的耗散,使结构振幅逐渐变小的作用。
阻尼的来源:1固体材料变形时的内摩擦,或材料快速反应引起的热耗散;2结构连接部位的摩擦;3结构周围外部介质引起的阻尼。
2.阻尼比常用的测量方法及其优缺点:
(1)对数衰减率法:相邻振动峰值比的自然对数值称为对数衰减率。
采用自由振动试验,测一阶振型的阻尼比较容易。
测量高阶振型阻尼比的关键是能激发出按相应振型的自由振动。
(2) 共振放大法:采用强迫振动试验,通过共振得到(Rd )max 由于静荷载下的位移较难确定,应用上存在一定的技术困难,但通过一定数学上的处理还是可以用的。
(Ust 是零频
时的静位移,不容易测得。
)
(3) 半功率点(带宽)法:采用强迫振动试验,测出Rd-w/wn 图上振
幅值等于倍最大振幅的点,对应的长度的1/2即为阻尼比。
不但能用于单自由度体系,也可以用于多自由度体系,对多自由度体系要求共振频率稀疏,即多个自振频率应相隔较远,保证在确定相应于某一自振频率的半功率点时不受相邻自振频率的影响。
3、等效粘滞阻尼比
○1、粘性阻尼是一种理想化的阻尼,具有简单和便于分析计算的优点。
○
2工程中结构的阻尼源于多方面,其特点和数学描述更为复杂,这时可以将复杂的阻尼在一定的意义上等效
成粘性阻尼。
○3一般采用基于能量等效的原则。
○4阻尼耗散能量的大小可以用阻尼力的滞回曲线反映。
m st d u u R 0max 2)(21=≈ζn k k ln 21+≈y y n πξn a
b
f f f 2-=ζ
4.Rayleigh 阻尼理论:(阻尼C 推导到阻尼比。
用阻尼比来考虑) 假设结构的阻尼矩阵是质量矩阵和刚度矩阵的组合。
[C]=a0[M]+a1[K] 其中a0和a1是两个比例系数,分别具有s-1和s 的量纲。
可以用实际测量得到的结构阻尼比来确定,或通过给定的两个振型阻尼比的值来确定,为此要把Rayleigh 阻尼公式化成由阻尼比表示的形式。
原则:选择的两个用于确定常数a0和a1的频率点wi 、wj 覆盖结构分析中感兴趣的频段。
在频段内,阻尼比略小于给定的阻尼比ζ。
这样,在该频段内由于计算的阻尼略小于实际阻尼,结构的反应将略大于实际的反应,这样的计算结果对工程设计而言是安全的。
如果ωi 和ωj 选择得好,则可以保证这种增大程度很小。
在频段[ωi ωj]以外,其阻尼比将迅速增大,这样频率成份的振动反应会被抑制,其计算值将远远小于实际值。
四、
1、列运动方程
二自由度体系,求频率、振型 (101页)
2、振型叠加法(有阻尼稳态求解步骤,公式,如何用振型叠加法。
不写推导过程)
3、振型叠加法的优缺点
虽然振型叠加法有计算速度快、节省时间这些突出的优点,但存在局限性。
主要局限是由于采用了叠加原理,因而原则上仅适用于分析线弹性问题,限制了使用范围;第二个局限是由于要求阻尼正交,对实际工程中存在的大量不满足阻尼正交条件的问题,迫使必须采用额外的处理方法,近似处理方法包括采用正交阻尼代替非正交阻尼,或采用复模态方法,但复模态分析将使问题维数扩大一倍。
虽然通过选择合适的振型数目,可保证足够的计算精度,但也会产生一定的误差。
为进一步减小由忽略高阶振型影响而引起的误差,可以采用静力修正法。
所谓静力修正法是指在采用振型叠加法进行求解时,考虑所有高阶振型的影响,但高阶振型相应的振型坐标反应的求解并不通过直接求解动力方程而获得,而是采用简化的静力分析方法。
4、位移按振型展开有限项如何展开,这两种方法的关系、特点。
静力修正法。
P127
∑=--+=Nd n n
n n n n K t P t q t P K t U 11
])()([}{)}({][)}({φ 振型加速度法。
∑=∙
∙∙-+-=Nd n n n n n n n n t q t q t P K t U 121
)](2)([}{)}({][)}({ωςωφ 这两种方法均考虑了高阶振型的影响,且求解并不是直接求解动力方程而获得。
避免了由于采用数值时域逐步积分方法求解高阶振型反应而可以显著节省计算时间。
具有更快的收敛性且误差少。
静力修正法比振型加速度法更合理地解释加快收敛的原因。
比较而言,静力修正法更方便而言,因为它在计算中仅涉及到相对简单的振型位移计算,而振型加速度法中则要涉及振型加速度和速度,但对于计算机而言,这种差异导致的工作量又是可以忽略的。
5、时域积分算法
共性:只假设结构本构关系在一个微小的时间步距内是线性的,相当于用分段直线来逼近实际的曲线;此外,它是研究离散点上的值,体系运动微分方程不一定要求在全部时间上满足,仅要求在离散点上满足。
在每个时间间隔的起点和终点建立动力平衡条件,并以一个假设的反应机理为根据,近似地计算在时间增量范围内体系的运动。
判断方法:1收敛性;当离散时间步长△t—>0时,数值解是否收敛于精确解;2计算精度;截断误差与时间步长△t的关系,若误差ε∝0(△t的N次方),则称具有N阶精度;3稳定性;随计算时间步数i的增大,数值解是否远离精确解;4计算效率;所花费计算时间的多少。
逐步积分法按是否需要联立求解耦联方程组,可分为两大类:隐式方法、显式方法。
算法:
分段解析法,如果结构是线性的,并采用等时间步长,则A—D′均为常数,其计算效率非常高,在p(t)离散采样的定义下是精确解,但如果是非线性问题,则A—D′均为变量,计算效率会大为降低。
分段解析法的误差仅来自对外荷载的假设,而在连续时间轴上严格满足运动微分方程。
中心差分法,中心差分方法用位移的有限差分来近似表示速度和加速度。
中心差分方法存在计算中的起步问题,即仅能给出i=0时刻的反应,而不能给出i=0-1时刻的反应。
因此需要从t=0时刻的位移函数的泰勒展开式中解出i=0-1时刻的位移。
虽然稳定性略差,但因其所具有的简单、高效的特点也得到一系列的应用。
线性加速度法,线性加速度法基本假设:在每个时间增量内,加速度线性变化,且体系的阻尼、刚度特性在这个时间间隔内保持为常量。
Newmark—β法,同样将时间离散化,运动方程仅要求在离散的时间点上满足。
假设在ti时刻的运动均已求得, 然后计算 ti+1时刻的运动。
而是以ti时刻的运动量为初始值,通过积分方法得到计算i+1时刻的运动公式。
当δ= 1/2,β=1/4时,Δt≤∞,即成为无条件稳定的。
(求解步骤)
Wilson—θ法,Wilson—θ法是基于线性加速度法基础之上发展的。
当参数θ>1.37时,方法是无条件稳定的。
而且对于一些强冲击问题,Wilson—θ法无法完成计算。